ebook img

Element spots in Ap- and HgMn-stars from current-driven diffusion PDF

0.09 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Element spots in Ap- and HgMn-stars from current-driven diffusion

Astron.Nachr./AN325(2004)x,xxx–xxx Element spots in Ap and Hg-Mn stars from current-driven diffusion V. URPIN1,2 1)INAF,OsservatorioAstrofisicodiCatania,ViaS.Sofia78,95123Catania,Italy 2)A.F.IoffeInstituteofPhysicsandTechnology,194021St.Petersburg,Russia 6 1 0 January26,2016 2 n a J Abstract.Thestarsofthemiddlemainsequenceoftenhavespot-likechemicalstructuresattheirsurfaces.Weconsiderthe 5 2 diffusionprocesscausedbyelectriccurrentsthatcanleadtotheformationofsuchchemicalspots.Diffusionwasconsidered using partial momentum equations derived by the Chapman-Enskog method. We argue that diffusion caused by electric ] R currents can substantially change the surface chemistry of stars and form spotted chemical structures even in a relatively S weakmagneticfield.TheconsideredmechanismcanberesponsibleforaformationofelementspotsinHg-MnandAp-stars. . h (cid:13)c0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim p - o r 1. Introduction cientlystrongtomagnetizeplasmaandmakediffusionanisotropic. t s AnisotropyofdiffusionischaracterizedbytheHallparame- a Diffusion can lead to evolutionof atmosphericchemistry in ter,x =ω τ ,whereω = eB/m cisthegyrofrequency [ Be e Be e starsandbethereasonofchemicalpeculiarities.Thispartic- ofelectronsandτeistheirrelaxationtime.Ifthebackground 1 ularlyconcernsthestarsofthemiddlemainsequencethatof- plasmais hydrogen,thenτe = 3√me(kbT)3/2/4√2πe4nΛ v tenhaverelativelyquiescentsurfacelayers.Manystarswith (see,e.g.,Spitzer1998)wherenandT arethenumberden- 6 peculiarchemicalabundancesshowlinevariationscausedby sityofelectronsandtheirtemperature,ΛistheCoulomblog- 9 elementspotsontheirsurface(see,e.g.,Pyper1969,Khokhlovaarithm.If x 1, theratesof diffusionalongandacrossthe 5 ≥ 6 1985,Silvesteretal.2012).Itwasthoughtthatchemicalspots magneticfieldaredifferentanddiffusioncanleadtoinhomo- 0 canonlyoccurinthepresenceofastrongmagneticfield.In- geneous element distributions. The condition x 1 yields 1. deed, some Ap stars show variations of both spectral lines thefollowingestimate ofthemagneticfieldthatm≥agnetizes 0 and magnetic field strength that can be related to rotation plasma 6 of chemical and magnetic spots. Often such stars have the 1 strongest concentration of heavy elements around the mag- B ≥Be =2.1×103n15T4−3/2Λ10 G, (1) v: netic poles(see, e.g.,Havnes1975).Note thata reconstruc- where Λ10 = Λ/10, n15 = n/1015, and T4 = T/104K. i tion ofthe stellar magneticgeometryfromobservationsisa Somestarswithchemicalspotshavesuchastrongmagnetic X verycomplexproblem.ThemagneticDopplerimagingcode fieldanddiffusioncanbeanisotropicthere. r a developed by Piskunov & Kochukhov(2002) makes it pos- In recent years, however, the discovery of chemical in- sible to derive the magnetic map of a star self-consistently homogeneitiesin the so-called Hg-Mn stars has rised some with the distribution of the chemical elements. The recon- doubts regarding their magnetic origin. The aspect of spot- structionsshowthatthemagneticandchemicalmapsofstars likechemicalstructuresinHgMnstarswasdiscussedfirstby can be very complex (Kochukhovet al. 2004a) and usually Hubrig& Mathys(1995).In contrastto Ap-stars, no strong chemicalelementsdonotexhibitacorrelationwiththemag- madneticfield of kG orderhaseverbeen detectedin HgMn neticgeometry.Thecalculateddistributionsdemonstratethe stars. For instance, Wade et al. (2004) find no longitudinal complexity of diffusion in Ap-stars and show that chemical fieldabove50GinthebrightestHg-MnstarαAndwithchem- distributionsare affected by a