ebook img

Elementary numerical analysis: algorithmic approach PDF

445 Pages·1980·4.391 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elementary numerical analysis: algorithmic approach

ELEMENTARY NUMERICAL ANALYSIS An Algorithmic Approach International Series in Pure and Applied Mathematics G. Springer rot igdnEitlusnoC Ahlfors: Complex Analysis Bender and Orszag: Advanced Mathematical Methods for Scientists and Engineers Buck: Advanced Calculus Busacker and Saaty: Finite Graphs and Networks Cheney: Introduction to Approximation Theory Chester: Techniques in Partial Differential Equations Coddington and Levinson: Theory of Ordinary Differential Equations Conte and de Boor: Elementary Numerical Analysis: An Algorithmic Approach Dennemeyer: Introduction to Partial Differential Equations and Boundary Value Problems Dettman: Mathematical Methods in Physics and Engineering Hamming: Numerical Methods for Scientists and Engineers Hildebrand: Introduction to Numerical Analysis Householder: The Numerical Treatment of a Single Nonlinear Equation Kalman, Falb, and Arbib: Topics in Mathematical Systems Theory McCarty: Topology: An Introduction with Applications to Topological Groups Moore: Elements of Linear Algebra and Matrix Theory Moursund and Duris: Elementary Theory and Application of Numerical Analysis Pipes and Harvill: Applied Mathematics for Engineers and Physicists Ralston and Rabinowitz: A First Course in Numerical Analysis Ritger and Rose: Differential Equations with Applications Rudin: Principles of Mathematical Analysis Shapiro: Introduction to Abstract Algebra Simmons: Differential Equations with Applications and Historical Notes Simmons: Introduction to Topology and Modern Analysis Struble: Nonlinear Differential Equations ELEMENTARY NUMERICAL ANALYSIS An Algorithmic Approach drihTnoitidE S. D. Conte Purdue University Carl de Boor Universiry of Wisconsin—Madison McGraw-Hill Book Company weN kroY .tS siuoL naS ocsicnarF dnalkcuA átogoBgrubmaH Johannesburg London Madrid Mexico Montreal New Delhi Panama Paris São Paulo Singapore Sydney Tokyo Toronto ELEMENTARY NUMERICAL ANALYSIS An Algorithmic Approach thgirypoC © ,0891 ,2791 5691 yb ,lliH-warGcM .cni llA sthgir.devreser detnirP ni eht detinU setatS fo .aciremA oN trap fo sihtnoitacilbup yam eb ,decudorper derots ni a laveirter ,metsys ro ,dettimsnart niyna mrof ro yb yna ,snaem ,cinortcele ,lacinahcem ,gniypocotohp gnidrocerro ,esiwrehto tuohtiw eht roirp nettirw noissimrep fo eht.rehsilbup 234567890 DODO 89876543210 sihT koob saw tes ni semiT namoR yb ecneicS ,srehpargopyT .cnIehT srotide erew loraC reipaN dna semaJ .S ;ramA eht noitcudorprosivrepus saw lihP .aelaG ehT sgniward erew enod yb eniF eniL ,snoitartsullI.cnI .R .R yellennoD & snoS ynapmoC saw retnirp dna.rednib Library of Congress Cataloging in Publication Data ,etnoC leumaS ,leinaDetad yratnemelE laciremun .sisylana lanoitanretnI( seires ni erup dnadeilppa mathematics) sedulcnI .xedni 1. Numerical analysis-Data processing. I . ed ,rooB ,lraC tnioj .rohtua .II.eltiT QA297.C65 1980 519.4 79-24641 ISBN 0-07-012447-7 CONTENTS Preface ix Introduction xi Chapter 1 rebmuN smetsyS dna srorrE 1 1.1 ehT noitatneserpeR fo sregetnI 1 1.2 ehT noitatneserpeR fo snoitcarF 4 1.3 Floating-Point Arithmetic 7 1.4 ssoL fo ecnacifingiS dna rorrE;noitagaporP Condition and Instability 12 1.5 lanoitatupmoC sdohteM rof rorrE noitamitsE 18 1.6 emoS stnemmoC no ecnegrevnoC fosecneuqeS 19 1.7 Some Mathematical Preliminaries 25 Chapter 2 Interpolation by Polynomial 31 2.1 Polynomial Forms 31 2.2 ecnetsixE dna sseneuqinU fo eht gnitalopretnIlaimonyloP 38 3.2 The Divided-Difference Table 41 *2.4 Interpolation at an Increasing Number of Interpolation Points 46 2.5 ehT rorrE fo eht gnitalopretnIlaimonyloP 51 6.2 noitalopretnI ni a noitcnuF elbaT desaB noyllauqE decapS stnioP 55 *2.7 ehT dediviD ecnereffiD sa a noitcnuF fo stIstnemugrA and Osculatory Interpolation 62 * snoit cdeeSkram htiw na ksiretsa yam eb dett itmuoohtiw ssol f.oytiunitnoc V vi CONTETS Chapter 3 The Solution of Nonlinear Equations 72 3.1 A yevruS fo evitaretIsdohteM 74 3.2 sdohteM evitaretI emoS rof smargorP nartroF 