ebook img

Elementary Algebra PDF

904 Pages·2009·10.28 MB·English
by  
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elementary Algebra

Elementary Algebra By: Wade Ellis Denny Burzynski Elementary Algebra By: Wade Ellis Denny Burzynski Online: <http://cnx.org/content/col10614/1.3/ > C O N N E X I O N S RiceUniversity,Houston,Texas '2008 Wade Ellis , Denny Burzynski This selection and arrangement of content is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/2.0/ Table of Contents Preface ...............................................................................................1 Acknowledgments ...................................................................................5 1 Arithmetic Review 1.1 Objectives ...................................................................................7 1.2 Factors, Products, and Exponents ...........................................................7 1.3 Prime Factorization ........................................................................11 1.4 The Least Common Multiple ...............................................................14 1.5 Equivalent Fractions ........................................................................18 1.6 Operations with Fractions ..................................................................22 1.7 Decimal Fractions ..........................................................................28 1.8 Percent .....................................................................................36 Solutions ........................................................................................41 2 Basic Properties of Real Numbers 2.1 Objectives ..................................................................................47 2.2 Symbols and Notations .....................................................................48 2.3 The Real Number Line and the Real Numbers ..............................................55 2.4 Properties of the Real Numbers ............................................................63 2.5 Exponents ..................................................................................71 2.6 Rules of Exponents .........................................................................79 2.7 The Power Rules for Exponents ............................................................88 2.8 Summary of Key Concepts .................................................................96 2.9 Exercise Supplement .......................................................................97 2.10 Pro(cid:28)ciency Exam ........................................................................104 Solutions .......................................................................................106 3 Basic Operations with Real Numbers 3.1 Objectives .................................................................................121 3.2 Signed Numbers ...........................................................................122 3.3 Absolute Value ............................................................................127 3.4 Addition of Signed Numbers ...............................................................132 3.5 Subtraction of Signed Numbers ............................................................139 3.6 Multiplication and Division of Signed Numbers ............................................144 3.7 Negative Exponents .......................................................................153 3.8 Scienti(cid:28)c Notation .........................................................................163 3.9 Summary of Key Concepts ................................................................170 3.10 Exercise Supplement .....................................................................172 3.11 Pro(cid:28)ciency Exam ........................................................................176 Solutions .......................................................................................179 4 Algebraic Expressions and Equations 4.1 Objectives .................................................................................197 4.2 Algebraic Expressions .....................................................................198 4.3 Equations .................................................................................206 4.4 Classi(cid:28)cation of Expressions and Equations ................................................214 4.5 Combining Polynomials Using Addition and Subtraction ...................................221 4.6 Combining Polynomials Using Multiplication ..............................................227 4.7 Special Binomial Products .................................................................239 4.8 Terminology Associated with Equations ...................................................246 4.9 Summary of Key Concepts ................................................................249 iv 4.10 Exercise Supplement .....................................................................250 4.11 Pro(cid:28)ciency Exam ........................................................................257 Solutions .......................................................................................259 5 Solving Linear Equations and Inequalities 5.1 Objectives .................................................................................277 5.2 Solving Equations .........................................................................278 5.3 Solving Equations of the Form ax=b and x/a=b ...........................................284 5.4 Further Techniques in Equation Solving ...................................................290 5.5 Application I - Translating from Verbal to Mathetical Expressions .........................298 5.6 Application II - Solving Problems .........................................................304 5.7 Linear inequalities in One Variable ........................................................313 5.8 Linear Equations in Two Variables .........................................................322 5.9 Summary of Key Concepts ................................................................328 5.10 Exercise Supplement .....................................................................330 5.11 Pro(cid:28)ciency Exam ........................................................................335 Solutions .......................................................................................338 6 Factoring Polynomials 6.1 Objectives .................................................................................353 6.2 Finding the factors of a Monomial .........................................................354 6.3 Factoring a Monomial from a Polynomial ..................................................357 6.4 The Greatest Common Factor .............................................................362 6.5 Factoring by Grouping ....................................................................367 6.6 Factoring Two Special Products ...........................................................370 6.7 Factoring Trinomials with Leading Coe(cid:30)cient 1 ...........................................378 6.8 Factoring Trinomials with Leading Coe(cid:30)cient Other Than 1 ...............................383 6.9 Summary of Key Concepts ................................................................393 6.10 Exercise Supplement .....................................................................394 6.11 Pro(cid:28)ciency Exam ........................................................................398 Solutions .......................................................................................400 7 Graphing Linear Equations and Inequalities in One and Two Variables 7.1 Objectives .................................................................................411 7.2 Graphing Linear Equations and Inequalities in One Variable ...............................412 7.3 Plotting Points in the Plane ...............................................................419 7.4 Graphing Linear Equations in Two Variables ..............................................428 7.5 The Slope-Intercept Form of a Line ........................................................448 7.6 Graphing Equations in Slope-Intercept Form ..............................................464 7.7 Finding the Equation of a Line ............................................................476 7.8 Graphing Linear Inequalities in Two Variables .............................................485 7.9 Summary of Key Concepts ................................................................497 7.10 Exercise Supplement .....................................................................498 7.11 Pro(cid:28)ciency Exam ........................................................................508 Solutions .......................................................................................513 8 Rational Expressions 8.1 Objectives .................................................................................545 8.2 Rational Expressions ......................................................................546 8.3 Reducing Rational Expressions ............................................................553 8.4 Multiplying and Dividing Rational Expressions ............................................561 8.5 Building Rational Expressions and the LCD ...............................................568 8.6 Adding and Subtracting Rational Expressions .............................................581 v 8.7 Rational Equations ........................................................................591 8.8 Applications ...............................................................................600 8.9 Complex Rational Expressions .............................................................610 8.10 Dividing Polynomials ....................................................................618 8.11 Summary of Key Concepts ...............................................................628 8.12 Exercise Supplement .....................................................................629 8.13 Pro(cid:28)ciency Exam ........................................................................636 Solutions .......................................................................................638 9 Roots, Radicals, and Square Root Equations 9.1 Objectives .................................................................................659 9.2 Square Root Expressions ..................................................................660 9.3 Simplifying Square Root Expressions ......................................................669 9.4 Multiplication of Square Root Expressions .................................................677 9.5 Division of Square Root Expressions .......................................................684 9.6 Addition and Subtraction of Square Root Expressions .....................................691 9.7 Square Root Equations with Applications ..................................................699 9.8 Summary of Key Concepts ................................................................704 9.9 Exercise Supplement ......................................................................706 9.10 Pro(cid:28)ciency Exam ........................................................................710 Solutions .......................................................................................713 10 Quadratic Equations 10.1 Objectives ...............................................................................729 10.2 Solving Quadratic Equations .............................................................730 10.3 Solving Quadratic Equations by Factoring ................................................735 10.4 Solving Quadratic Equations Using the Method of Extraction of Roots ...................742 10.5 Solving Quadratic Equations Using the Method of Completing the Square ................749 10.6 Solving Quadratic Equations Using the Quadratic Formula ...............................756 10.7 Applications .............................................................................764 10.8 Graphing Quadratic Solutions ............................................................775 10.9 Summary of Key Concepts ...............................................................788 10.10 Exercise Supplement ....................................................................789 10.11 Pro(cid:28)ciency Exam .......................................................................794 Solutions .......................................................................................798 11 Systems of Linear Equations 11.1 Objectives ...............................................................................817 11.2 Solutions by Graphing ...................................................................817 11.3 Elimination by Substitution ..............................................................828 11.4 Elimination by Addition .................................................................836 11.5 Applications .............................................................................845 11.6 Summary of Key Concepts ...............................................................851 11.7 Exercise Supplement .....................................................................852 11.8 Pro(cid:28)ciency Exam ........................................................................855 Solutions .......................................................................................857 12 Appendix 12.1 Table