ebook img

Elementary Vector Calculus and its Applications with MATLAB Programming PDF

228 Pages·2022·10.231 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elementary Vector Calculus and its Applications with MATLAB Programming

River Publishers Series in Mathematical, Statistical and Elementary Vector Calculus Computational Modelling for Engineering and its Applications with E l MATLAB Programming e Elementary Vector Calculus m e n t and its Applications with Nita H. Shah a r y Jitendra Panchal V MATLAB Programming e c M t Ao Sir Isaac Newton, one of the greatest scientists and mathematicians r T C of all time, introduced the notion of a vector to define the existence of L Aa gravitational forces, the motion of the planets around the sun, and the Bl c motion of the moon around the earth. Vector calculus is a fundamental Pu scientific tool that allows us to investigate the origins and evolution of rolu space and time, as well as the origins of gravity, electromagnetism, and gs r a nuclear forces. Vector calculus is an essential language of mathemati- an m cal physics, and plays a vital role in differential geometry and studies d m i related to partial differential equations widely used in physics, engi- t s i neering, fluid flow, electromagnetic fields, and other disciplines. Vector n A g calculus represents physical quantities in two or three-d imensional p p space, as well as the variations in these quantities. l i c The machinery of differential geometry, of which vector calculus a t is a subset, is used to understand most of the analytic results in a more i o general form. Many topics in the physical sciences can be mathemati- n s cally studied using vector calculus techniques. w This book is designed under the assumption that the readers have it h no prior knowledge of vector calculus. It begins with an introduction to vectors and scalars, and also covers scalar and vector products, vector differentiation and integrals, Gauss’s theorem, Stokes’s theorem, and Green’s theorem. The MATLAB programming is given in the last chapter. This book includes many illustrations, solved examples, practice J examples, and multiple-choice questions. it e N n it d a ra H P . S a h n a c h h a Nita H. Shah River Publishers River Jitendra Panchal Elementary Vector Calculus and its Applications with MATLAB Programming RIVER PUBLISHERS SERIES IN MATHEMATICAL, STATISTICAL AND COMPUTATIONAL MODELLING FOR ENGINEERING SeriesEditors: MANGEYRAM GraphicEraUniversity,India TADASHIDOHI HiroshimaUniversity,Japan ALIAKBARMONTAZERHAGHIGHI PrairieViewTexasA&MUniversity,USA Appliedmathematicaltechniquesalongwithstatisticalandcomputationaldataanalysishas becomevitalskillsacrossthephysicalsciences.Thepurposeofthisbookseriesistopresent novel applications of numerical and computational modelling and data analysis across the applied sciences. We encourage applied mathematicians, statisticians, data scientists and computing engineers working in a comprehensive range of research fields to showcase dif- ferenttechniquesandskills,suchasdifferentialequations,finiteelementmethod,algorithms, discretemathematics,numericalsimulation,machinelearning,probabilityandstatistics,fuzzy theory,etc Books published in the series include professional research monographs, edited vol- umes, conference proceedings, handbooks and textbooks, which provide new insights for researchers,specialistsinindustry,andgraduatestudents. Topicsincludedinthisseriesareasfollows:- • Discretemathematicsandcomputation • Faultdiagnosisandfaulttolerance • Finiteelementmethod(FEM)modeling/simulation • Fuzzyandpossibilitytheory • Fuzzylogicandneuro-fuzzysystemsforrelevantengineeringapplications • GameTheory • Mathematicalconceptsandapplications • Modellinginengineeringapplications • Numericalsimulations • Optimizationandalgorithms • Queueingsystems • Resilience • Stochasticmodellingandstatisticalinference • StochasticProcesses • StructuralMechanics • Theoreticalandappliedmechanics Foralistofotherbooksinthisseries,visitwww.riverpublishers.com Elementary Vector Calculus and its Applications with MATLAB Programming Nita H. Shah GujaratUniversity,India Jitendra Panchal ParulUniversity,India Published,soldanddistributedby: RiverPublishers Alsbjergvej10 9260Gistrup Denmark www.riverpublishers.com ISBN:978-87-7022-387-4(Hardback) 978-87-7022-386-7(Ebook) (cid:2)c2022RiverPublishers Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmittedinanyformorbyanymeans,mechanical, photocopying,recordingorotherwise,withoutpriorwrittenpermissionof thepublishers. Contents Preface ix ListofFigures xi 1 BasicConceptofVectorsandScalars 1 1.1 IntroductionandImportance . . . . . . . . . . . . . . . . . 