ebook img

Elementary Euclidean geometry. An introduction PDF

191 Pages·2003·0.615 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elementary Euclidean geometry. An introduction

ElementaryEuclideanGeometry AnIntroduction This is a genuine introduction to the geometry of lines and conics in the Euclidean plane. Lines and circles provide the starting point, with the classical invariants of general conics introduced at an early stage, yielding a broad subdivision into types, apreludetothecongruenceclassification.Arecurringthemeisthewayinwhichlines intersectconics.Fromsinglelinesoneproceedstoparallelpencils,leadingtomidpoint loci, axes and asymptotic directions. Likewise, intersections with general pencils of linesleadtothecentralconceptsoftangent,normal,poleandpolar. Thetreatmentisexample-basedandself-contained,assumingonlyabasicground- inginlinearalgebra.Withnumerousillustrationsandseveralhundredworkedexamples andexercises,thisbookisidealforusewithundergraduatecoursesinmathematics,or forpostgraduatesinengineeringandthephysicalsciences. C. G. GIBSON is a senior fellow in mathematical sciences at the University of Liverpool. Elementary Euclidean Geometry An Introduction C. G. GIBSON cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge cb2 2ru, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521834483 © Cambridge University Press 2003 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2004 isbn-13 978-0-511-18491-8 eBook (NetLibrary) isbn-10 0-511-18491-3 eBook (NetLibrary) isbn-13 978-0-521-83448-3 hardback isbn-10 0-521-83448-1 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents ListofFigures pageviii ListofTables x Preface xi Acknowledgements xvi 1 PointsandLines 1 1.1 TheVectorStructure 1 1.2 LinesandZeroSets 2 1.3 UniquenessofEquations 3 1.4 PracticalTechniques 4 1.5 ParametrizedLines 7 1.6 PencilsofLines 9 2 TheEuclideanPlane 12 2.1 TheScalarProduct 12 2.2 LengthandDistance 13 2.3 TheConceptofAngle 15 2.4 DistancefromaPointtoaLine 18 3 Circles 22 3.1 CirclesasConics 22 3.2 GeneralCircles 23 3.3 UniquenessofEquations 24 3.4 IntersectionswithLines 26 3.5 PencilsofCircles 27 4 GeneralConics 32 4.1 StandardConics 33 4.2 ParametrizingConics 35 4.3 MatricesandInvariants 37 v vi Contents 4.4 IntersectionswithLines 39 4.5 TheComponentLemma 41 5 CentresofGeneralConics 44 5.1 TheConceptofaCentre 44 5.2 FindingCentres 45 5.3 GeometryofCentres 49 5.4 SingularPoints 51 6 DegenerateConics 54 6.1 BinaryQuadratics 54 6.2 ReducibleConics 56 6.3 PencilsofConics 59 6.4 PerpendicularBisectors 61 7 AxesandAsymptotes 65 7.1 MidpointLoci 65 7.2 Axes 68 7.3 BisectorsasAxes 72 7.4 AsymptoticDirections 74 8 FocusandDirectrix 76 8.1 FocalConstructions 76 8.2 PrinciplesforFindingConstructions 79 8.3 ConstructionsforParabolas 79 8.4 GeometricGeneralities 81 8.5 ConstructionsofEllipseandHyperbola 83 9 TangentsandNormals 88 9.1 TangentLines 88 9.2 ExamplesofTangents 89 9.3 NormalLines 94 10 TheParabola 98 10.1 TheAxisofaParabola 98 10.2 PracticalProcedures 99 10.3 ParametrizingParabolas 102 11 TheEllipse 105 11.1 AxesandVertices 105 11.2 RationalParametrization 107 11.3 FocalProperties 110 Contents vii 12 TheHyperbola 114 12.1 Asymptotes 114 12.2 ParametrizingHyperbolas 119 12.3 FocalPropertiesofHyperbolas 121 13 PoleandPolar 125 13.1 ThePolarsofaConic 125 13.2 TheJointTangentEquation 127 13.3 OrthopticLoci 132 14 Congruences 137 14.1 Congruences 138 14.2 CongruentLines 142 14.3 CongruentConics 144 14.4 TheInvarianceTheorem 146 15 ClassifyingConics 149 15.1 RotatingtheAxes 149 15.2 ListingNormalForms 151 15.3 SomeConsequences 154 15.4 EigenvaluesandAxes 155 16 DistinguishingConics 159 16.1 DistinguishingClasses 159 16.2 ConicSections 161 16.3 ConicswithinaClass 162 17 UniquenessandInvariance 167 17.1 ProofofUniqueness 167 17.2 ProofofInvariance 169 Index 171 Figures 1.1 Threewaysinwhichlinescanintersect page5 1.2 Parametrizationofaline 8 1.3 Pencilsoflines 10 2.1 Componentsofavector 14 2.2 Anglesbetweentwolines 17 2.3 Theperpendicularbisector 18 2.4 Projectionofapointontoaline 19 3.1 Howcirclesintersectlines 26 3.2 Threewaysinwhichcirclescanintersect 28 3.3 ThefamilyofcirclesinExample3.8 30 4.1 Astandardparabola 33 4.2 Astandardellipse 34 4.3 Astandardhyperbola 35 5.1 Theconceptofacentre 45 5.2 Atranslateofaconic 46 5.3 Auxiliarycirclesofellipse 48 6.1 Conictypesinapencil 60 6.2 Bisectorsoftwolines 62 6.3 Conesassociatedtoaline-pair 63 7.1 Amidpointlocusforanellipse 66 7.2 Aparallelpencilintersectingahyperbola 74 8.1 Constructionofthestandardparabola 77 8.2 Degenerate‘constructible’conics 78 8.3 Axisofaconstructibleconic 82 8.4 Constructionsofastandardellipse 82 8.5 Constructionsofastandardhyperbola 82 9.1 Ideaofatangent 89 9.2 Latusrectumofthestandardparabola 90 viii ListofFigures ix 9.3 Anormallinetoanellipse 94 9.4 Evoluteofaparabola 96 10.1 Theconic Q ofExample10.1 99 10.2 Reflectivepropertyforaparabola 103 11.1 Rationalparametrizationofthecircle 108 11.2 Metricpropertyofanellipse 111 11.3 Thestringconstruction 112 11.4 Reflectivepropertyforanellipse 113 12.1 Alineinoneasymptoticcone 116 12.2 Ahyperbolaasagraph 118 12.3 Parametrizingarectangularhyperbola 120 12.4 Wideandnarrowhyperbolas 122 12.5 Metricpropertyofahyperbola 123 12.6 Reflectivepropertyforahyperbola 123 13.1 Circleintersectingpencilsoflines 126 13.2 Poleandpolar 128 13.3 Theideaoftheorthopticlocus 132 13.4 Orthopticlocusofanarrowhyperbola 134 14.1 Superimpositionoftwoellipses 138 14.2 Translationoftheplane 140 14.3 Rotationabouttheorigin 141 14.4 Invarianceofmidpointloci 146 16.1 Sectionsofthecone(cid:2) 161

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.