Elementary Linear Algebra Kuttler September 29, 2017 2 CONTENTS 1 Some Prerequisite Topics 1 1.1 Sets And Set Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Well Ordering And Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 The Complex Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Polar Form Of Complex Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Roots Of Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 The Quadratic Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.7 The Complex Exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.8 The Fundamental Theorem Of Algebra. . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Fn 13 2.1 Algebra in Fn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Geometric Meaning Of Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Geometric Meaning Of Vector Addition . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Distance Between Points In Rn Length Of A Vector . . . . . . . . . . . . . . . . . . 17 2.5 Geometric Meaning Of Scalar Multiplication . . . . . . . . . . . . . . . . . . . . . . 20 2.6 Parametric Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.8 Vectors And Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Vector Products 25 3.1 The Dot Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 The Geometric Significance Of The Dot Product . . . . . . . . . . . . . . . . . . . . 27 3.2.1 The Angle Between Two Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.2 Work And Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.3 The Inner Product And Distance In Cn . . . . . . . . . . . . . . . . . . . . . 30 3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4 The Cross Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4.1 The Distributive Law For The Cross Product . . . . . . . . . . . . . . . . . . 37 3.4.2 The Box Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.3 Another Proof Of The Distributive Law . . . . . . . . . . . . . . . . . . . . . 39 3.5 The Vector Identity Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4 Systems Of Equations 43 4.1 Systems Of Equations, Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Systems Of Equations, Algebraic Procedures . . . . . . . . . . . . . . . . . . . . . . 45 4.2.1 Elementary Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.2 Gauss Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.3 Balancing Chemical Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2.4 Dimensionless Variables∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 CONTENTS 4 4.3 Matlab And Row Reduced Echelon Form . . . . . . . . . . . . . . . . . . . . . . . . 59 4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5 Matrices 65 5.1 Matrix Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.1 Addition And Scalar Multiplication Of Matrices . . . . . . . . . . . . . . . . 65 5.1.2 Multiplication Of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1.3 The ijth Entry Of A Product . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.1.4 Properties Of Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . 72 5.1.5 The Transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.1.6 The Identity And Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.7 Finding The Inverse Of A Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 Matlab And Matrix Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6 Determinants 87 6.1 Basic Techniques And Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.1.1 Cofactors And 2×2 Determinants . . . . . . . . . . . . . . . . . . . . . . . . 87 6.1.2 The Determinant Of A Triangular Matrix . . . . . . . . . . . . . . . . . . . . 90 6.1.3 Properties Of Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.1.4 Finding Determinants Using Row Operations . . . . . . . . . . . . . . . . . . 92 6.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.2.1 A Formula For The Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.2.2 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.3 Matlab And Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7 The Mathematical Theory Of Determinants∗ 105 7.0.1 The Function sgn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.1 The Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.1.1 The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.1.2 Permuting Rows Or Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.1.3 A Symmetric Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.1.4 The Alternating Property Of The Determinant . . . . . . . . . . . . . . . . . 109 7.1.5 Linear Combinations And Determinants . . . . . . . . . . . . . . . . . . . . . 110 7.1.6 The Determinant Of A Product. . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.1.7 Cofactor Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.1.8 Formula For The Inverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.1.9 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.1.10 Upper Triangular Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.2 The Cayley Hamilton Theorem∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8 Rank Of A Matrix 117 8.1 Elementary Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8.2 THE Row Reduced Echelon Form Of A Matrix . . . . . . . . . . . . . . . . . . . . . 123 8.3 The Rank Of A Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8.3.1 The Definition Of Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8.3.2 Finding The Row And Column Space Of A Matrix . . . . . . . . . . . . . . . 129 8.4 A Short Application To Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8.5 Linear Independence And Bases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.5.1 Linear Independence And Dependence . . . . . . . . . . . . . . . . . . . . . . 132 8.5.2 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.5.3 Basis Of A Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.5.4 Extending An Independent Set To Form A Basis . . . . . . . . . . . . . . . . 140 8.5.5 Finding The Null Space Or Kernel Of A Matrix . . . . . . . . . . . . . . . . 141 CONTENTS 5 8.5.6 Rank And Existence Of Solutions To Linear Systems . . . . . . . . . . . . . . 143 8.6 Fredholm Alternative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 8.6.1 Row, Column, And Determinant Rank . . . . . . . . . . . . . . . . . . . . . . 144 8.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9 Linear Transformations 153 9.1 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.2 Constructing The Matrix Of A Linear Transformation . . . . . . . . . . . . . . . . . 155 9.2.1 Rotations in R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 9.2.2 Rotations About A Particular Vector. . . . . . . . . . . . . . . . . . . . . . . 