Elements of a non-Hermitian quantum theory without ∗ Hermitian conjugation — scalar product and scattering 5 Frieder Kleefeld 1 0 2 Collaborator of the Centro de F´ısica das Interacc¸o˜es Fundamentais (CFIF), n Instituto Superior T´ecnico (IST), a Edif´ıcio Ciˆencia, Piso 3, Av. Rovisco Pais, P-1049-001LISBOA, Portugal J Private permanent address: 6 Frankenstr. 3, 91452 Wilhermsdorf, Germany e-Mail: [email protected], kleefeld@cfif.ist.utl.pt ] h p - t n The descripitionofin a Hermitiansetting seeminglynonlocalandnon- a perturbativephenomenalikeconfinementorsuperconductivityismostcon- u veniently performed by generalizing quantum theory to a non-Hermitian q regime where these phenomena appear perturbative and local. The short [ presentationprovidesacluehowthiscanbedoneonthebasisofLorentzco- 1 variancewhile preservingthe analyticityofthe theory. After derivingwith v the help of Lorentz covariance a quantum scalar product without making 7 any use of metric or complex conjugation we sketch how the formalism of 4 scattering theory can be extended analytically to a non-Hermitian regime. 5 1 0 PACS numbers: 03.65.Ca, 03.65.Nk, 03.65.-wi,11.30.-j, 11.55.-m, 11.80.Gw . 1 0 1. Introductory remarks 5 1 Toustherearemainlythreepointsbecominggraduallyclear afterabout : v 20 years of intensive reseach effort to generalize quantum theory (QT) to a i X non-Hermitian (NH) setting (see e.g. Refs. [1]-[14] and references therein): 1)Thedescription ofphysicalsystemswithinan idealized Hermitian setting r a is at odds with experimental reality; 2) Various strong statements1 made naively within a Hermitian setting do not hold in a NH setting; 3) The ∗ Partsofthecomprehensivepresentation“Stronginteractionswithquarksandmesons — on unitarisation including bound states and non-Hermitian quantum theory” at theworkshop on “UnquenchedHadron Spectroscopy: Non-PerturbativeModels and Methods of QCD vs. Experiment (EEF70)” (1-5 September, 2014, University of Coimbra, Coimbra, Portugal) (http://cfif.ist.utl.pt/∼rupp/EEF70/talks/Kleefeld.pdf). 1 E.g. that confinement cannot begenerated byscalar bosons or that thequarticcou- pling of a Higgs scalar has — dueto stability reasons — to be positive [4]. (1) 2 kleefeld printed on January 8, 2015 advancedsectorofNHQTrequiredbyLorentzcovariance [2]andanalyticity is in a Hermitian setting obtained by applying to the retarded sector a Hermitian conjugation joint with a non-local, non-analytic metric [15]. 2. Setup of non-Hermitian Quantum Theory (NHQT) 2.1. Covariance and conservation of complex energy in the complex plane In the first place one should recall that the relativistic Klein-Gordon equation being essentially the wave equation is a differential equation of second order in the time coordinate which can be decomposed [2, 3, 6] into two first order equations. For a — without loss of generality — time independent eventually NH Hamilton operator H we have: ∂2 ∂ ∂ 0 = (i¯h)2 H2 ψ(t) = i¯h H i¯h +H ψ(t) . (1) ∂t2 − !