EELLEEMMEENNTTAARRYY FFLLUUIIDD MMEECCHHAANNIICCSS TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk ELEMENTARY F L U I D MECHANICS Tsutomu Kambe Institute of Dynamical Systems, Tokyo, Japan World Scientific NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. ELEMENTARY FLUID MECHANICS Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13 978-981-256-416-0 ISBN-10 981-256-416-0 ISBN-13 978-981-256-597-6 (pbk) ISBN-10 981-256-597-3 (pbk) Typeset by Stallion Press Email: [email protected] Printed in Singapore. Lakshmi - ElemFluidMechanics.pmd 1 2/27/2007, 9:38 AM November3,2006 0:37 WSPC/Book-SPI-B364“ElementaryFluidMechanics”TrimSizefor9inx6in fm Preface This book aims to provide an elementary interpretation on physical aspects of fluid flows for beginners of fluid mechanics in physics, mathematics and engineering from the point of view of modern physics. Original manuscripts were prepared as lecture notes for intensive courses on Fluid Mechancis given to both undergraduate and postgraduate students of theoretical physics in 2003 and 2004 at the Nankai Institute of Mathematics (Nankai University, Tianjin) in China. Beginning with introductory chapters of fundamental concepts of the nature of flows and properties of fluids, the text describes basic conservation equations ofmass,momentumandenergyinChapter3. Themotionsofviscousfluidsandthoseofinviscidfluidsarefirstcon- sidered in Chapters 4 and 5. Emphasizing the dynamical aspects of fluid motions rather than static aspects, the text describes, in subse- quent chapters, various important behaviors of fluids such as waves, vortex motions, geophysical flows, instability and chaos, and tur- bulence. In addition to those fundamental and basic chapters, this text incorporates a new chapter on superfluidand quantized vortices because it is an exciting new area of physics, and another chapter on gauge theory of fluid flows since it includes a new fundamental for- mulation of fluid flows on the basis of the gauge theory of theoretical physics. The materials in this book are taken from the lecture notes of intensive courses, so that each chapter in the second half may be read separately, or handled chapter by chapter. v November3,2006 0:37 WSPC/Book-SPI-B364“ElementaryFluidMechanics”TrimSizefor9inx6in fm vi Preface Thisbookiswrittenwiththeviewthatfluidmechanicsisabranch of theoretical physics. June 2006 Tsutomu Kambe Former Professor (Physics), University of Tokyo Visiting Professor, Nankai Institute of Mathematics (Tianjin, China) November3,2006 0:37 WSPC/Book-SPI-B364“ElementaryFluidMechanics”TrimSizefor9inx6in fm Contents Preface v 1. Flows 1 1.1. What are flows? . . . . . . . . . . . . . . . . . . . . 1 1.2. Fluid particle and fields . . . . . . . . . . . . . . . . 2 1.3. Stream-line, particle-path and streak-line . . . . . . 6 1.3.1. Stream-line . . . . . . . . . . . . . . . . . . . 6 1.3.2. Particle-path (path-line) . . . . . . . . . . . 7 1.3.3. Streak-line . . . . . . . . . . . . . . . . . . . 8 1.3.4. Lagrange derivative . . . . . . . . . . . . . . 8 1.4. Relative motion . . . . . . . . . . . . . . . . . . . . 11 1.4.1. Decomposition . . . . . . . . . . . . . . . . . 11 1.4.2. Symmetric part (pure straining motion) . . . 13 1.4.3. Anti-symmetric part (local rotation) . . . . . 14 1.5. Problems . . . . . . . . . . . . . . . . . . . . . . . . 15 2. Fluids 17 2.1. Continuum and transport phenomena . . . . . . . . 17 2.2. Mass diffusion in a fluid mixture . . . . . . . . . . . 18 2.3. Thermal diffusion . . . . . . . . . . . . . . . . . . . 21 2.4. Momentum transfer . . . . . . . . . . . . . . . . . . 22 2.5. An ideal fluid and Newtonian viscous fluid . . . . . 24 2.6. Viscous stress . . . . . . . . . . . . . . . . . . . . . 26 2.7. Problems . . . . . . . . . . . . . . . . . . . . . . . . 28 vii November3,2006 0:37 WSPC/Book-SPI-B364“ElementaryFluidMechanics”TrimSizefor9inx6in fm viii Contents 3. Fundamental equations of ideal fluids 31 3.1. Mass conservation . . . . . . . . . . . . . . . . . . . 