numberof poorlyunderstood icalspotsatthesurface.Theauthorsestablishanupperlimit phenomenaandarenotdirectlyrelatedtothestrengthofthe of the globalfield at 300 G that is not sufficient to mag- ≈ magneticfield. netize plasma. Weak magnetic fields in the atmospheres of Often, the chemical spots on the surface of stars are re- Hg-Mnstarshavebeendetectedbyanumberofauthors(see, lated to anisotropic diffusion in the magnetic field. Indeed, e.g.,Hubrig&Castelli2001,Hubrigetal.2006,Makaganiuk the magnetic field of Ap-stars (B 103 104 G) is suffi- etal.2011,2012).InarecentstudybyHubrigetal.(2012), ∼ − (cid:13)c0000WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 1 thepreviousmeasumentsofthemagneticfieldhavebeenre- velocity is zero and only small diffusive velocities are non- analysed and the presence of a weak longitudinal magnetic vanishing, the partial momentum equation for the species i fieldupto60-80GhavebeenrevealedinseveralHgMnstars. canbewrittenas The complex interrelations between the magnetic field and V the chemical structures show how incomplete is our under- pi+Zieni E+ i B +Rie+RiH+Fi =0,(5) −∇ (cid:18) c × (cid:19) standingofdiffusionprocessesinstars. whereZ isthechargenumberofthespeciesi,p ,andn are Inthispaper,weconsideronemorediffusionmechanism i i i itspartialpressureandnumberdensity,V isitsvelocity,and thatcontributestoaformationofchemicalspotsinstars.This i E isthe electric field. TheforceF is the externalforceon mechanism is relevant to electric currents and has not been i speciesi;instars,F isusuallydeterminedbygravitygand studiedinstellarconditionsyet.Weconcentrateonthemain i theradiationforce.TheforcesR andR arecausedbythe qualitativefeaturesofthisprocessandcomparethediffusion ie iH interactionofionsiwithelectronsandprotons,respectively. rate caused by the presence of electric currentsand the rate NotethatforcesR andR areinternalandtheirsumover ofotherdiffusionprocesses.Weshowthatinteractionofthe ie iH allplasmacomponentsis zeroinaccordancewithNewton’s electric current with ions leads to diffusion in the direction third law. Since diffusive velocities are typically small, we perpendiculartothebothelectriccurrentandmagneticfield. Suchdiffusioncanalterthesurfacechemicaldistributionsat neglectthetermsproportional(Vi·∇)V1inthemomentum equation(5). asubstantiallyweakermagneticfieldthanB . e Thes-andϕ-componentsofEq.(5)yield d V 2. Basicequations (nikBT)+Zieni Es+ iϕB +Ries+RiHs =0,(6) − ds (cid:18) c (cid:19) V Consider a cylindrical plasma configuration with the mag- Z en E isB +R +R =0.(7) i i ϕ ieϕ iHϕ (cid:18) − c (cid:19) netic field parallel to the axis z, B = Be ; (s,ϕ,z) and z (es,eϕ,ez) are cylindrical coordinatesand the correspond- TheforceRie iscausedbyscatteringofionsionelectrons. ingunitvectors.We assumethatthemagneticfielddepends Ifniissmallcomparedtothenumberdensityofprotons,Rie onthecylindricalradiusalone,B =B(s).Then,theelectric isgivenby currentis Z2n R = i iR (8) ie e j = (c/4π)∂B/∂s. (2) − n ϕ − where R is the force acting on the electron gas (see, e.g., e Wesupposethatjϕ 0atlargesand,hence,B B0=const Urpin1981).Sincen n,R isdeterminedmainlybyscat- → → i e at s . Note that B(s) can not be an arbitrary func- ≪ tering of electrons on protonsbut scattering on ions i gives → ∞ tionofsbecause,generally,themagneticconfigurationscan a small contribution. Therefore, we can use for R the ex- e be unstable for some dependences of B(s) on s (see, e.g., pression for one componenthydrogenplasma calculated by Tayler1973,Bonanno&Urpin2008a,bformoredetail).The Braginskii(1965).Inourmodelofacylindricalplasmacon- timescale of this instability is usually shorter than the diffi- figuration,thisexpressionreads siontimescaleand,therefore,aformationofchemicalstruc- turesinsuchmagneticconfigurationsisunlikely. Re =−α⊥u+α∧b×u−β⊥uT∇T −β∧uTb×∇T, (9) Weassumethatplasmaconsistsofelectronse,protonsp, whereu= j/enisthedifferencebetweenthemeanveloc- − andasmalladmixtureofheavyionsi.Thenumberdensityof itiesofelectronsandprotons,b = B/B,α ,α ,βuT,and ⊥ ∧ ⊥ speciesiissuchsmallthatitdoesnotinfluencedynamicsof βuT arecoefficientscalculatedbyBraginskii(1965).Thefirst ∧ plasma.Therefore,thisspeciescanbetreatedastestparticles twotermsonther.h.s.ofEq.