| i (cid:18) ∂t − (cid:19)(cid:18) ∂t (cid:19)| i TherightsolutionoftheKlein-Gordonequation ψ(t) = ψ(+)(t) + ψ(−)(t) | i | i | i isthereforeobtainedbysuperimposingadditivelythesolutions ψ(+)(t) and ψ(−)(t) of the retarded and advanced Schro¨dinger equation r|espectiviely: | i ∂ ∂ 0= i¯h H ψ(+)(t) , 0 = i¯h +H ψ(−)(t) . (2) ∂t − | i ∂t | i (cid:18) (cid:19) (cid:18) (cid:19) Therespective left eigen-solution ψ(+)(t) and ψ(−)(t) of these two equa- tions is the right eigen-solution hhψ(+)(t))| hhψ(+)(t)|T and ψ(−)(t)) ψ(−)(t) T of the respective so-ca|lled “tran≡sphohsed reta|rded” a|nd “tran≡s- hh | posed advanced” Schro¨dinger equation (Here T denotes transpositon!), i.e.: ∂ ∂ 0= i¯h HT ψ(+)(t)), 0 = i¯h +HT ψ(−)(t)). (3) ∂t − | ∂t | (cid:18) (cid:19) (cid:18) (cid:19) Inusingthenotationψ(±)(z,t) z ψ(±)(t) ((ψ(±)(t) z)T andψ(±)(z,t) R L ((z ψ(±)(t)) ψ(±)(t) z T the≡nohnh-r|elativistiic≡one-dimen|sionallimitofEqs.≡ | ≡ hh | i (2) and (3) reads in spatial representation: ∂ ¯h2 ∂2 (±) (±) i¯h ψ (z,t) = +V(z) ψ (z,t), (4) ± ∂t R −2M ∂z2 ! R ∂ ¯h2 ∂2 (±) T (±) i¯h ψ (z,t) = +V(z) ψ (z,t). (5) ± ∂t L −2M ∂z2 ! L On the basis of these equations it is easy to show that there hold the fol- lowing two continuity equations ∂ρ(+)(z,t) ∂j(+)(z,t) ∂ρ(−)(z,t) ∂j(−)(z,t) = , = (6) ∂t − ∂z ∂t − ∂z kleefeld printed on January 8, 2015 3 for the retarded and advanced energy densities ρ(+)(z,t) and ρ(−)(z,t) and the respective energy current densities j(±)(z,t) defined as follows: ρ(±)(z,t) = ψ(∓)(z,t)T ψ(±)(z,t) , (7) L R · j(±)(z,t) = 1 ¯h2 ∂ψ(±)(z,t) ∂ψ(∓)(z,t)T ¯h2 (∓) T R L (±) = ψ (z,t) ψ (z,t) . L R i¯h · 2M ∂z − ∂z · 2M ! ± (8) The continuity equations (6) can be integrated along some suitable contour connecting two points z and z in the complex z-plane yielding 1 2 ∂ z2 dz ρ(±)(z,t) = j(±)(z ,t) j(±)(z ,t) . (9) 2 1 ∂t Zz1 −(cid:16) − (cid:17) Any integration contour with j(±)(z ,t) = j(±)(z ,t) defines an eventually 2 1 NHQT with a time-independent scalar product [1, 6] z2 z2 dz ρ(±)(z,t) = dz ψ(∓)(z,t)T ψ(±)(z,t) = const (10) L R Zz1 Zz1 · replacing the well known scalar product of Max Born. 2.2. Elements of non-Hermitian scattering theory Without loss of generality we consider now one-dimensional scattering at a time-independent eventually NH potential V(z). For such a potential the Schro¨dinger equations (4) and (5) can be solved by a separation ansatz (±) (±) (±) (±) ψ (z,t) = exp( Et/(i¯h))φ (z) and ψ (z,t) = exp( Et/(i¯h))φ (z) R R L L ± ± yielding the time-independent Schro¨dinger equations ¯h2 ∂2 (±) (±) E φ (z) = +V(z) φ (z), (11) R −2M ∂z2 ! R ¯h2 ∂2 (±) T (±) E φ (z) = +V(z) φ (z), (12) L −2M ∂z2 ! L and according to Eqs. (8) the time-independent energy current densities 1 ¯h2 ∂φ(±)(z) ∂φ(∓)(z)T ¯h2 j(±)(z) = φ(∓)(z)T R L φ(±)(z) . L R i¯h · 2M ∂z − ∂z · 2M ! ± (13) 4 kleefeld printed on January 8, 2015 Here we will discuss merely retarded scattering. Hence we usein the follow- ing the abbreviations j(z) j(+)(z), φ(+)(z) φ(+)(z), φ(−)(z) φ(−)(z), R