32 3.2. Conservation form . . . . . . . . . . . . . . . . . . . 35 3.3. Momentum conservation . . . . . . . . . . . . . . . 35 3.3.1. Equation of motion . . . . . . . . . . . . . . 36 3.3.2. Momentum flux . . . . . . . . . . . . . . . . 38 3.4. Energy conservation . . . . . . . . . . . . . . . . . . 40 3.4.1. Adiabatic motion . . . . . . . . . . . . . . . 40 3.4.2. Energy flux . . . . . . . . . . . . . . . . . . . 42 3.5. Problems . . . . . . . . . . . . . . . . . . . . . . . . 44 4. Viscous fluids 45 4.1. Equation of motion of a viscous fluid . . . . . . . . 45 4.2. Energy equation and entropy equation . . . . . . . 48 4.3. Energy dissipation in an incompressible fluid . . . . 49 4.4. Reynolds similarity law . . . . . . . . . . . . . . . . 51 4.5. Boundary layer . . . . . . . . . . . . . . . . . . . . 54 4.6. Parallel shear flows . . . . . . . . . . . . . . . . . . 56 4.6.1. Steady flows . . . . . . . . . . . . . . . . . . 57 4.6.2. Unsteady flow . . . . . . . . . . . . . . . . . 58 4.7. Rotating flows . . . . . . . . . . . . . . . . . . . . . 62 4.8. Low Reynolds number flows . . . . . . . . . . . . . 63 4.8.1. Stokes equation . . . . . . . . . . . . . . . . 63 4.8.2. Stokeslet . . . . . . . . . . . . . . . . . . . . 64 4.8.3. Slow motion of a sphere . . . . . . . . . . . . 65 4.9. Flows around a circular cylinder . . . . . . . . . . . 68 4.10. Drag coefficient and lift coefficient . . . . . . . . . . 69 4.11. Problems . . . . . . . . . . . . . . . . . . . . . . . . 70 5. Flows of ideal fluids 77 5.1. Bernoulli’s equation . . . . . . . . . . . . . . . . . . 78 5.2. Kelvin’s circulation theorem . . . . . . . . . . . . . 81 5.3. Flux of vortex lines . . . . . . . . . . . . . . . . . . 83 5.4. Potential flows . . . . . . . . . . . . . . . . . . . . . 85 5.5. Irrotational incompressible flows (3D) . . . . . . . . 87 November3,2006 0:37 WSPC/Book-SPI-B364“ElementaryFluidMechanics”TrimSizefor9inx6in fm Contents ix 5.6. Examples of irrotational incompressible flows (3D) . . . . . . . . . . . . . . . . . . . . . . . 88 5.6.1. Source (or sink) . . . . . . . . . . . . . . . . 88 5.6.2. A source in a uniform flow . . . . . . . . . . 90 5.6.3. Dipole . . . . . . . . . . . . . . . . . . . . . 91 5.6.4. A sphere in a uniform flow . . . . . . . . . . 92 5.6.5. A vortex line . . . . . . . . . . . . . . . . . . 94 5.7. Irrotational incompressible flows (2D) . . . . . . . . 95 5.8. Examples of 2D flows represented by complex potentials . . . . . . . . . . . . . . . . . . . . . . . 99 5.8.1. Source (or sink) . . . . . . . . . . . . . . . . 99 5.8.2. A source in a uniform flow . . . . . . . . . . 100 5.8.3. Dipole . . . . . . . . . . . . . . . . . . . . . 101 5.8.4. A circular cylinder in a uniform flow . . . . . 102 5.8.5. Point vortex (a line vortex) . . . . . . . . . . 103 5.9. Induced mass . . . . . . . . . . . . . . . . . . . . . 104 5.9.1. Kinetic energy induced by a moving body . . . . . . . . . . . . . . . . . . 104 5.9.2. Induced mass . . . . . . . . . . . . . . . . . 107 5.9.3. d’Alembert’s paradox and virtual mass . . . 108 5.10. Problems . . . . . . . . . . . . . . . . . . . . . . . . 109 6. Water waves and sound waves 115 6.1. Hydrostatic pressure . . . . . . . . . . . . . . . . . 115 6.2. Surface waves on deep water . . . . . . . . . . . . . 117 6.2.1. Pressure condition at the free surface . . . . 117 6.2.2. Condition of surface motion . . . . . . . . . 118 6.3. Small amplitude waves of deep water . . . . . . . . 119 6.3.1. Boundary conditions . . . . . . . . . . . . . 119 6.3.2. Traveling waves . . . . . . . . . . . . . . . . 121 6.3.3. Meaning of small amplitude . . . . . . . . . 122 6.3.4. Particle trajectory . . . . . . . . . . . . . . . 123 6.3.5. Phase velocity and group velocity . . . . . . 123 6.4. Surface waves on water of a finite depth . . . . . . 125 6.5. KdV equation for long waves on shallow water . . . . . . . . . . . . . . . . . . . . . 126