ebook img

Elementary Abstract Algebra - Mathematics - University of South PDF

105 Pages·2007·0.52 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elementary Abstract Algebra - Mathematics - University of South

Elementary Abstract Algebra W(cid:2) Edwin Clark Department of Mathematics University of South Florida (cid:2)Last revised(cid:3) December (cid:4)(cid:5)(cid:6) (cid:4)(cid:7)(cid:7)(cid:8)(cid:9) Copyright c (cid:2)(cid:3)(cid:3)(cid:4) by W(cid:5) Edwin Clark (cid:0) All rights reserved(cid:5) i ii Preface This book is intended for a one semester introduction to abstract algebra(cid:5) Most introductory textbooks on abstract algebra are written with a two semester course in mind(cid:5) See(cid:6) for example(cid:6) the books listed in the Bibli(cid:7) ography below(cid:5) These books are listed in approximate order of increasing di(cid:8)culty(cid:5) A search of the library using the keywords abstract algebra or modern algebra will produce a much longer list of such books(cid:5) Some will be readable by the beginner(cid:6) some willbe quite advanced and willbe di(cid:8)cult to understand without extensive background(cid:5) A search on the keywords group and ring willalso produce a number of more specializedbooks on the subject matterofthiscourse(cid:5) If you wishto see what is goingon atthefrontierofthe subject(cid:6) you might take a look at some recent issues of the journals Journal of Algebra or Communications in Algebra which you will (cid:9)nd in our library(cid:5) Instead of spending a lot of time going over background material(cid:6) we go directly into the primary subject matter(cid:5) We discuss proof methods and necessary background as the need arises(cid:5) Nevertheless(cid:6) you should at least skim the appendices where some of this material can be found so that you will know where to look if you need some fact or technique(cid:5) Since we only have one semester(cid:6) we do not have time to discuss any of the many applications of abstract algebra(cid:5) Students who are curious about applications will (cid:9)nd some mentioned in Fraleigh (cid:10)(cid:2)(cid:11) and Gallian (cid:10)(cid:12)(cid:11)(cid:5) Many more applications are discussed in Birkho(cid:13) and Bartee (cid:10)(cid:14)(cid:11) and in Dornho(cid:13) and Horn (cid:10)(cid:15)(cid:11)(cid:5) Although abstract algebra has many applications in engineering(cid:6) com(cid:7) puter science and physics(cid:6) the thought processes one learns in this course maybemorevaluablethan speci(cid:9)csubject matter(cid:5) In thiscourse(cid:6) onelearns(cid:6) perhaps for the (cid:9)rst time(cid:6) how mathematics is organized in a rigorous man(cid:7) ner(cid:5) This approach(cid:6) the axiomatic method(cid:6) emphasizes examples(cid:6) de(cid:9)nitions(cid:6) theorems and proofs(cid:5) A great deal of importance is placed on understanding(cid:5) iii iv PREFACE Every detail should be understood(cid:5) Students should not expect to obtain this understanding without considerable e(cid:13)ort(cid:5) My advice is to learn each de(cid:9)nition as soon as it is covered in