L ≡ ≡ ≡ φ(+)(z)′ ∂φ(+)(z)/∂z and φ(−)(z)′ ∂φ(−)(z)/∂z. Advanced scattering R L ≡ ≡ results are nonetheless easily derivable from their retarded counterparts. In the region of vanishing potential, i.e. V(z) = 0, the solution of the Schro¨dinger Eqs. (11) and (12) is of plane-wave type with k 2ME/¯h2: 0 ≡ q φ(±)(z) = exp( ik z) c(±)(k )+exp( ik z)c(±)( k ), (14) 0 0 0 0 ± ∓ − 1 ¯h2 ¯h2 j(z) = φ(−)(z)T φ(+)(z)′ φ(−)(z)′T φ(+)(z) ⇒ i¯h · 2M − · 2M (cid:16) ¯hk ¯hk (cid:17) = c(−)(k )T 0 c(+)(k ) c(−)( k )T 0 c(+)( k ). (15) 0 0 0 0 · M − − · M − In the following we want to consider retarded scattering between two points z< and z> of vanishing potential, i.e. V(z<) = V(z>) = 0. Wave functions and their derivatives at z> and z< are related by transfer matrices T(±): 2¯hM2 φ(±)(z>) = T1(1±) T1(2±) 2¯hM2 φ(±)(z<) , (16) q2¯hM2 φ(±)(z>)′ T2(1±) T2(2±) q2¯hM2 φ(±)(z<)′ q q or, alternatively, a(±) e(±) T˜(±) T˜(±) e(±) 1 = T˜(±) 1 = 11 12 1 , (17) e(±) a(±) T˜(±) T˜(±) a(±) 2 2 21 22 2 with ¯hk ¯hk e(±) e±ik0z< 0 c(±)(k ) , e(±) e∓ik0z> 0 c(±)( k ) , (18) 1 ≡ s M < 0 2 ≡ s M > − 0 ¯hk ¯hk a(±) e±ik0z> 0 c(±)(k ) , a(±) e∓ik0z< 0 c(±)( k ) . (19) 1 ≡ s M > 0 2 ≡ s M < − 0 Simple algebra establishes the following relation between T˜(±) and T(±): √k 1 1 1 1 1 T˜(±) = 1 + 0 ±ik0 (T(±) 1 ) . (20) 2 2 1 ∓ik10 ! − 2 ±ik0 ∓ik0 !√k0 1 is the2 2 unitmatrix. Moreover weassumetheenergy currentdensities 2 × at points z< and z> to be equal, i.e. j(z<) = j(z>), yielding (see Eq. (15)) ¯hk ¯hk (−) T 0 (+) (−) T 0 (+) c (k ) c (k ) c ( k ) c ( k ) = > 0 > 0 > 0 > 0 · M − − · M − ¯hk ¯hk (−) T 0 (+) (−) T 0 (+) = c (k ) c (k ) c ( k ) c ( k ), (21) < 0 < 0 < 0 < 0 · M − − · M − kleefeld printed on January 8, 2015 5 (−)T (+) (−)T (+) (−)T (+) (−)T (+) or, equivalently, a a e e = e e a a . (−)T 1(+) · 1(−)T− 2(+) · 2(−)T 1(+) · 1(−)T− 2(+) · 2 Inspecting e e + e e = a a + a a we can define the S-1matr·ix1S(+) an2d tr·ans2pose of1its in·ve1rse S(−2) = (·S(+2)−1)T by (±) (±) (±) (±) (±) a e S S e 1 = S(±) 1 = 11 12 1 . (22) (±) (±) (±) (±) (±) a e S S e 2 2 21 22 2 Making use of Eqs. (17) and S(−)TS(+) = 1 we obtain: 2 S(±) S(±) T˜(∓)T −1 T˜(±)T˜(±)−1 S(±)= 11 12 = 11 12 22 .(23) S(±) S(±) (cid:16)T˜(±)−(cid:17)1T˜(±) T˜(±)−1 21 22 − 22 21 22 S(∓)T S(∓)T T˜(±)−1 T˜(±)−1T˜(±) S(∓)T= 11 21 = 11 − 11 12 .(24) S(∓)T S(∓)T T˜(±)T˜(±)−1 T˜(∓)T −1 12 22 21 11 22 (cid:16) (cid:17) The transmittivities T and T and reflectivities R and R are therefore: 1 2 1 2 T = 1 R = S(−)TS(+) = T˜(+)−1 T˜(−)T −1 = T˜(−)TT˜(+) −1, (25) 1 − 1 11 11 11 11 11 11 T = 1 R = S(−)TS(+) = T˜(−)T(cid:16)−1T˜(+(cid:17))−1 = (cid:16)T˜(+)T˜(−)T(cid:17)−1. (26) 2 − 2 22 22 22 22 22 22 (cid:16) (cid:17) (cid:16) (cid:17) 3. Simple application: scattering at a delta-potential For the scattering at a delta-potential V(z) = g δ(z a) with g being − eventually complex-valued we choose x> = a + 0 and x< = a 0. The − delta-potential is represented by the following transfer matrices: 1 