InternationalJournalofNeutrosophicScience(IJNS) Vol.4,No.1,PP.16-19,2020 Elementary Examination of NeutroAlgebras and AntiAlgebras viz-a-viz the Classical Number Systems 1A.A.A.Agboola, 2M.A.Ibrahim and3E.O.Adeleke 1,2,3DepartmentofMathematics,FederalUniversityofAgriculture,Abeokuta,Nigeria. [email protected],[email protected],[email protected]. Abstract The objective of this paper is to examine NeutroAlgebras and AntiAlgebras viz-a-viz the classical number systems. Keywords: NeutroAlgebra,AntiAlgebra,NeutroAlgebraicStructure,AntiAlgebraicStructure. 1 Introduction ThenotionsofNeutroAlgebraandAntiAlgebrawererecentlyintroducedbyFlorentinSmarandache.1 Smaran- dachein2revisitedthenotionsofNeutroAlgebraandAntiAlgebraandin3hestudiedPartialAlgebra,Universal Algebra,EffectAlgebraandBoole’sPartialAlgebraandshowedthatNeutroAlgebraisageneralizationofPar- tialAlgebra. InthepresentShortCommunication,wearegoingtoexamineNeutroAlgebrasandAntiAlgebras viz-a-viz the classical number systems. For more details about NeutroAlgebras, AntiAlgebras, NeutroAlge- braicStructuresandAntiAlgebraicStructures,thereadersshouldsee.1–3 LetU beauniverseofdiscourseandletX beanonemptysubsetofU. SupposethatAisanitem(con- cept, attribute, idea, proposition, theory, algebra, structure etc.) defined on the set X. By neutrosophication approach, X can be split into three regions namely: < A > the region formed by the sets of all elements where < A > is true with the degree of truth (T), < antiA > the region formed by the sets of all ele- ments where < A > is false with the degree of falsity (F) and < neutA > the region formed by the sets of all elements where < A > is indeterminate (neither true nor false) with the degree of indeterminacy (I). It should be noted that depending on the application, < A >, < antiA > and < neutA > may or may notbedisjointbuttheyareexhaustivethatis; theirunionisX. IfArepresentsFunction,Operation,Axiom, Algebraetc,thenwecanhavethecorrespondingtriplets<Function,NeutroFunction,AntiFunction>, <Operation,NeutroOperation,AntiOperation>,<Axiom,NeutroAxiom, AntiAxiom>and<Algebra,NeutroAlgebra,AntiAlgebra>etc. Definition1.1. 1 (i) ANeutroAlgebraX isanalgebrawhichhasatleastoneNeutroOperationoroneNeutroAxiomthatis; axiomthatistrueforsomeelements,indeterminateforotherelements,and,falseforotherelements. (ii) AnAntiAlgebraX isanalgebraendowedwithalawofcompositionsuchthatthelawisfalseforallthe elementsofX. Definition 1.2. 1 Let X and Y be nonempty subsets of a universe of discourse U and let f : X → Y be a function. Letx∈X beanelement. Wedefinethefollowingwithrespecttof(x)theimageofx: (i) Inner-definedorWell-defined: Thiscorrespondstof(x)∈Y (True)(T).Inthiscase,f iscalledaTotal Inner-FunctionwhichcorrespondstotheClassicalFunction. (ii) Outer-defined: This corresponds to f(x) ∈ U −Y (Falsehood) (F). In this case, f is called a Total Outer-FunctionorAntiFunction. (iii) Indeterminacy: This corresponds to f(x) = indeterminacy (Indeterminate) (I); that is, the value f(x) doesexist,butwedonotknowitexactly. Inthiscase,f iscalledaTotalIndeterminateFunction. CorrespondingAuthor:[email protected] Doi:10.5281/zenodo.3752896 16 InternationalJournalofNeutrosophicScience(IJNS) Vol.4,No.1,PP.16-19,2020 2 Subject Matter In what follows, we will consider the classical number systems N,Z,Q,R,C of natural, integer, rational, real and complex numbers respectively and noting that N ⊆ Z ⊆ Q ⊆ R ⊆ C. Let +,−,×,÷ be the usual binary operations of addition, subtraction, multiplication and division of numbers respectively. Using