157 9.2.3 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 9.2.4 Matrices Which Are One To One Or Onto . . . . . . . . . . . . . . . . . . . . 160 9.2.5 The General Solution Of A Linear System . . . . . . . . . . . . . . . . . . . . 161 9.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 10 A Few Factorizations 171 10.1 Definition Of An LU factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 10.2 Finding An LU Factorization By Inspection . . . . . . . . . . . . . . . . . . . . . . . 171 10.3 Using Multipliers To Find An LU Factorization . . . . . . . . . . . . . . . . . . . . . 172 10.4 Solving Systems Using An LU Factorization . . . . . . . . . . . . . . . . . . . . . . . 173 10.5 Justification For The Multiplier Method . . . . . . . . . . . . . . . . . . . . . . . . . 174 10.6 The PLU Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 10.7 The QR Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 10.8 Matlab And Factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 10.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 11 Linear Programming 185 11.1 Simple Geometric Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 11.2 The Simplex Tableau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 11.3 The Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 11.3.1 Maximums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 11.3.2 Minimums. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 11.4 Finding A Basic Feasible Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 11.5 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 12 Spectral Theory 207 12.1 Eigenvalues And Eigenvectors Of A Matrix . . . . . . . . . . . . . . . . . . . . . . . 207 12.1.1 Definition Of Eigenvectors And Eigenvalues . . . . . . . . . . . . . . . . . . . 207 12.1.2 Finding Eigenvectors And Eigenvalues . . . . . . . . . . . . . . . . . . . . . . 208 12.1.3 A Warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.1.4 Triangular Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 12.1.5 Defective And Nondefective Matrices . . . . . . . . . . . . . . . . . . . . . . . 214 12.1.6 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 12.1.7 The Matrix Exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 12.1.8 Complex Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 12.2 Some Applications Of Eigenvalues And Eigenvectors . . . . . . . . . . . . . . . . . . 225 12.2.1 Principal Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 12.2.2 Migration Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 12.2.3 Discrete Dynamical Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 12.3 The Estimation Of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 12.4 Matlab And Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 12.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 CONTENTS 6 13 Matrices And The Inner Product 243 13.1 Symmetric And Orthogonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 13.1.1 Orthogonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 13.1.2 Symmetric And Skew Symmetric Matrices . . . . . . . . . . . . . . . . . . . 245 13.1.3 Diagonalizing A Symmetric Matrix . . . . . . . . . . . . . . . . . . . . . . . . 250 13.2 Fundamental Theory And Generalizations . . . . . . . . . . . . . . . . . . . . . . . . 253 13.2.1 Block Multiplication Of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 253 13.2.2 Orthonormal Bases, Gram Schmidt Process . . . . . . . . . . . . . . . . . . . 257 13.2.3 Schur’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 13.3 Least Square Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 13.3.1 The Least Squares Regression Line . . . . . . . . . . . . . . . . . . . . . . . . 263 13.3.2 The Fredholm Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 13.4 The Right Polar Factorization∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 13.5 The Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 13.6 Approximation In The Frobenius Norm∗ . . . . . . . . . . . . . . . . . . . . . . . . . 270 13.7 Moore Penrose Inverse∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 13.8 Matlab And Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . 273 13.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 14 Numerical Methods For Solving Linear Systems 281 14.1 Iterative Methods For Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 281 14.1.1 The Jacobi Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 14.2 Using Matlab To Iterate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 14.2.1 The Gauss Seidel Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 14.3 The Operator Norm∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 14.4 The Condition Number∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 14.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 15 Numerical Methods For Solving The Eigenvalue Problem 293 15.1 The Power Method For Eigenvalues. . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 15.2 The Shifted Inverse Power Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 15.3 Automation With Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 15.4 The Rayleigh Quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 15.5 The QR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 15.5.1 Basic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 15.6 Matlab And The QR Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 15.6.1 The Upper Hessenberg Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 15.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 16 Vector Spaces 315 16.1 Algebraic Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 16.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 16.3 Linear Independence And Bases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 16.4 Vector Spaces And Fields∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 16.4.1 Irreducible Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 16.4.2 Polynomials And Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 16.4.3 The Algebraic Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 16.4.4 The Lindemannn Weierstrass Theorem And Vector Spaces. . . . . . . . . . . 335 16.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 CONTENTS 7 17 Inner Product Spaces 341 17.1 Basic Definitions And Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 17.1.1 The Cauchy Schwarz Inequality And Norms . . . . . . . . . . . . . . . . . . . 342 17.2 The Gram Schmidt Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 17.3 Approximation And Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 17.4 Orthogonal Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 17.5 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 17.6 The Discreet Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 17.