0 1 0 T(+) = , T(−) = . (27) 2M g 2M 1 2M gT 2M 1 ¯h2 ¯h2 ¯h2 ¯h2 q q q q Invoking these transfer matrices into Eq. (20) we obtain T˜(+) = T˜(−)T = S(−)T −1 = S(−)T −1 = 1+ 1 2M g 2M ,(28) 11 22 11 22 2i s¯h2k0 s¯h2k0 (cid:16) (cid:17) (cid:16) (cid:17) T˜(−)T = T˜(+) = S(+) −1 = S(+) −1 = 1 1 2M g 2M ,(29) 11 22 11 22 − 2i s¯h2k0 s¯h2k0 (cid:16) (cid:17) (cid:16) (cid:17) and, consequently, T =T = 1 R =1 R = 1 2 1 2 − − −1 1 2M 2M 1 2M 2M = 1 g 1+ g . (30) " − 2i s¯h2k0 s¯h2k0! 2i s¯h2k0 s¯h2k0!# 6 kleefeld printed on January 8, 2015 Thisis—withoutinvolvinganycomplex conjugation —thestandardresult which will be for one scattering channel obviously real-valued, positive and within the invervall [0,1], if (Mg/k )2 is real-valued and non-negative. 0 Acknowledgements Best wishes to Everadus Johannes H.V. van Beveren (“Eef”) on the occasion of his 70th birthday. Cordial thanks to him and his family for lasting support. We also would like to deliver our best regards for kindest hospitality to Maria do C´eu Martins Alfaiate Reste in the Rua da Bica 10, 3060-295 Porto dos Cov˜oes, Portugal, whereessential parts of the presented work have been completed. This work was supported by the Funda¸c˜ao para a Ciˆencia e a Tecnologia of the Minist´erio da Ciˆencia, Tecnologia e Ensino Superior of Portugal, under contract CERN/FP/123576/2011 and by the Czech project LC06002. REFERENCES [1] F. Kleefeld, Deriving Non-Hermitian Quantum Theory from Covari- ance and the Correspondence Principle, oral contribution to the Con- ference “PHHQP XI: Non-Hermitian Operators in Quantum Physics” (27-31 August, 2012, APC, Paris Diderot University, Paris, France) (http://phhqp11.in2p3.fr/Monday27 files/KleefeldSL12.pdf). [2] F. Kleefeld, Acta Polytechnica 53, 295 (2013) [arXiv:1209.3472[math-ph]]. [3] F. Kleefeld, Czech. J. Phys. 56, 999 (2006) [quant-ph/0606070]. [4] F. Kleefeld, J. Phys. A 39, L9 (2006) [hep-th/0506142]. [5] F. Kleefeld, Czech. J. Phys. 55, 1123 (2005) [hep-th/0506140]. [6] F. Kleefeld, hep-th/0408097, hep-th/0408028. [7] F. Kleefeld, hep-th/0312027. [8] F. Kleefeld, eConf C 0306234, 1367 (2003) [Proc. Inst. Math. NAS Ukraine 50, 1367 (2004)] [hep-th/0310204]. [9] F. Kleefeld, Few Body Syst. Suppl. 15, 201 (2003) [nucl-th/0212008]. [10] F. Kleefeld, AIP Conf. Proc. 660, 325 (2003) [hep-ph/0211460]. [11] F. Kleefeld, E. van Beveren and G. Rupp, Nucl. Phys. A 694, 470 (2001) [hep-ph/0101247]. [12] F. Kleefeld, Doctoral Thesis (Univ. of Erlangen-Nu¨rnberg,Germany, 1999). [13] F.Kleefeld,Proc.XIVISHEPP98(17-22August,1998,Dubna), Eds.Baldin A M and Burov V V, JINR, Dubna, 2000, Part 1, 69-77 [nucl-th/9811032]. [14] F. Kleefeld, Acta Phys. Polon. B 30, 981 (1999) [nucl-th/9806060]. [15] C. M. Bender, D. C. Brody and H. F. Jones, eConf C 0306234, 617 (2003) [Phys. Rev. Lett. 89, 270401 (2002)] [Erratum-ibid. 92, 119902 (2004)] [quant-ph/0208076]; C. M. Bender, S. F. Brandt, J. H. Chen and Q. h. Wang, Phys. Rev. D 71, 025014 (2005) [hep-th/0411064].