elementaryapproach,wewillexaminewhetherornottheabstractsystems(N,∗),(Z,∗),(Q,∗),(R,∗),(C,∗) areNeutroAlgebrasorandAntiAlgebraswhere∗=+,−,×,÷. (1) LetX =N. (i) Itisclearthat(X,+)and(X,×)areneitherNeutroAlgebrasnorAntiAlgebras. (ii) For some x,y ∈ X, x − y ∈ X (True) (Inner) or x − y (cid:54)∈ X (False) (Outer). However, for all x,y ∈ X with x ≤ y, x − y (cid:54)∈ X (False) (Outer) and for all x,y ∈ X with x > y, we have x−y ∈ X (True) (Inner). This shows that − is a NeutroOperation over X and ∴ (X,−) is a NeutroGroupoid. The operation − is not commutative for all x ∈ X. This shows that − is AntiCommutativeoverX. Weclaimthat−isNeuroAssociativeoverX. Proof. Forx > y,z = 0,wehavex−(y−z) = (x−y)−z,orx−y+0 = x−y−0 > 0 (degreeofTruth)(T).However,forx>y,z (cid:54)=0,wehavex−(y−z)(cid:54)=(x−y)−z (degreeof Falsehood)(F).Forx<y,c=0,wehavex−y+0=x−y−0<0(degreeofIndeterminacy) (I).Thisshowsthat−isNeutroAssociativeand∴(X,−)isaNeutroSemigroup. (iii) For all x ∈ X, x÷1 ∈ X (True) (Inner). For some x,y ∈ X, x÷y (cid:54)∈ X (False) (Outer). However, if x is a multiple of y including 1, then x÷y ∈ X (True) (Inner). This shows that ÷ is a NeutroOperation and therefore, (X,÷) is a NeutroGroupoid. It can be shown that ÷ is NeutroAssociativeoverX andtherefore,(X,÷)isaNeutroSemigroup. The equation ax = b is not solvable forsome a,b ∈ X. However, if b is a multipleof a including 1, thentheequationissolvableandthesolutioniscalledaNeutroSolution.Also,theequationacx2+bd= (ad+bc)xisnotsolvableforsomea,b,c,d∈X. However,ifbisamultipleofaincluding1andcisa multipleofdincluding1,theequationissolvableandthesolutionsarecalledNeutroSolutions. Let◦beabinaryoperationdefinedforallx,y ∈X by 0 if x=y x◦y = −α if x<y −β if x>y where α,β ∈ N such that α ≤ β. It is clear that ◦ is an AntiOperation on X and ∴ (X,◦) is an AntiAlgebra. (2) LetX =Z. (i) (X,+)and(X,×)areneitherNeutroAlgebrasnorAntiAlgebras. (ii) For all x,y,z ∈ X such that x,y = 0,1, we have x−y = y −x = 0 ∈ X (True), otherwise forotherelements,theresultisFalse(Outer)sothat−isNeutroCommutativeoverX. However,if x,y,z =0,thenx−(y−z)=(x−y)−z =0∈X(True),otherwiseforotherelements,theresult isFalseandconsequently,−isNeutroAssociativeoverXandhence(X,−)isaNeutroSemigroup. (iii) Forallx ∈ X,x÷±1 ∈ X (True)(Inner). Forallx ∈ X,x÷0 = indeterminate(Indetermi- nacy). Forsomex,y ∈ X,x÷y (cid:54)∈ X (False)(Outer)however,ifxisamultipleofy including ±1,thenx÷y ∈X (True)(Inner). Thisshowsthat÷isaNeutroOperationoverX and∴(X,÷) isaNeutroGroupoid. Itcanalsobeshownthat(X,÷)isaNeutroSemigroup. The equation ax = b is not solvable for some a,b ∈ X. If a = 0, the solution is indeterminate (Indeterminacy). However,ifbisamultipleofaincluding±1,thentheequationissolvableand the solution is called a NeutroSolution. Also, the equation acx2 +(ad−bc)x−bd = 0 is not solvableforsomea,b,c,d ∈ X. However,ifbisamultipleofaincluding±1andcisamultiple ofdincluding±1,theequationissolvableandthesolutionsarecalledNeutroSolutions. Forallx,y ∈ X,let◦beabinaryoperationdefinedbyx◦y = ln(xy). Ifx,y = 0,wehavex◦y = indeterminate (Indeterminacy) (I). If x > 0,y < 0, we have x◦y = indeterminate (Indeterminacy) (I). If x > 0,y > 0, we have x◦y = False (F) except when x = y = 1. These show that ◦ is a NeutroOperationoverX and∴(X◦)isaNeutroAlgebra. Doi:10.5281/zenodo.3752896 17 InternationalJournalofNeutrosophicScience(IJNS) Vol.4,No.1,PP.16-19,2020 Let◦beabinaryoperationdefinedforallx,y ∈X by (cid:26) −1/2 if x<y x◦y = 1/2 if x>y Itisclearthat◦isanAntiOperationonX and∴(X,◦)isanAntiAlgebra. (3) LetX =Q. (i) (X,+)and(X,×)areneitherNeutroAlgbrasnorAntiAlgebras. (ii) For all x,y,z ∈ X such that x,y,z = 1, we have x−y = y −x = 0 ∈ X (True), otherwise forotherelements,theresultisFalsesothat−isNeuroCommutativeoverX. Also,ifx,y,z =0, thenx−(y−z)=(x−y)−z =0∈X (True),otherwiseforotherelements,theresultisFalse andconsequently,−isNeutroAssociativeoverX and(X,−)isaNeutroSemigroup. (iii) For all 0 (cid:54)= x,y ∈ X, x÷y ∈ X (True) (Inner) but for all x ∈ X, x÷0 = indeterminate (Indeterminacy). ∴(X,÷)isaNeutroAlgebrawhichwecallaNeutroField. For all x,y ∈ X, let ◦ be abinary operationdefined by x◦y = ex÷y. Ifx,y = 0, we have x◦y = indeterminate(Indeterminacy)(I).Ifx>0,y =0,wehavex◦y =indeterminate(Indeterminacy)(I). Ifx>0,y >0,wehavex◦y =False(F).Theseshowthat◦isaNeutroOperationoverX and∴(X◦) isaNeutroAlgebra. Let◦beabinaryoperationdefinedforallx,y ∈X by (cid:26) −e if x≤y x◦y = e if x≥y whereeisthebaseofNaperianLogarithm. Itisclearthat◦isanAntiOperationonX and∴(X,◦)is anAntiAlgebra. (4) LetX =R. (i) (X,+)and(X,×)areneitherNeutroAlgebrasnorPartialAlgebras. (ii) Forallx,y ∈ X suchthatx,y = 0,±1,wehavex−y = y−x = 0 ∈ X (True),otherwisefor otherelements,theresultisFalsesothat−isNeuroCommutativeoverX. (iii) For all 0 (cid:54)= x,y ∈ X, x÷y ∈ X (True) (Inner) but for all x ∈ X, x÷0 = indeterminate (Indeterminacy). It can be shown that ÷ is NeutroAssociative over X. Hence, (X,÷) is a Neu- troSemigroupandtherefore,itisaNeutroAlgebrawhichwecallaNeutroField. Let◦beabinaryoperationdefinedforallx,y ∈X by √ (cid:26) − −1 if x≤y x◦y = √ −1 if x≥y Itisclearthat◦isanAntiOperationonX and∴(X,◦)isanAntiAlgebra. (5) LetX =C. (i) (X,+)and(X,×)areneitherNeutroAlgebrasnorAntilAlgebras. (ii) Forallz,w ∈ X suchthatz,w = 0,±i,wehavez−w = w−z = 0 ∈ X (True),otherwisefor otherelements,theresultisFalsesothat−isNeutroCommutativeoverX. (iii) For all 0 (cid:54)= z,w ∈ X, z ÷w ∈ X (True) (Inner) but for all z ∈ X, z ÷0 = indeterminate (Indeterminacy). Therefore,(X,÷)isaNeutroAlgebrawhichwecallaNeutroField. Let◦beabinaryoperationdefinedforallz,w ∈X by i if |z |=|w | z◦w = j if |z |≤|w | k if |z |≥|w | whereijk =−1. Itisclearthat◦isanAntiOperationonX and∴(X,◦)isanAntiAlgebra. Theorem2.1. Forallprimenumbern≥2,(Z ,+,×)isaNeutroAlgebracalledaNeutroField. n Proof. Supposethatn ≥ 2isaprimenumber. Clearly,1isthemultiplicativeidentityelementinZ . Forall n 0(cid:54)=x∈Z ,thereexistauniquey ∈Z suchthatx×y =1(True)(T).However,for0=x∈Z ,theredoes n n n notexistanyuniquey ∈Z suchthatx×y =1(False)(F).Thisshowsthat(Z ,×)isaNeutroGroup. Since n n (Z ,+)isanabeliangroup,itfollowsthat(Z ,+,×)isaNeutroDivisionRingcalledaNeutroField. n n Doi:10.5281/zenodo.3752896 18 InternationalJournalofNeutrosophicScience(IJNS) Vol.4,No.1,PP.16-19,2020 3 Conclusion We have in this paper examined NeutroAlgebras and AntiAlgebras viz-a-viz the classical number systems N,Z,Q,R,C of natural, integer, rational, real and complex numbers respectively. In our future papers, we hope to study more algebraic properties of NeutroAlgebras and NeutroSubalgebras and NeutroMorphisms betweenthem. 4 Appreciation Theauthorsareverygratefultoalltheanonymousreviewersfortheusefulcommentsandsuggestionswhich wehavefoundveryusefulinthiswork. References [1] Smarandache,F.,IntroductiontoNeutroAlgebraicStructuresandAntiAlgebraicStructures,inAdvances ofStandardandNonstandardNeutrosophicTheories,PonsPublishingHouseBrussels,Belgium,Ch.6, pp.240-265,2019. [2] Smarandache, F., Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures (revisited), NeutrosophicSetsandSystems,vol.31,pp.1-16,2020.DOI:10.5281/zenodo.3638232. [3] Smarandache,F.,NeutroAlgebraisaGeneralizationofPartialAlgebra,InternationalJournalofNeutro- sophicScience,vol.2(1),pp.08-17,2020. Doi:10.5281/zenodo.3752896 19