class (cid:16)if not earlier(cid:17) and to make a real e(cid:13)ort to solve each problem in the book before the solution is presented in class(cid:5) Many problems require the construction of a proof(cid:5) Even if you are not able to (cid:9)nd a particular proof(cid:6) the e(cid:13)ort spent trying to do so will help to increase your understanding of the proof when you see it(cid:5) With su(cid:8)cient e(cid:13)ort(cid:6) your abilitytosuccessfully prove statements on your own willincrease(cid:5) We assume that students have some familiarity with basic set theory(cid:6) linear algebra and calculus(cid:5) But very little of this nature will be needed(cid:5) To a great extent(cid:6) the course is self(cid:7)contained(cid:6) except for the requirement of a certain amount of mathematical maturity(cid:5) And(cid:6) hopefully(cid:6) the student(cid:18)s level of mathematical maturity will increase as the course progresses(cid:5) I will often use the symbol to indicate the end of a proof(cid:5) Or(cid:6) in some cases(cid:6) will indicate the fact that no more proof will be given(cid:5) In such cases the proof will either be assigned in the problems or a reference will be provided where the proof may be located(cid:5) This symbol was (cid:9)rst used for this purpose by the mathematician Paul Halmos(cid:5) Note(cid:19) when teaching this course I usually present in class lots of hints and(cid:20)or outlines of solutions for the less routine problems(cid:5) This version includes a number of improvements and additions suggested by my colleague Mil(cid:21)e Kraj(cid:22)cevski(cid:5) Bibliography (cid:10)(cid:2)(cid:11) J(cid:5) B(cid:5) Fraleigh(cid:6) A First Course in Abstract Algebra(cid:6) (cid:16)Fifth Edition(cid:17)(cid:6) Addison(cid:7)Wesley(cid:6) (cid:2)(cid:3)(cid:3)(cid:23)(cid:5) (cid:10)(cid:12)(cid:11) J(cid:5) A(cid:5) Gallian(cid:6) Contemporary Abstract Algebra(cid:6) (cid:16)Third Edition(cid:17)(cid:6) D(cid:5)C(cid:5) Heath(cid:6) (cid:2)(cid:3)(cid:3)(cid:23)(cid:5) (cid:10)(cid:24)(cid:11) G(cid:5) Birkho(cid:13) and S(cid:5) MacLane(cid:6) A Survey of Modern Algebra(cid:6) A(cid:5) K(cid:5) Peters Ltd(cid:5)(cid:6) (cid:2)(cid:3)(cid:3)(cid:25)(cid:5) (cid:10)(cid:23)(cid:11) I(cid:5) N(cid:5) Herstein(cid:6) Topics in Algebra(cid:6) (cid:16)Second Edition(cid:17)(cid:6) Blaisdell(cid:6) (cid:2)(cid:3)(cid:25)(cid:14)(cid:5) (cid:10)(cid:14)(cid:11) G(cid:5) D(cid:5) Birkho(cid:13) and T(cid:5) C(cid:5) Bartee(cid:6) Modern Applied Algebra(cid:6) McGraw(cid:7)Hill Book Company(cid:6) (cid:2)(cid:3)(cid:25)(cid:26)(cid:5) (cid:10)(cid:15)(cid:11) L(cid:5) Dornho(cid:13) and F(cid:5) Hohn(cid:6) Applied Modern Algebra(cid:6) Macmillan(cid:6) (cid:2)(cid:3)(cid:25)(cid:4)(cid:5) (cid:10)(cid:25)(cid:11) B(cid:5) L(cid:5) Van der Waerden(cid:6) Modern Algebra(cid:6) (cid:16)Seventh Edition(cid:6) (cid:12) vols(cid:17)(cid:6) Fredrick Ungar Publishing Co(cid:5)(cid:6) (cid:2)(cid:3)(cid:25)(cid:26)(cid:5) (cid:10)(cid:4)(cid:11) T(cid:5) W(cid:5) Hungerford(cid:6) Algebra(cid:6) Springer Verlag(cid:6) (cid:2)(cid:3)(cid:4)(cid:26)(cid:5) (cid:10)(cid:3)(cid:11) N(cid:5) Jacobson(cid:6) Basic Algebra I and II(cid:6) (cid:16)Second Edition(cid:6) (cid:12) vols(cid:17)(cid:6) W(cid:5) H(cid:5) Freeman and Company(cid:6) (cid:2)(cid:3)(cid:4)(cid:3)(cid:5) (cid:10)(cid:2)(cid:26)(cid:11) S(cid:5) Lang(cid:6) Algebra(cid:6) Addison(cid:7)Wesley(cid:6) (cid:16)Third Edition(cid:17)(cid:6) (cid:2)(cid:3)(cid:3)(cid:12)(cid:5) v vi BIBLIOGRAPHY Contents Preface iii (cid:2) Binary Operations (cid:2) (cid:3) Introduction to Groups (cid:4) (cid:5) The Symmetric Groups (cid:2)(cid:6) (cid:7) Subgroups (cid:5)(cid:2) (cid:8) The Group of Units of Zn (cid:5)(cid:6) (cid:9) Direct Products of Groups (cid:5)(cid:4) (cid:6) Isomorphism of Groups (cid:7)(cid:2) (cid:10) Cosets and Lagrange(cid:11)s Theorem (cid:7)(cid:4) (cid:4) Introduction to Ring Theory (cid:8)(cid:8) (cid:2)(cid:12) Axiomatic Treatment of R(cid:13) N(cid:13) Z(cid:13) Q and C (cid:9)(cid:2) (cid:2)(cid:2) The Quaternions (cid:6)(cid:2) (cid:2)(cid:3) The Circle Group (cid:6)(cid:8) A Some Rules of Logic (cid:10)(cid:2) B Functions (cid:10)(cid:8) vii viii CONTENTS C Elementary Number Theory (cid:10)(cid:4) D Partitions and Equivalence Relations (cid:4)(cid:5) Chapter (cid:2) Binary Operations The most basic de(cid:9)nition in this course is the following(cid:19) De(cid:14)nition (cid:2)(cid:15)(cid:2) A binary operation on a set S is a function from S S (cid:2) (cid:3) to S(cid:2) If (cid:16)a(cid:2)b(cid:17) S S then we write a b to indicate the image of the element (cid:4) (cid:3) (cid:2) (cid:16)a(cid:2)b(cid:17) under the function (cid:2) (cid:2) The following lemma explains in more detail exactly what this de(cid:9)nition means(cid:5) Lemma (cid:2)(cid:15)(cid:2) A binary operation on a set S is a rule for combining two (cid:2) elements of S to produce a third element of S(cid:2) This rule must satisfy the following conditions(cid:3) (cid:16)a(cid:17) a S and b S (cid:27) a b S(cid:2) (cid:10)S is closed under (cid:5)(cid:11) (cid:4) (cid:4) (cid:5) (cid:2) (cid:4) (cid:2) (cid:16)b(cid:17) For all a(cid:2)b(cid:2)c(cid:2)d in S a (cid:27) c and b (cid:27) d (cid:27) a b (cid:27) c d(cid:3) (cid:10)Substitution is permissible(cid:5)(cid:11) (cid:5) (cid:2) (cid:2) (cid:16)c(cid:17) For all a(cid:2)b(cid:2)c(cid:2)d in S a (cid:27) b (cid:27) a c (cid:27) b c(cid:2) (cid:5) (cid:2) (cid:2) (cid:16)d(cid:17) For all a(cid:2)b(cid:2)c(cid:2)d in S c (cid:27) d (cid:27) a c (cid:27) a d(cid:2) (cid:5) (cid:2) (cid:2) Proof Recall that a function f from set A to set B is a rule which assigns to each element x A an element(cid:6) usually denoted by f(cid:16)x(cid:17)(cid:6) in the set B(cid:5) (cid:4) Moreover(cid:6) this rule must satisfy the condition x (cid:27) y (cid:27) f(cid:16)x(cid:17) (cid:27) f(cid:16)y(cid:17) (cid:16)(cid:2)(cid:5)(cid:2)(cid:17) (cid:5) (cid:2) (cid:12) CHAPTER (cid:2)(cid:3) BINARY OPERATIONS On the other hand(cid:6) the Cartesian product S S consists of the set of all (cid:3) ordered pairs (cid:16)a(cid:2)b(cid:17) where a(cid:2)b S(cid:5) Equality of ordered pairs is de(cid:9)ned by (cid:4) the rule a (cid:27) c and b (cid:27) d (cid:16)a(cid:2)b(cid:17) (cid:27) (cid:16)c(cid:2)d(cid:17)(cid:3) (cid:16)(cid:2)(cid:5)(cid:12)(cid:17) (cid:6)(cid:5) Now in this case we assume that is a function from the set S S to the (cid:2) (cid:3) set S and instead of writing (cid:16)a(cid:2)b(cid:17) we write a b(cid:5) Now(cid:6) if a(cid:2)b S then (cid:2) (cid:2) (cid:4) (cid:16)a(cid:2)b(cid:17) S S(cid:5) So the rule assigns to (cid:16)a(cid:2)b(cid:17) the element a b S(cid:5) This (cid:4) (cid:3) (cid:2) (cid:2) (cid:4) establishes (cid:16)a(cid:17)(cid:5) Now implication (cid:16)(cid:2)(cid:5)(cid:2)(cid:17) becomes (cid:16)a(cid:2)b(cid:17) (cid:27) (cid:16)c(cid:2)d(cid:17) (cid:27) a b (cid:27) c d(cid:3) (cid:16)(cid:2)(cid:5)(cid:24)(cid:17) (cid:5) (cid:2) (cid:2) From (cid:16)(cid:2)(cid:5)(cid:12)(cid:17) and (cid:16)(cid:2)(cid:5)(cid:24)(cid:17) we obtain a (cid:27) c and b (cid:27) d (cid:27) a b (cid:27) c d(cid:3) (cid:16)(cid:2)(cid:5)(cid:23)(cid:17) (cid:5) (cid:2) (cid:2) This establishes (cid:16)b(cid:17)(cid:5) To prove (cid:16)c(cid:17) we assume that a (cid:27) b(cid:5) By re(cid:28)exivity of equality(cid:6) we have for all c S that c (cid:27) c(cid:5) Thus we have a (cid:27) b and c (cid:27) c and it follows from (cid:4) part (cid:16)b(cid:17) that a c (cid:27) b c(cid:6) as desired(cid:5) The proof of (cid:16)d(cid:17) is similar(cid:5) (cid:2) (cid:2) Remarks In part (cid:16)a(cid:17) the order of a and b is important(cid:5) We do not assume that a b is the same as b a(cid:5) Although sometimes it may be true (cid:2) (cid:2) that a b (cid:27) b a(cid:6) it is not part of the de(cid:9)nition of binary operation(cid:5) (cid:2) (cid:2) Statement (cid:16)b(cid:17) says that if a (cid:27) c and b (cid:27) d(cid:6) we can substitute c for a and d for b in the expression a b and we obtainthe expression c d which is equal (cid:2) (cid:2) to a b(cid:5) One might not think that such a natural statement is necessary(cid:5) To (cid:2) see the need for it(cid:6) see Problem (cid:2)(cid:5)(cid:25) below(cid:5) Part (cid:16)c(cid:17) of the above lemma says that we can multiply both sides of an equation on the right by the the same element(cid:2) Part (cid:16)d(cid:17)(cid:6) says that we can multiply both sides of an equation on the left by the same element(cid:5) Binary operations are usually denoted by symbols such as (cid:29)(cid:2) (cid:2) (cid:2) (cid:2) (cid:2)(cid:4)(cid:2) (cid:2) (cid:2)(cid:0)(cid:2)(cid:2)(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:7) (cid:2) (cid:3) (cid:8) (cid:9) (cid:10) (cid:11) (cid:12) (cid:13) (cid:14) (cid:15) (cid:16) (cid:17) (cid:7)(cid:7)(cid:7) Just as one often uses f for a generic function(cid:6) we use to indicate a generic (cid:2) binary operation(cid:5) Moreover(cid:6) if (cid:19) S S S is a given binary operation on (cid:2) (cid:3) (cid:18)

Description:
Dec 23, 2001 readable by the beginner, some will be quite advanced and will be . elements of S to produce a third element of S. This rule must satisfy the.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.