ebook img

Elementary differential equations PDF

784 Pages·2008·8.73 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elementary differential equations

EELLEEMMEENNTTAARRYY DDIIFFFFEERREENNTTIIAALL EEQQUUAATTIIOONNSS wwiitthh BBOOUUNNDDAARRYY VVAALLUUEE PPRROOBBLLEEMMSS Sixth Edition C. Henry Edwards David E. Penney The University of Georgia with the assistance of David Calvis Baldwin-Wallace College Upper Saddle River, NJ 07458 LibraryofCongressCataloging-in-PublicationDataonfile. EditorialDirector,ComputerScience,Engineering,andAdvancedMathematics:MarciaJ.Horton SeniorEditor:HollyStark EditorialAssistant:JenniferLonschein SeniorManagingEditor:ScottDisanno ProductionEditor:IrwinZucker ArtDirectorandCoverDesigner:KennyBeck ArtEditor:ThomasBenfatti ManufacturingManager:AlanFischer ManufacturingBuyer:LisaMcDowell SeniorMarketingManager:TimGalligan (cid:2)c 2008,2004,2000,1996byPearsonEducation,Inc. PearsonEducation,Inc. UpperSaddleRiver,NewJersey07458 Allrightsreserved.Nopartofthisbookmaybe reproduced,inanyformorbyanymeans, withoutpermissioninwritingfromthepublisher. TRADEMARKINFORMATION MATLABisaregisteredtrademarkofTheMathWorks,Inc. ForMATLABproductinformation,pleasecontact: TheMathWorks,Inc. 3AppleHillDrive Natick,MA,01760-2098USA Tel:508-647-7000 Fax:508-647-7101 E-mail:[email protected] Web:www.mathworks.com/ MapleisaregisteredtrademarkofWaterlooMaple,Inc. MathematicaisaregisteredtrademarkofWolframResearch,Inc. PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 ISBN 0-13-600613-2 PearsonEducationLTD.,London PearsonEducationAustraliaPty,Limited,Sydney PearsonEducationSingapore,Pte.Ltd PearsonEducationNorthAsiaLtd.,HongKong PearsonEducationCanada,Ltd.,Toronto PearsonEducationdeMexico,S.A.deC.V. PearsonEducationJapan,Tokyo PearsonEducationMalaysia,Pte.Ltd. CC OO NN TT EE NN TT SS Preface vii CHAPTER First-Order Differential Equations 1 11 1.1 DifferentialEquationsandMathematicalModels 1 1.2 IntegralsasGeneralandParticularSolutions 10 1.3 SlopeFieldsandSolutionCurves 19 1.4 SeparableEquationsandApplications 32 1.5 LinearFirst-OrderEquations 46 1.6 SubstitutionMethodsandExactEquations 59 1.7 PopulationModels 74 1.8 Acceleration-VelocityModels 85 CHAPTER Linear Equations of Higher Order 100 22 2.1 Introduction: Second-OrderLinearEquations 100 2.2 GeneralSolutionsofLinearEquations 113 2.3 HomogeneousEquationswithConstantCoefficients 124 2.4 MechanicalVibrations 135 2.5 NonhomogeneousEquationsandUndeterminedCoefficients 148 2.6 ForcedOscillationsandResonance 162 2.7 ElectricalCircuits 173 2.8 EndpointProblemsandEigenvalues 180 CHAPTER Power Series Methods 194 33 3.1 IntroductionandReviewofPowerSeries 194 3.2 SeriesSolutionsNearOrdinaryPoints 207 3.3 RegularSingularPoints 218 3.4 MethodofFrobenius: TheExceptionalCases 233 3.5 Bessel'sEquation 248 3.6 ApplicationsofBesselFunctions 257 iii iv Contents CHAPTER Laplace Transform Methods 266 44 4.1 LaplaceTransformsandInverseTransforms 266 4.2 TransformationofInitialValueProblems 277 4.3 TranslationandPartialFractions 289 4.4 Derivatives,Integrals,andProductsofTransforms 297 4.5 PeriodicandPiecewiseContinuousInputFunctions 304 4.6 ImpulsesandDeltaFunctions 316 CHAPTER Linear Systems of Differential Equations 326 55 5.1 First-OrderSystemsandApplications 326 5.2 TheMethodofElimination 338 5.3 MatricesandLinearSystems 347 5.4 TheEigenvalueMethodforHomogeneousSystems 366 5.5 Second-OrderSystemsandMechanicalApplications 381 5.6 MultipleEigenvalueSolutions 393 5.7 MatrixExponentialsandLinearSystems 407 5.8 NonhomogeneousLinearSystems 420 CHAPTER Numerical Methods 430 66 6.1 NumericalApproximation: Euler'sMethod 430 6.2 ACloserLookattheEulerMethod 442 6.3 TheRunge-KuttaMethod 453 6.4 NumericalMethodsforSystems 464 CHAPTER Nonlinear Systems and Phenomena 480 77 7.1 EquilibriumSolutionsandStability 480 7.2 StabilityandthePhasePlane 488 7.3 LinearandAlmostLinearSystems 500 7.4 EcologicalModels: PredatorsandCompetitors 513 7.5 NonlinearMechanicalSystems 526 7.6 ChaosinDynamicalSystems 542 CHAPTER Fourier Series Methods 554 88 8.1 PeriodicFunctionsandTrigonometricSeries 554 8.2 GeneralFourierSeriesandConvergence 563 8.3 FourierSineandCosineSeries 570 8.4 ApplicationsofFourierSeries 581 Contents v 8.5 HeatConductionandSeparationofVariables 586 8.6 VibratingStringsandtheOne-DimensionalWaveEquation 599 8.7 Steady-StateTemperatureandLaplace'sEquation 611 CHAPTER Eigenvalues and Boundary Value Problems 622 99 9.1 Sturm-LiouvilleProblemsandEigenfunctionExpansions 622 9.2 ApplicationsofEigenfunctionSeries 633 9.3 SteadyPeriodicSolutionsandNaturalFrequencies 642 9.4 CylindricalCoordinateProblems 650 9.5 Higher-DimensionalPhenomena 664 References for Further Study 683 Appendix: Existence and Uniqueness of Solutions 687 Answers to Selected Problems 701 Index I-1 This page intentionally left blank PP RR EE FF AA CC EE The evolution of the present text in successive editions is based on experience teaching the introductory differential equations course with an emphasis on conceptual ideas and the use of applications and projects to involve students in active problem-solving experiences. At various points our approach reflects the widespreaduseoftechnicalcomputingenvironmentslikeMaple,Mathematica,and MATLAB for the graphical, numerical, or symbolic solution of differential equa- tions. Nevertheless,wecontinuetobelievethatthetraditionalelementaryanalytical methodsofsolutionareimportantforstudentstolearnanduse. Onereasonisthat effective and reliable use of computer methods often requires preliminary analysis using standard symbolic techniques; the construction of a realistic computational modeloftenisbasedonthestudyofasimpleranalyticalmodel. Principal Features of This Revision Whilethesuccessfulfeaturesofprecedingeditionshavebeenretained,theexposi- tionhasbeensignificantlyenhancedineverychapterandinmostindividualsections of the text. Both new graphics and new text have been inserted where needed for improved student understanding of key concepts. However, the solid class-tested chapter and section structure of the book is unchanged, so class notes and syllabi willnotrequirerevisionforuseofthisnewedition. Thefollowingexamplesofthis revision illustrate the way the local structure of the text has been augmented and polishedforthisedition. Chapter1: NewFigures1.3.9and1.3.10showingdirectionfieldsthatillus- tratefailureofexistenceanduniquenessofsolutions(page24);newProblems 34 and 35 showing that small changes in initial conditions can make big dif- ferencesinresults,butbigchangesininitialconditionsmaysometimesmake onlysmalldifferencesinresults(page30);newRemarks1and2clarifyingthe concept of implicit solutions (page 35); new Remark clarifying the meaning ofhomogeneityforfirst-orderequations(page61);additionaldetailsinserted in the derivation of the rocket propulsion equation (page 95), and new Prob- lem 5 inserted to investigate the liftoff pause of a rocket on the launch pad sometimesobservedbeforeblastoff(page97). Chapter 2: New explanation of signs and directions of internal forces in mass-spring systems (page 101); new introduction of differential operators and clarification of the algebra of polynomial operators (page 127); new in- troduction and illustration of polar exponential forms of complex numbers (page132); fullerexplanationofmethodofundeterminedcoefficientsinEx- amples1and3(page149–150);newRemarks1and2introducing“shooting” vii viii Preface terminology,andnewFigures2.8.1and2.8.2illustratingwhysomeendpoint valueproblemshaveinfinitelymanysolutions,whileothershavenosolutions at all (page 181); new Figures 2.8.4 and 2.8.5 illustrating different types of eigenfunctions(pages183–184). Chapter 3: New Problem 35 on determination of radii of convergence of power series solutions of differential equations (page 218); new Example 3 justbeforethesubsectiononlogarithmiccasesinthemethodofFrobenius,to illustratefirstthereduction-of-orderformulawithasimplenon-seriesproblem (page239). Chapter4: Newdiscussionclarifyingfunctionsofexponentialorderandex- istence of Laplace transforms (page 273); new Remark discussing the me- chanics of partial-fraction decomposition (page 279); new much-expanded discussion of the proof of the Laplace-transform existence theorem and its extension to include the jump discontinuities that play an important role in manypracticalapplications(page286–287). Chapter 5: New Problems 20–23 for student exploration of three-railway- carssystemswithdifferentinitialvelocityconditions(page392);newRemark illustrating the relation between matrix exponential methods and the gener- alized eigenvalue methods discussed previously (page 416); new exposition inserted at end of section to explain the connection between matrix variation ofparametershereand(scalar)variationofparametersforsecond-orderequa- tionsdiscussedpreviouslyinChapter3(page427). Chapter 