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 18 Linear Transformations 359 18.1 Matrix Multiplication As A Linear Transformation . . . . . . . . . . . . . . . . . . . 359 18.2 L(V,W) As A Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 18.3 Eigenvalues And Eigenvectors Of Linear Transformations . . . . . . . . . . . . . . . 361 18.4 Block Diagonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 18.5 The Matrix Of A Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 369 18.5.1 Some Geometrically Defined Linear Transformations . . . . . . . . . . . . . . 377 18.5.2 Rotations About A Given Vector . . . . . . . . . . . . . . . . . . . . . . . . . 377 18.6 The Matrix Exponential, Differential Equations ∗ . . . . . . . . . . . . . . . . . . . . 379 18.6.1 Computing A Fundamental Matrix . . . . . . . . . . . . . . . . . . . . . . . . 385 18.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 A The Jordan Canonical Form* 395 B Directions For Computer Algebra Systems 403 B.1 Finding Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 B.2 Finding Row Reduced Echelon Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 B.3 Finding PLU Factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 B.4 Finding QR Factorizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 B.5 Finding Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 403 B.6 Use Of Matrix Calculator On Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 C Answers To Selected Exercises 407 C.1 Exercises 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 C.2 Exercises 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 C.3 Exercises 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 C.4 Exercises 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 C.5 Exercises 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 C.6 Exercises 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 C.7 Exercises 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 C.8 Exercises 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 C.9 Exercises 164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 C.10Exercises 182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 C.11Exercises 205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 C.12Exercises 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 C.13Exercises 273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 C.14Exercises 289 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 C.15Exercises 311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 C.16Exercises 317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 C.17Exercises 336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 C.18Exercises 353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 C.19Exercises 387 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 CONTENTS 8 Preface This is an introduction to linear algebra. The main part of the book features row operations and everythingisdoneintermsoftherowreducedechelonformandspecificalgorithms. Attheend,the more abstract notions of vector spaces and linear transformations on vector spaces are presented. However, this is intended to be a first course in linear algebra for students who are sophomores or juniors who have had a course in one variable calculus and a reasonable background in college algebra. I have given complete proofs of all the fundamental ideas, but some topics such as Markov matrices are not complete in this book but receive a plausible introduction. The book contains a complete treatment of determinants and a simple proof of the Cayley Hamilton theorem although these are optional topics. The Jordan form is presented as an appendix. I see this theorem as the beginningofmoreadvancedtopicsinlinearalgebraandnotreallypartofabeginninglinearalgebra course. There are extensions of many of the topics of this book in my on line book [13]. I have also not emphasized that linear algebra can be carried out with any field although there is an optional section on this topic, most of the book being devoted to either the real numbers or the complex numbers. It seems to me this is a reasonable specialization for a first course in linear algebra. Linear algebra is a wonderful interesting subject. It is a shame when it degenerates into nothing more than a challenge to do the arithmetic correctly. It seems to me that the use of a computer algebra system can be a great help in avoiding this sort of tedium. I don’t want to over emphasize the use of technology, which is easy to do if you are not careful, but there are certain standard things which are best done by the computer. Some of these include the row reduced echelon form, PLU factorization, and QR factorization. It is much more fun to let the machine do the tedious calculationsthantosufferwiththemyourself. However,itisnotgoodwhentheuseofthecomputer algebra system degenerates into simply asking it for the answer without understanding what the oracular software is doing. With this in mind, there are a few interactive links which explain how to use a computer algebra system to accomplish some of these more tedious standard tasks. These are obtained by clicking on the symbol I. I have included how to do it using maple and scientific notebook because these are the two systems I am familiar with and have on my computer. Also, I have included the very easy to use matrix calculator which is available on the web and have given directions for Matlab at the end of relevant chapters. Other systems could be featured as well. It is expected that people will use such computer algebra systems to do the exercises in this book wheneveritwouldbehelpfultodoso,ratherthanwastinghugeamountsoftimedoingcomputations by hand. However, this is not a book on numerical analysis so no effort is made to consider many important numerical analysis issues. I appreciate those who have found errors and needed corrections over the years that this has been available. There is a pdf file of this book on my web page http://www.math.byu.edu/klkuttle/ along with some other materials soon to include another set of exercises, and a more advanced linear algebra book. This book, as well as the more advanced text, is also available as an electronic version at http://www.saylor.org/archivedcourses/ma211/ where it is used as an open access textbook. In addition, it is available for free at BookBoon under their linear algebra offerings. Elementary Linear Algebra ⃝c2012 by Kenneth Kuttler, used under a Creative Commons Attri- bution(CCBY)licensemadepossiblebyfundingTheSaylorFoundation’sOpenTextbookChallenge in order to be incorporated into Saylor.org’s collection of open courses available at http://www.Saylor.org. Full license terms may be viewed at: http://creativecommons.org/licenses/by/3.0/. i CONTENTS ii
Description: