Elementary Calculus of Financial Mathematics Mathematical Modeling Editor-in-Chief and Computation Richard Haberman Southern Methodist About the Series University The SIAM series on Mathematical Modeling and Computation draws attention to the wide range of important problems in the physical and life sciences and Editorial Board engineering that are addressed by mathematical modeling and computation; promotes the interdisciplinary culture required to meet these large-scale challenges; Alejandro Aceves and encourages the education of the next generation of applied and computational Southern Methodist mathematicians, physical and life scientists, and engineers. University The books cover analytical and computational techniques, describe significant mathematical developments, and introduce modern scientific and engineering Andrea Bertozzi applications. The series will publish lecture notes and texts for advanced University of California, undergraduate- or graduate-level courses in physical applied mathematics, Los Angeles biomathematics, and mathematical modeling, and volumes of interest to a wide segment of the community of applied mathematicians, computational scientists, and engineers. Bard Ermentrout University of Pittsburgh Appropriate subject areas for future books in the series include fluids, dynamical systems and chaos, mathematical biology, neuroscience, mathematical physiology, epidemiology, morphogenesis, biomedical engineering, reaction-diffusion in Thomas Erneux chemistry, nonlinear science, interfacial problems, solidification, combustion, Université Libre de transport theory, solid mechanics, nonlinear vibrations, electromagnetic theory, Brussels nonlinear optics, wave propagation, coherent structures, scattering theory, earth science, solid-state physics, and plasma physics. Bernie Matkowsky Northwestern University A. J. Roberts, Elementary Calculus of Financial Mathematics James D. Meiss, Differential Dynamical Systems Robert M. Miura E. van Groesen and Jaap Molenaar, Continuum Modeling in the Physical Sciences New Jersey Institute Gerda de Vries, Thomas Hillen, Mark Lewis, Johannes Müller, and Birgitt of Technology Schönfisch, A Course in Mathematical Biology: Quantitative Modeling with Mathematical and Computational Methods Michael Tabor Ivan Markovsky, Jan C. Willems, Sabine Van Huffel, and Bart De Moor, Exact and University of Arizona Approximate Modeling of Linear Systems: A Behavioral Approach R. M. M. Mattheij, S. W. Rienstra, and J. H. M. ten Thije Boonkkamp, Partial Differential Equations: Modeling, Analysis, Computation Johnny T. Ottesen, Mette S. Olufsen, and Jesper K. Larsen, Applied Mathematical Models in Human Physiology Ingemar Kaj, Stochastic Modeling in Broadband Communications Systems Peter Salamon, Paolo Sibani, and Richard Frost, Facts, Conjectures, and Improvements for Simulated Annealing Lyn C. Thomas, David B. Edelman, and Jonathan N. Crook, Credit Scoring and Its Applications Frank Natterer and Frank Wübbeling, Mathematical Methods in Image Reconstruction Per Christian Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion Michael Griebel, Thomas Dornseifer, and Tilman Neunhoeffer, Numerical Simulation in Fluid Dynamics: A Practical Introduction Khosrow Chadan, David Colton, Lassi Päivärinta, and William Rundell, An Introduction to Inverse Scattering and Inverse Spectral Problems Charles K. Chui, Wavelets: A Mathematical Tool for Signal Analysis Elementary Calculus of Financial Mathematics A. J. Roberts University of Adelaide Adelaide, South Australia, Australia Society for Industrial and Applied Mathematics Philadelphia Copyright © 2009 by the Society for Industrial and Applied Mathematics. 10 9 8 7 6 5 4 3 2 1 All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia, PA 19104-2688 USA. Trademarked names may be used in this book without the inclusion of a trademark symbol. These names are used in an editorial context only; no infringement of trademark is intended. Maple is a registered trademark of Waterloo Maple, Inc. MATLAB is a registered trademark of The MathWorks, Inc. For MATLAB product information, please contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-7000, Fax: 508-647-7001, [email protected], www.mathworks.com. Library of Congress Cataloging-in-Publication Data Roberts, A. J. Elementary calculus of financial mathematics / A. J. Roberts. p. cm. -- (Mathematical modeling and computation ; 15) Includes bibliographical references and index. ISBN 978-0-898716-67-2 1. Finance--Mathematical models. 2. Stochastic processes. 3. Investments-- Mathematics. 4. Calculus. I. Title. HG106.R63 2009 332.01'51923--dc22 2008042349 is a registered trademark. To Barbara, Sam, Ben, and Nicky for their support over the years (cid:2) (cid:2) (cid:2) emfm 2008/10/22 pagevii (cid:2) (cid:2) Contents Preface ix ListofAlgorithms xi 1 FinancialIndicesAppeartoBeStochasticProcesses 1 1.1 BrownianmotionisalsocalledaWienerprocess . . . . . . . . . . . . 3 1.2 Stochasticdriftandvolatilityareunique . . . . . . . . . . . . . . . . 9 1.3 BasicnumericssimulateanSDE . . . . . . . . . . . . . . . . . . . . 14 1.4 Abinomiallatticepricescalloption . . . . . . . . . . . . . . . . . . . 20 1.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2 Ito’sStochasticCalculusIntroduced 39 2.1 Multiplicativenoisereducesexponentialgrowth . . . . . . . . . . . . 39 2.2 Ito’sformulasolvessomeSDEs . . . . . . . . . . . . . . . . . . . . . 43 2.3 TheBlack–Scholesequationpricesoptionsaccurately . . . . . . . . . 48 2.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 TheFokker–PlanckEquationDescribestheProbabilityDistribution 61 3.1 Theprobabilitydistributionevolvesforwardintime . . . . . . . . . . 65 3.2 Stochasticallysolvedeterministicdifferentialequations . . . . . . . . 76 3.3 TheKolmogorovbackwardequationcompletesthepicture . . . . . . 84 3.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4 StochasticIntegrationProvesIto’sFormula 93 (cid:2) b 4.1 TheItointegral fdW . . . . . . . . . . . . . . . . . . . . . . . . . 95 a 4.2 TheItoformula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.3 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 AppendixA ExtraMATLAB/SCILABCode 115 AppendixB TwoAlternateProofs 119 B.1 Fokker–Planckequation . . . . . . . . . . . . . . . . . . . . . . . . . 119 vii (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) emfm 2008/10/22 pageviii (cid:2) (cid:2) viii Contents B.2 Kolmogorovbackwardequation. . . . . . . . . . . . . . . . . . . . . 121 Bibliography 125 Index 127 (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) emfm 2008/10/22 pageix (cid:2) (cid:2) Preface Welcome! This book leads youon an introductioninto the fascinating realm of fi- nancialmathematicsanditscalculus. Modernfinancialmathematicsreliesonadeepand sophisticated theory of random processes in time. Such randomness reflects the erratic fluctuationsinfinancialmarkets. Itakeonthechallengeofintroducingyoutothecrucial conceptsneededtounderstandandvaluefinancialoptionsamongsuchfluctuations. This booksupportsyourlearningwiththebareminimumofnecessaryprerequisitemathematics. Todeliverunderstandingwithaminimumofanalysis,thebookstartswithagraph- ical/numerical introduction to how to adapt random walks to describe the typical erratic fluctuationsoffinancialmarkets.Thensimplenumericalsimulationsbothdemonstratethe approachandsuggestthesymbologyofstochasticcalculus. Thefinitestepsofthenumeri- calapproachunderlietheintroductionofthebinomiallatticemodelforevaluatingfinancial options. Fluctuationsinafinancialenvironmentmaybankruptbusinessesthatotherwisewould grow.Discreteanalysisofthisproblemleadstothesurprisinglysimpleextensionofclassic calculusneededto performstochastic calculus. The key is to replacesquared noise by a meandrift: ineffect,dW2=dt. Thissimplebutpowerfulruleenablesustodifferentiate, integrate, solve stochastic differential equations, and to triumphantly derive and use the Black–Scholesequationtoaccuratelyvaluefinancialoptions. The first two chapters deal with individualrealizations and simulations. However, some applications require exploring the distribution of possibilities. The Fokker–Planck andKolmogorovequationslinkevolvingprobabilitydistributionstostochasticdifferential equations (SDEs). Such transformationsempower us not only to value financial options but also to model the natural fluctuations in biology models and to approximately solve differentialequationsusingstochasticsimulation. Lastly,theformalrulesusedpreviouslyarejustifiedmorerigorouslybyanintroduc- tion to a sound definition of stochastic integration. Integration in turn leads to a sound interpretationofIto’sformulathatwefindsousefulinfinancialapplications. Prerequisites Basic algebra, calculus, data analysis, probability and Markov chains are prerequisites for this course. There will be many times throughoutthis book when you will need the concepts and techniquesof such courses. Be sure you are familiar with those, and have appropriatereferencesonhand. ix (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) emfm 2008/10/22 pagex (cid:2) (cid:2) x Preface Computer simulations IncorporatedintothisbookareMATLAB/SCILAB scriptstoenhanceyourabilitytoprobe the problems and concepts presented and thus to improve learning. You can purchase MATLABfromtheMathworkscompany,http://www.mathworks.com.SCILABisavailable forfreeviahttp://www.scilab.org. A.J.Roberts (cid:2) (cid:2) (cid:2) (cid:2)
Description: