ebook img

Elementary and Analytic Theory of Algebraic Numbers PDF

712 Pages·2004·15.33 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elementary and Analytic Theory of Algebraic Numbers

Springer Monographs in Mathematics Springer-Verlag Berlin Heidelberg GmbH Wladyslaw Narkiewicz Elementary and Analytic Theory of Algebraic Numbers Third Edition i Springer Wladyslaw Narkiewicz Wrodaw University Institute of Mathematics Pl. Grunwaldzki 2/4 50-384 Wrodaw Poland e-mail: [email protected] Third, revised and extended edition based on the second edition (English): © PWN-Polish Scientific Publishers, Warszawa 1990 Mathematics Subject Classification (2ooo ): nRxx, nSxx ISSN 1439-7382 ISBN 978-3-642-06010-6 ISBN 978-3-662-07001-7 (eBook) DOI 10.1007/978-3-662-07001-7 Library of Congress Control Number: 2004105720 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag Berlin Heidelberg GmbH. Violations are liable to prosecution under the German Copyright Law. springeronline.com © Springer-Verlag Berlin Heidelberg 2004 Originally published by Springer-Verlag Berlin Heidelberg New York in 2004 Softcover reprint of the hardcover 3rd edition 2004 The use of general descriptive names, registered names, trademarks, etc. in this publication does not inlply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typeset in T];X by the author Final typesetting: LE-TJlX, Leipzig Cover design: Erich Kirchner, Heidelberg Printed on acid-free paper SPIN: 10941041 41/3141/ba-54 3 2 1 o To my wife Preface The aim of this book is to present an exposition of the theory of alge braic numbers, excluding class-field theory and its consequences. There are many ways to develop this subject; the latest trend is to neglect the classical Dedekind theory of ideals in favour of local methods. However, for numeri cal computations, necessary for applications of algebraic numbers to other areas of number theory, the old approach seems more suitable, although its exposition is obviously longer. On the other hand the local approach is more powerful for analytical purposes, as demonstrated in Tate's thesis. Thus the author has tried to reconcile the two approaches, presenting a self-contained exposition of the classical standpoint in the first four chapters, and then turning to local methods. In the first chapter we present the necessary tools from the theory of Dedekind domains and valuation theory, including the structure of finitely generated modules over Dedekind domains. In Chapters 2, 3 and 4 the clas sical theory of algebraic numbers is developed. Chapter 5 contains the fun damental notions of the theory of p-adic fields, and Chapter 6 brings their applications to the study of algebraic number fields. We include here Shafare vich's proof of the Kronecker-Weber theorem, and also the main properties of adeles and ideles. In Chapter 7 we apply analytical methods, and derive functional equations for various zeta-functions, including Dedekind zeta-functions and Dirichlet's £-functions. These functions are then applied to the study of asymptotic distributions of ideals and prime ideals. In Chapter 8 we consider Abelian extensions of the rationals. We prove the Siegel-Brauer theorem in this case, obtain the class-number formula, and give an effective bound for negative quadratic discriminants with class-number one. The last chapter deals with factorization of algebraic integers into irreducibles. Each chapter ends with a section containing comments and a short review of the relevant literature. A short selection of exercises is also given. At the end of the book we present a choice of open problems containing some classical questions, and also some problems of more recent vintage. In the first edition this list contained 35 problems, 14 were added in the second edition, and now we added 10 more. Some of them were solved in the meantime. They are marked by an asterisk in our list. VIII Preface We expect the reader to have an elementary knowledge of algebraic and topological notions, including elements of Galois theory. There are three appendices dealing with locally compact Abelian groups, Dirichlet series and Baker's method, presenting results utilized in the main text. The comments at the end of each chapter have been rewritten to take account of the development of the subject up to 2003, and the bibliography has been extended accordingly. To keep the size of the book reasonable some changes in the main text have been made in comparison to the previous edi tions. Certain proofs were simplified, and we decided to omit a few theorems. In contrast to the previous editions, written on a typewriter, this time a com puter was used, and this gave the possibility to improve the text on several places. I am grateful to several friends and colleagues, who commented on the previous editions. A particular thank goes to Dr.Tadeusz Pezda, who carefully read the outprints of the new version, and suggested several clarifications and improvements. Finally I would like to thank the Springer Verlag for the cooperation in the realization of this book. Wrodaw, January 2004 Wladyslaw Narkiewicz Table of Contents Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI 1. Dedekind Domains and Valuations . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Dedekind Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Valuations and Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3. Finitely Generated Modules over Dedekind Domains . . . . . . 24 1.4. Notes to Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2. Algebraic Numbers and Integers . . . . . . . . . . . . . . . . . . . . . . . . 43 2.1. Distribution of Integers in the Complex Plane . . . . . . . . . . . . 43 2.2. Discriminants and Integral Bases . . . . . . . . . . . . . . . . . . . . . . . 52 2.3. Applications of Minkowski'e Convex Body Theorem . . . . . . . 66 2.4. Notes to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3. Units and Ideal Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.1. Valuations of Algebraic Number Fields . . . . . . . . . . . . . . . . . . 85 3.2. Ideal Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.3. Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.4. Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.5. Notes to Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4. Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.1. The Homomorphisms of Injection and Norm . . . . . . . . . . . . . 135 4.2. Different and Discriminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 4.3. Factorization of Prime Ideals in Extensions. More about the Class Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 4.4. Notes to Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 X Table of Contents 5. l,l}-adic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 5.1. Principal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 5.2. Extensions of p-adic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 5.3. Harmonic Analysis in p-adic Fields . . . . . . . . . . . . . . . . . . . . . . 237 5.4. Notes to Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 6. Applications of the Theory of 1-lJ-adic Fields . . . . . . . . . . . . . 257 6.1 Arithmetical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 6.2. Adeles and Ideles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 6.3. Notes to Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 7. Analytical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 7.1. The Classical Zeta-Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 7.2. Asymptotic Distribution of Ideals and Prime Ideals . . . . . . . 343 7.3. Chebotarev's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 7.4. Notes to Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 8. Abelian Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 8.1. Main Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 8.2. The Class-number Formula and the Siegel-Brauer Theorem 423 8.3. Class-number of Quadratic Fields . . . . . . . . . . . . . . . . . . . . . . . 436 8.4. Notes to Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 9. Factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 9.1. Elementary Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 9.2. Quantitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496 9.3. Notes to Chapter 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . · 509 Appendix I. Locally Compact Abelian Groups .............. 511 Appendix II. Function Theory 525 Appendix III. Baker's Method 527 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 Author Index 685 Subject Index 701 List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707

Description:
The aim of this book is to present an exposition of the theory of alge­ braic numbers, excluding class-field theory and its consequences. There are many ways to develop this subject; the latest trend is to neglect the classical Dedekind theory of ideals in favour of local methods. However, for nume
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.