of Symbols .........................................................................867 12.2 Properties of Real Numbers ..............................................................868 12.3 Important and Useful Rules/Formulas ....................................................869 12.4 The 5-Step Method of Solving Applied Problems .........................................869 Solutions ........................................................................................?? vi Glossary ............................................................................................870 Index ...............................................................................................871 Attributions ........................................................................................875 Preface 1 ElementaryAlgebraisaworktextthatcoversthetraditionaltopicsstudiedinamodernelementaryalgebra course. It is intended for students who: 1. Have no exposure to elementary algebra, 2. Have had a previously unpleasant experience with elementary algebra, or 3. Need to review algebraic concepts and techniques. Use of this book will help the student develop the insight and intuition necessary to master algebraic tech- niques and manipulative skills. The text is written to promote problem-solving ability so that the student has the maximum opportunity to see that the concepts and techniques are logically based and to be com- fortableenoughwiththeseconceptstoknowwhenandhowtousetheminsubsequentsections,courses,and non-classroom situations. Intuition and understanding are some of the keys to creativity; we believe that the material presented will help make these keys available to the student. This text can be used in standard lecture or self-paced classes. To help students meet these objectives and to make the study of algebra a pleasant and rewarding experience, Elementary Algebra is organized as follows. Pedagogical Features The work text format gives the student space to practice algebraic skills with ready reference to sample problems. The chapters are divided into sections, and each section is a complete treatment of a particular topic, which includes the following features: • Section Overview • Sample Sets • Practice Sets • Section Exercises • Exercises for Review Thechaptersbeginwith Objectives andend witha Summary of Key Concepts, an Exercise Supple- ment, and a Pro(cid:28)ciency Exam. Objectives Eachchapterbeginswithasetofobjectivesidentifyingthematerialtobecovered. Eachsectionbeginswith anoverviewthatrepeatstheobjectivesforthatparticularsection. Sectionsaredividedintosubsectionsthat correspond to the section objectives, which makes for easier reading. Sample Sets ElementaryAlgebracontainsexamplesthatareseto(cid:27)inboxesforeasyreference. Theexamplesarereferred to as Sample Sets for two reasons: 1Thiscontentisavailableonlineat<http://cnx.org/content/m18873/1.3/>. 1 2 1. They serve as a representation to be imitated, which we believe will foster understanding of algebra concepts and provide experience with algebraic techniques. 2. Sample Sets also serve as a preliminary representation of problem-solving techniques that may be used to solve more general and more complicated problems. The examples have been carefully chosen to illustrate and develop concepts and techniques in the most instructive, easily remembered way. Concepts and techniques preceding the examples are introduced at a level below that normally used in similar texts and are thoroughly explained, assuming little previous knowledge. Practice Set A parallel Practice Set follows each Sample Set, which reinforces the concepts just learned. The answers to all Practice Sets are displayed with the question when viewing this content online, or at the end of the chapter in the print version. Section Exercises The exercises at the end of each section are graded in terms of di(cid:30)culty, although they are not grouped into categories. There are an ample number of problems; after working through the exercises, the student will be capable of solving a variety of challenging problems. The problems are paired so that the odd-numbered problems are equivalent in kind and di(cid:30)culty to the even-numbered problems. Answers to the odd-numbered problems are provided with the exercise when viewed online, or at the back of the chapter in the print version. Exercises for Review This section consists of problems that form a cumulative review of the material covered in the preceding sections of the text and is not limited to material in that chapter. The exercises are keyed by section for easy reference. Summary of Key Concepts A summary of the important ideas and formulas used throughout the chapter is included at the end of each chapter. More than just a list of terms, the summary is a valuable tool that reinforces concepts in preparation for the Pro(cid:28)ciency Exam at the end of the chapter, as well as future exams. The summary keys each item to the section of the text where it is discussed. Exercise Supplement In addition to numerous section exercises, each chapter includes approximately 100 supplemental problems, which are referenced by section. Answers to the odd-numbered problems are included with the problems when viewed online and in the back of the chapter in the print version. Pro(cid:28)ciency Exam Each chapter ends with a Pro(cid:28)ciency Exam that can serve as a chapter review or a chapter evaluation. The pro(cid:28)ciency Exam is keyed to sections, which enables the student to refer back to the text for assistance. AnswerstoallPro(cid:28)ciencyExamproblemsareincludedwiththeexerciseswhenviewedonline,orintheback of the chapter in the print version. Content The writing style is informal and friendly, o(cid:27)ering a no-nonsense, straightforward approach to algebra. We have made a deliberate e(cid:27)ort not to write another text that minimizes the use of words because we believe that students can be study algebraic concepts and understand algebraic techniques by using words and symbols rather than symbols alone. It has been our experience that students at the elementary level are not experienced enough with mathematics to understand symbolic explanations alone; they also need to read the explanation. We have taken great care to present concepts and techniques so they are understandable and easily remembered. After concepts have been developed, students are warned about common pitfalls.

Description:
Elementary Algebra. By: Solutions . 7 Graphing Linear Equations and Inequalities in One and Two Variables . 10 Quadratic Equations .. Interpretation of graphs is also emphasized throughout the chapter, . I would like to thank Doug Campbell, Ed Lodi, and Guy Sanders for listening to my
See more

The list of books you might like