6: New discussion with new Figures 6.3.11 and 6.3.12 clarifying thedifferencebetweenrotatingandnon-rotatingcoordinatesystemsinmoon- earthorbitproblems(page473). Chapter 7: New remarks on phase plane portraits, autonomous systems, and critical points (page 488-490); new introduction of linearized systems (page 502); new 3-dimensional Figures 6.5.18 and 6.5.20 illustrating Lorenz andRo¨sslertrajectories(page552–553). Chapter 8: New considerably expanded explanation of even and odd exten- sions and their Fourier sine-cosine series (page 572); new discussion of pe- riodic and non-periodic particular solutions illustrated by new Figure 8.4.4, togetherwithnewProblems19and20atendofsection(pages582,586);new examplediscussioninsertedatendofsectiontoillustratetheeffectsofdamp- inginmass-springsystems(page585);newdiscussionofsignsanddirection ofheatflowinthederivationoftheheatequation(page587). Chapter 9: Clarification of the effect of internal stretching in deriving the wave equation for longitudinal vibrations of a bar (page 635–636); new Fig- ures9.5.15and9.5.16illustratingoceanwavesonasmallplanet(page681). Throughout the text, almost 700 computer-generated figures show students vividpicturesofdirectionfields,solutioncurves,andphaseplaneportraitsthatbring symbolicsolutionsofdifferentialequationstolife. About15applicationmodulesfollowkeysectionsthroughoutthetext. Their purposeistoaddconcreteappliedemphasisandtoengagestudentsismoreexten- siveinvestigationsthanaffordedbytypicalexercisesandproblems. A solid numerical emphasis provided where appropriate (as in Chapter 6 on NumericalMethods)bytheinclusionofgenericnumericalalgorithmsandalimited numberofillustrativegraphingcalculator,BASIC,andMATLABroutines. Preface ix Organization and Content Thetraditionalorganizationofthistextstillaccommodatesfreshnewmaterialand combinationsoftopics. Forinstance: • ThefinaltwosectionsofChapter1(onpopulationsandelementarymechan- ics)offeranearlyintroductiontomathematicalmodelingwithsignificantap- plications. • The final section of Chapter 2 offers unusually early exposure to endpoint problems and eigenvalues, with interesting applications to whirling strings andbuckledbeams. • Chapter3combinesacompleteandsolidtreatmentofinfiniteseriesmethods withinterestingapplicationsofBesselfunctionsinitsfinalsection. • Chapter 4 combines a complete and solid treatment of Laplace transform methods with brief coverage of delta functions and their applications in its finalsection. • Chapter 5 provides an unusually flexible treatment of linear systems. Sec- tions 5.1 and 5.2 offer an early, intuitive introduction to first-order systems and models. The chapter continues with a self-contained treatment of the necessary linear algebra, and then presents the eigenvalue approach to linear systems. It includes an unusual number of applications (ranging from brine tanks to railway cars) of all the various cases of the eigenvalue method. The coverageofexponentialmatricesinSection5.7isexpandedfromearlieredi- tions. • Chapter 6 on numerical methods begins in Section 6.1 with the elementary Euler method for single equations and ends in Section 6.4 with the Runge- Kuttamethodforsystemsandapplicationstoorbitsofcometsandsatellites. • Chapter7onnonlinearsystemsandphenomenarangesfromphaseplaneanal- ysistoecologicalandmechanicalsystemstoaninnovativeconcludingsection on chaos and bifurcation in dynamical systems. Section 7.6 presents an ele- mentary introduction to such contemporary topics as period-doubling in bio- logicalandmechanicalsystems,thepitchforkdiagram,andtheLorenzstrange attractor(allillustratedwithvividcomputergraphics). • Chapter8coversFourierserieswithapplicationstosolutionoftheheat,wave, andLaplaceequations. • Chapter9beginswithSturm-LiouvilleODEproblemsandends(inSection9.5) withsomesubstantialexamplesofhigher-dimensionalPDEphenomena. Thisbookincludesadequatematerialfordifferentintroductorycoursesvary- ing in length from one quarter to two semesters. The briefer version, Elementary DifferentialEquations(0-13-239730-7),endswithChapter7onnonlinearsystems and phenomena (and thus omits the material on Fourier series, separation of vari- ables,andpartialdifferentialequations). Applications To sample the range of applications in this text, take a look at the following ques- tions:

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.