81 3.3 tnioP-dexiF noitaretI 88 3.4 ecnegrevnoC noitareleccA rof tnioP-dexiFnoitaretI 95 *3.5 ecnegrevnoC fo eht notweN dna tnaceSsdohteM 100 3.6 sto olRa e:Rsnoitau qlEaimonyloP 110 *3.7 xelpmoC stooR dna s’rellüMdohteM 120 Chapter 4 Matrices and Systems of Linear Equations 128 4.1 seitreporP fosecirtaM 128 4.2 ehT noituloS fo raeniL smetsyS ybnoitanimilE 147 4.3 ehT gnitoviPygetartS 157 4.4 noitazirot craaFlugna ierhTT 160 4.5 smro N;noitulo Setamixorpp An af olaudise Rdn arorrE 169 4.6 rorrE-drawkcaB sisylanA dna evitaretItnemevorpmI 177 *4.7 Determinants 185 8.4* ehT eulavnegiEmelborP 189 Chapter *5 Systems of Equations and Unconstrained Optimization 208 *5.1 noitazimitpO dna tsepeetStnecseD 209 *5.2 s’notweNdohteM 216 *5.3 sd onhotietM an xodainltae aRtrneitoIP-dexiF 223 Chapter 6 Approximation 235 6.1 mrofinU noitamixorppA ybslaimonyloP 235 2.6 ataDgnittiF 245 *6.3 lanogohtrO slaimonyloP 251 *6.4 serauqS-tsaeL noitamixorppA ybslaimonyloP 259 *6.5 noitamixorppA yb cirtemonogirTslaimonyloP 268 *6.6 smr o rftessinaraFuroTF 277 6.7 laimonyloP-esiweceiPnoitamixorppA 284 Chapter 7 Differentiation and Integration 294 7.1 noitaitneref fliaDciremuN 295 7.2 laciremuN :noitargetnI emoS cisaBseluR 303 7.3 se lnuaRiss u:anGoitarge tlnaIciremuN 311 7.4 seluR etisopmoC :noitargetnI laciremuN 319 7.5 evitpadA erutardauQ 328 l 7.6 tim ie LhonttoitalopartxE 333 l 7.7 grebmoR noitargetnI 340 CONTENTS vii Chapter 8 The Solution of Differential Equations 346 8.1 lacitamehtaM seiranimilerP 346 8.2 elpmiS ecnereffiDsnoitauqE 349 8.3 laciremuN noitargetnI yb rolyaTseireS 354 8.4 rorrE setamitsE dna ecnegrevnoC fo s’reluEdohteM 359 8.5 sd oahttteuMK-egnuR 362 8.6 eziS-petS lortnoC htiw attuK-egnuRsdohteM 366 8.7 petsitluM salumroF 373 8.8 rotcerroC-rotciderP sdohteM 379 8.9 dohte MnotluoM-smad AehT 382 *8.10 ytilibatS fo laciremuNsdohteM 389 11.8* lortno Cdn anoitagapor ProrrE-ffo-dnuoR 395 *8.12 smetsyS fo laitnereffiDsnoitauqE 398 *8.13 ffitS laitnereffiDsnoitauqE 401 Chapter 9 Boundary Value Problems 406 9.1 etiniF ecnereffiDsdohteM 406 9.2 gnitoohSsdohteM 412 9.3 noitacolloCsdohteM 416 Appendix: Subroutine Libraries 421 References 423 Index 425 PREFACE sihT si eht driht noitide fo a koob no yratnemele laciremun sisylanahcihw is designed specifically for the needs of upper-division undergraduate stneduts ni ,gnireenigne ,scitamehtam dna ecneics ,gnidulcni ni ,ralucitrap retupmoc .ecneics nO eht ,elohw eht tneduts ohw sah dah a dilosegelloc calculus sequence should have no difficulty following the material. decnavdA lacitamehtam ,stpecnoc hcus sa smron dna ,ytilanogohtronehw yeht era ,desu era decudortni ylluferac ta a level elbatius rofetaudargrednu students and do not assume any previous knowledge. Some familiarity htiw secirtam si demussa rof eht retpahc no smetsys fo snoitauqe dnahtiw laitnereffid snoitauqe rof sretpahC 8 dna .9 sihT noitide seod niatnocemos snoitces hcihw eriuqer ylthgils erom lacitamehtam ytirutam naht eht-iverp suo .noitide ,revewoH lla hcus snoitces era dekram htiw sksiretsa dna lla nac eb dettimo yb eht rotcurtsni htiw on ssol ni.ytiunitnoc sihT wen noitide sniatnoc a taerg laed fo wen lairetam dnatnacifingis segnahc ot emos fo eht redlo .lairetam ehT sretpahc evah neebdegnarraer in what we believe is a more natural order. Polynomial interpolation (Chapter 2) now precedes even the chapter on the solution of nonlinear smetsys retpahC( )3 dna si desu yltneuqesbus rof emos fo eht lairetamni all chapters. The treatment of Gauss elimination (Chapter 4) has been .deifilpmis nI ,noitidda retpahC 4 won sekam evisnetxe esu fos’nosnikliW backward error analysis, and contains a survey of many well-known methods for the eigenvalue-eigenvector problem. Chapter 5 is a new chapter on systems of equations and unconstrained optimization. It con- tains an introduction to steepest-descent methods, Newton’s method for nonlinear systems of equations, and relaxation methods for solving large raenil smetsys yb .noitareti ehT retpahc no noitamixorppa retpahC( )6 sah been enlarged. It now treats best approximation and good approximation ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.