1 1.2 RepresentationofVectors . . . . . . . . . . . . . . . . . . . 1 1.3 PositionVectorandVectorComponents . . . . . . . . . . . 2 1.4 ModulusorAbsoluteValueofaVector . . . . . . . . . . . . 3 1.5 ZeroVectorandUnitVector . . . . . . . . . . . . . . . . . 4 1.6 UnitVectorsintheDirectionofAxes . . . . . . . . . . . . 4 1.7 RepresentationofaVectorintermsofUnitVectors . . . . . 5 1.8 AdditionandSubtractionofVectors . . . . . . . . . . . . . 6 1.9 ProductofaVectorwithaScalar . . . . . . . . . . . . . . . 6 1.10 DirectionofaVector . . . . . . . . . . . . . . . . . . . . . 7 1.11 CollinearandCoplanarVectors . . . . . . . . . . . . . . . . 8 1.11.1 CollinearVectors . . . . . . . . . . . . . . . . . . . 8 1.11.2 CoplanarVectors . . . . . . . . . . . . . . . . . . . 8 1.12 GeometricRepresentationofaVectorSum . . . . . . . . . . 8 1.12.1 LawofParallelogramofVectors . . . . . . . . . . . 8 1.12.2 LawofTriangleofVectors . . . . . . . . . . . . . . 9 1.12.3 PropertiesofAdditionofVectors. . . . . . . . . . . 9 1.12.4 PropertiesofScalarProduct . . . . . . . . . . . . . 10 1.12.5 Expression of Any Vector in Terms of the Vectors AssociatedwithitsInitialPointandTerminalPoint . 10 1.12.6 ExpressionofAnyVectorinTermsofPosition Vectors . . . . . . . . . . . . . . . . . . . . . . . . 11 1.13 DirectionCosinesofaVector . . . . . . . . . . . . . . . . . 12 1.14 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 v vi Contents 2 ScalarandVectorProducts 29 2.1 ScalarProduct,orDotProduct,orInnerProduct . . . . . . . 29 2.2 TheMeasureofAngleBetweentwoVectorsand Projections . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.1 PropertiesofaDotProduct . . . . . . . . . . . . . . 30 2.3 VectorProductorCrossProductorOuterProductofTwo Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4 GeometricInterpretationofaVectorProduct . . . . . . . . . 38 2.4.1 PropertiesofaVectorProduct . . . . . . . . . . . . 39 2.5 ApplicationofScalarandVectorProducts . . . . . . . . . . 45 2.5.1 WorkDonebyaForce . . . . . . . . . . . . . . . . 46 2.5.2 MomentofaForceAboutaPoint . . . . . . . . . . 46 2.6 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 VectorDifferentialCalculus 55 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 VectorandScalarFunctionsandFields . . . . . . . . . . . . 55 3.2.1 ScalarFunctionandField . . . . . . . . . . . . . . 56 3.2.2 VectorFunctionandField . . . . . . . . . . . . . . 56 3.2.3 LevelSurfaces . . . . . . . . . . . . . . . . . . . . 56 3.3 CurveandArcLength. . . . . . . . . . . . . . . . . . . . . 57 3.3.1 ParametricRepresentationofCurves . . . . . . . . . 57 3.3.2 CurveswithTangentVector . . . . . . . . . . . . . 58 3.3.2.1 TangentVector . . . . . . . . . . . . . . . 59 3.3.2.2 ImportantConcepts . . . . . . . . . . . . 60 3.3.3 ArcLength . . . . . . . . . . . . . . . . . . . . . . 61 3.3.3.1 UnitTangentVector . . . . . . . . . . . . 61 3.4 CurvatureandTorsion. . . . . . . . . . . . . . . . . . . . . 64 3.4.1 FormulasforCurvatureandTorsion . . . . . . . . . 67 3.5 VectorDifferentiation . . . . . . . . . . . . . . . . . . . . . 70 3.6 GradientofaScalarFieldandDirectionalDerivative . . . . 73 3.6.1 GradientofaScalarField . . . . . . . . . . . . . . 73 3.6.1.1 PropertiesofGradient . . . . . . . . . . . 73 3.6.2 DirectionalDerivative . . . . . . . . . . . . . . . . 74 3.6.2.1 PropertiesofGradient . . . . . . . . . . . 75 3.6.3 EquationsofTangentandNormaltotheLevel Curves . . . . . . . . . . . . . . . . . . . . . . . . 84 3.6.4 EquationoftheTangentPlanesandNormalLines totheSurfaces . . . . . . . . . . . . . . . . . . . . 85 Contents vii 3.7 DivergenceandCurlofaVectorField . . . . . . . . . . . . 86 3.7.1 DivergenceofaVectorField . . . . . . . . . . . . . 86 3.7.1.1 PhysicalInterpretationofDivergence . . . 86 3.7.2 CurlofaVectorField . . . . . . . . . . . . . . . . . 89 3.7.2.1 PhysicalInterpretationofCurl. . . . . . . 89 3.7.3 Formulaeforgrad,div,curlInvolvingOperator∇ . 96 3.7.3.1 Formulae for grad, div, curl Involving Operator∇Once . . . . . . . . . . . . . 96 3.7.3.2 Formulae for grad, div, curl Involving Operator∇Twice . . . . . . . . . . . . . 100 3.8 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4 VectorIntegralCalculus 111 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.2 LineIntegrals . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.2.1 Circulation . . . . . . . . . . . . . . . . . . . . . . 112 4.2.2 WorkDonebyaForce . . . . . . . . . . . . . . . . 112 4.3 PathIndependenceofLineIntegrals . . . . . . . . . . . . . 113 4.3.1 Theorem:IndependentofPath . . . . . . . . . . . . 113 4.4 SurfaceIntegrals . . . . . . . . . . . . . . . . . . . . . . . 122 4.4.1 Flux . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.4.2 EvaluationofSurfaceIntegral . . . . . . . . . . . . 123 4.4.2.1 ComponentformofSurfaceIntegral . . . 124 4.5 VolumeIntegrals . . . . . . . . . . . . . . . . . . . . . . . 129 4.5.1 ComponentFormofVolumeIntegral . . . . . . . . 129 4.6 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5 Green’sTheorem,Stokes’Theorem,andGauss’Theorem 135 5.1 Green’sTheorem(inthePlane) . . . . . . . . . . . . . . . . 135 5.1.1 AreaofthePlaneRegion . . . . . . . . . . . . . . . 137 5.2 Stokes’Theorem . . . . . . . . . . . . . . . . . . . . . . . 146 5.3 Gauss’DivergenceTheorem . . . . . . . . . . . . . . . . . 154 5.4 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 6 MATLABProgramming 167 6.1 BasicofMATLABProgramming . . . . . . . . . . . . . . . 167 6.1.1 BasicofMATLABProgramming . . . . . . . . . . 167 6.1.1.1 IntroductoryMATLABprogrammes . . . 168 6.1.1.2 RepresentationofaVectorinMATLAB . 183 viii Contents 6.1.1.3 RepresentationofaMatrixinMATLAB . 186 6.2 SomeMiscellaneousExamplesusingMATLAB Programming . . . . . . . . . . . . . . . . . . . . . . . . . 188 Index 207 AbouttheAuthors 213 Preface Vector calculus is an essential language of mathematical physics. Vector calculus plays a vital role in differential geometry, and the study related to partial differential equations is widely used in physics, engineering, fluid flow,electromagneticfields,andotherdisciplines.Vectorcalculusrepresents physicalquantitiesintwoorthree-dimensionalspace,aswellasthevariations inthesequantities. The machinery of differential geometry, of which vector calculus is a subset, is used to understand most of the analytic results in a more general form. Many topics in the physical sciences can be mathematically studied usingvectorcalculustechniques. Descriptionofthebook: This book is meant for readers who have a basic understanding of vector calculus. This book is designed to provide accurate information to readers. The language in the book is kept simple so that all readers can easily understandeachconcept. Thisbookbeginswiththeintroductionofvectorsandscalarsinchapter1. Chapter1containsessentialbasicdefinitionsandconcepts,vectorintermsof unit vectors, geometric representation of vector sum, and direction cosines. The scalar and vector products, measurement of angle and projections, geo- metric interpretation of a vector product, and their applications are given in chapter 2. In chapter 3, vector and scalar functions and fields, curves, arc length, formulae for curvature and torsion, and its derivation, curl, diver- gence,andgradientwithimportantpropertiesandphysicalinterpretation,and important results are given in vector differential calculus. Chapter 4 vector integral calculus includes line integrals, circulation, path independence, sur- faceintegrals,volumeintegrals,anditsapplicationslikefluxandworkdone by a force are given. In chapter 5, derivation of Green’s theorem, Stokes’s theorem,andGauss’divergencetheoremaregivenwithvarioussolveexam- ples. MATLAB programming is given in the last chapter 6 includes basic informationaboutMATLAB.Initially,basicexamplesaregivenwithproper ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.