(9)describethestandardfriction that interacts only with electrons and backgroundhydrogen forcecausedbya relativemotionofthe electronandproton plasma.Thehydrostaticequilibriumreads gases.Thelasttwotermsonther.h.s.ofEq.(9)representthe so-calledthermoforcecausedbyatemperaturegradient.This 1 p+ρg+ j B =0, (3) partofR isresponsibleforthermodiffusion. −∇ c × e TakingintoaccountEq.(2),wehave wherepandρarethepressureanddensity,respectively,g = c dB gez is gravity. Since the backgroundplasma is hydrogen, u= e . (10) −p 2nk T wherek istheBoltzmannconstant.Integrating 4πen ds ϕ B b ≈ thes-componentofEq.(3),weobtain Inthispaper,weconsiderdiffusiononlyinarelativelyweak magnetic field that does not magnetize electrons, x 1. n=n0 T0 1+ 1 1 , (4) Substituting Eq.(10) into Eq.(8) and using coefficient≪s α⊥, (cid:18)T (cid:19)(cid:18) β0 − β(cid:19) α ,βuT,andβuT withtheaccuracyinlineartermsinx,we ∧ ⊥ ∧ whereβ =8πp0/B2;(p0,n0,T0,β0)arethevaluesof(p,n,T,βo)btain atsT→he∞pa.rtial momentumequationsin fully ionized multi- Rieϕ =Zi2ni(cid:18)0.51mτeeu+0.81xkBddTs(cid:19), (11) componentplasma has been consideredby a numberof au- m dT R =Z2n 0.21x eu+0.71k . (12) thors (see, e.g., Urpin (1981)). If the mean hydrodynamic ies i i(cid:18) τ B ds(cid:19) e 2 TheforceR is thesum oftwo termsaswell, R = where c2 = k T/m and c2 = B2/4πm n. Eq.(22) de- ′ ′′ iH iH i B i A p R +R that are proportionalto the relative velocityof scribes the drift of ions i under the combined influence of iH iH ionsiandprotonsandthetemperaturegradient,respectively. n , T,andj. i ′ ∇ ∇ ThefrictionforceR canbeeasilycalculatedifA =m /m ′ iH i i p ≫ 1. Inthiscase, R (V V )buttakingintoaccount iH ∝ H − i that the mean velocity of the background plasma is zero in ThediffusivevelocitygivenbyEq.(22)differsfromthe ourmodel,thefrictionforcecanberepresentedas(see,e.g., standard expression used in astrophysical calculations (see, Urpin1981) e.g.,Chapman&Cowling1970,Burgers1969)bythepres- R′iH ≈ 0.42mτiniZi2(−Vi), (13) ethnactethoifsatetremrmis∝caduBse/ddbs.yIstcfaotltleorwinsgforofmheoavuyr cioonnssidoenraetlieocn- i where τ = 3√m (k T)3/2/4√2πe4nΛ and τ /Z2 is the trons. The classical works by Chapman & Cowling (1970) i i B i i and Burgers (1969) derive the atomic diffusion coefficients timescaleofion-protonscattering;weassumethatCoulomb from the Boltzmann equation but these coefficients are bet- logarithmsarethesameforalltypesofscattering. ′′ tersuitedtodiffusioninneutralgasesorplasmawithalarge Thethermalpartofthefrictionforce,R ,hasbeencal- iH chargeof the backgroundions. The pointis thatthese stud- culated by Urpin (1981). Since there is no diffusion in the ′′ ies neglect scattering of impurities on electrons in plasma, z-direction, the expression for R with accuracy in linear iH andtakeintoaccounttheirscatteringonlyonthebackground termsinmagnetizationcanbewrittenas ions. The latter is correct if the charge of backgroundions, R′′ =Z2n k (1.71 T 3.43yb T), (14) iH i i B ∇ − ×∇ Z0, is large,Z0 1. In stellar plasmas, however,the main ≫ where background ions are usually protons and, hence, Z0 = 1. y = eBτp, τ = 3√mp(kBT)3/2. (15) Therefore, neglecting the contribution of electrons into ki- mpc p 4√2πe4nΛ neticprocessesisunjustified.Thisfactwasfirstclearlyunder- stoodbyBraginskii(1965)inhistheoryoftransportphenom- ′′ Then,thecylindricalcomponentsofR are iH enainahigh-temperatureplasma.Thisresultcanbeclarified R =Z2n miV +1.71k dT , (16) by simple qualitative estimates. Indeed, the momentum of iHs i i(cid:18)− τ is B ds(cid:19) electronsis m c (c = k T/m isthethermalvelocity i e e e B e ∼ m dT ofelectrons),andtherateopfmomentumtransferbyelectrons RiHϕ =Zi2ni(cid:18)− τiiViϕ−3.43ykB ds(cid:19). (17) to impurities is ∼ meceνe ∼ mece/τe where νe is the fre- quencyofelectroncollisions.Ontheotherhand,themomen- The momentun equation for the species i (Eq.(5)) de- tumofprotonsis m c wherec = k T/m isthether- pendsoncylindricalcomponentsoftheelectricfield,Esand malvelocityofpr∼otonpsapnd,correpsponpdinBgly,theprateofmo- E .Thesecomponentscanbedeterminedfromthemomen- ϕ mentumtransferbyprotonsis m c ν m c /τ where tumequationsofelectronsandprotons ∼ p p p ∼ p p p ν is the frequency of proton collisions. Comparing these u p (nk T) en E+ B +R =0, (18) expressions, we obtain that the rates of momentum transfer B e −∇ − (cid:16) c × (cid:17) by electrons and protons are of the same order and, hence, (nk T)+enE R +F =0. (19) −∇ B − e p neglecting the electron contribution is unjustified in plasma Taking into account the condition (3) and the friction force withZ0 1.However,ifthebackgroundplasmaconsistsof Re (Eq.(9))calculatedbyBraginskii(1965),weobtainwith ionswith∼thechargeZ0 1,thenoneshouldreplaceτp by accuracyinlineartermsinx therelaxationtimeofthe≫backgroundionsthatis τ /Z4.In p 0 ∼ uB 1 m u dT thiscase,therateofmomentumtransferbyionsturnsoutto E = 0.21 e x+0.71k , (20) s − 2c − e (cid:18) τe B ds(cid:19) be∼ Z04 timesgreaterthanthatbyelectrons.IfZ0 ≫1,the electron contribution is small and can be neglected. There- 1 m u dT Eϕ = 0.51 e +0.81xkB . (21) fore,theclassicaldiffusiontheoryisjustifiedinthiscase. −e (cid:18) τ ds(cid:19) e Substituting Eqs.(11)-(12), (16)-(17), and (20)-(21) into Eqs.(6) and (7), we arrive at the expression for a diffusion velocity,V .Theradialcomponentofthisvelocityreads The fact that the consistent consideration of scattering i on electrons leads to diffusion of heavy ions with the ve- V =V +V +V , (22) is ni T B locity dB/ds is well known in plasma physics and was where firstdis∝cussedbyVekshteinetal.(1975).Thisprocessplays dlnn dlnT dlnB V = D i, V =D , V =D ;(23) an important role in diffusion of impurities from the walls ni − ds T T ds B B ds ofthedischargechamberanddiaphragmsinadenseplasma Vni andVT arethevelocitiesofordinarydiffusionandther- in tokamaks (see, e.g., Vekshtein 1987 for review). Even a modiffusion,respectively,VB isthediffusivevelocityassoci- smallfractionofimpurityionscanconsiderablyaffectthera- atedwiththeelectriccurrent.Thediffusioncoefficientsare diation, electrical conductivity,and other plasma parameter. D = 2.4c2iτi, D = 2,4c2iτi(2.42Z2 0.71Z 1), Unfortunaly,thiseffectisusuallyneglectedinstudiesofdif- Z2 T Z2 i − i− fusioninstarsbutwewillshowthatitcanplayanimportant i i 2.4c2τ role in a spot formation, particularly,in weakly magnetized D = A i(0.21Z 0.71),(24) B i stars. A Z − i i 3 3. Distributionofions inthepresence of spotwherethemagneticfieldisweakerthantheexternalfield electric currents B0. The quantity (µ 1) can reach large negative values − and,therefore,dependence(31)onthemagneticfieldisvery Considertheequilibriumdistributionofelementsinourmodel. sharp. A combined influence of both thermo- and current- Inequilibrium,wehaveV =0andEq.(22)yields drivendiffusioncanresultinarathercomplicateddistribution is ofelements. dlnn D dlnT D dlnB i = T + B . (25) ds D ds D ds The second term on the r.h.s. is caused by the presence of 4. Conclusion electric currents and describes the current-driven diffusion. Note thatthistype ofdiffusionis drivenby theelectric cur- Wehaveconsidereddiffusionofelementsinthesurfacelay- rentratherthananinhomogeneityofthemagneticfield.Oca- ers of stars under a combined influence of different diffu- sionally,theconditionsdB/ds=0andj =0areequivalent sionmechanisms.Aspecialattentionwaspaidtothecurrent- 6 6 inoursimplifiedmodel.Equationofhydrostaticequilibrium drivendiffusionthathasnotbeendiscussedyetinthecontext (3)yields ofchemicalspotsonstars. Thediffusionvelocitycausedby d B dB electriccurrentcanbecomparableorhigherthanthevelocity (nkBT)= . (26) ofthermodiffusion.Forinstance,ifelectronsarenotmagne- ds −8π ds tized (x < 1) the velocities of thermo- and current-driven Substitutingexpression(26)intoEq.(25)andintegrating,we diffusionscanbeestimatedas obtain ni = T ν n µ, (27) VT ∼ 5Lc2iτi, VB ∼ Ac2ALτi , (32) ni0 (cid:18)T0(cid:19) (cid:18)n0(cid:19) whereL TandL arethielBengthscalesofT andB.Thecon- T B where dition V > V is satisfied if c 2c A1/2(L /L )1/2 ν =2Zi2+0.71Zi−1, or B T A ≫ i i B T µ=−2Zi(0.21Zi−0.71), (28) B >2.6 102n1/2T1/2 LB 1/2 G, (33) where ni0 is the value of ni at s . Denoting the local × 15 4 (cid:18)LT(cid:19) → ∞ abundance of the element i as γi = ni/n and taking into where n15 = n/1015cm−3 and T4 = T/104K. It appears accountEq.(4),wehave that even a relatively weak magnetic field ( 10 100 G) ∼ − ν µ−1 ν−µ+1 µ−1 canbethereasonofcurrent-drivendiffusionwiththevelocity γ T n T 1 1 i = = 1+ ,(29) greaterthanthatofthermodiffusion.FromEq.(32),onecan γi0 (cid:18)T0(cid:19)(cid:18)n0(cid:19) (cid:18)T0(cid:19) (cid:18) β0 − β(cid:19) estimatethevelocityofcurrent-drivendiffusionas owfhieornesγiis0d=eternmi0i/nned0.bIytbtuortnhsthoeuttetmhaptetrhaetulroecaanldabmuangdnaentcice VB ∼1.1×10−4Ai−1/2B42n−152T43/2Λ10L−B110 cm/s, (34) field. The dependence of γi on T is very sensitive to the whereΛ10 =Λ/10,B4 =B/104G,andLB10 =LB/1010cm. charge number of ions. For example, if Zi = 1, the expo- ThevelocityVB turnsouttobesensitivetothefield(∝ B2) nentinEq.(29)isν µ+1 = 1.71butitisaslargeas8.26 and,therefore,diffusionin a weakmagneticfield requiresa − ifZ =2.Therefore,evenasmallchangeinthetemperature longertimetoreachequilibrium. i canbethereasonofasignificantvariationinthelocalabun- Theconsideredmechanismcanformchemicalspotseven danceofchemicalelements.Ifthemagneticfieldisconstant if the magnetic field is relatively weak whereas other diffu- thenabundanceanomaliesaredeterminedbythethermodif- sion processes produce spots only if the magnetic field is fusionalone.Inthiscase,wehave substantially stronger. For example, the radiative force and γ T 2.42Zi2−0.71Zi gravity can generally be responsible for chemical inhomo- i = . (30) geneities in stars (see, e.g., Vauclair et al. 1979, Michaud γi0 (cid:18)T0(cid:19) et al. 1981). The radial diffusion velocity driven by these Therefore, the regions with a higher temperature, T > T0, forcescanberelativelylarge,andthedistributionofimpuri- should be overabundant by heavy elements but the regions tiesreachesaradialequilibriumonashorttimescale(Michaud withalowertemperatureshouldbeunderabundant. 1970).Iftheradiativeandgravitationalforcesareofthesame Local abundances are also flexible to the field strength orderofmagnitudethenthevelocityofradialdiffusioncanbe and,particularly,thisconcernsveryheavyions.Ifvariations estimatedas ofthetemperatureareneglidgibleandT T0,thenthedis- V gτ (35) ≈ r i tributionofelementsisdeterminedbythecurrent-drivendif- ∼ (see Vauclair et al. 1979). This velocity is typically greater fusionalone.Inthiscase, than V in the surface layers of stars but the radial diffu- γi = 1+ 1 1 µ−1. (31) sioncaBnnotformchemicalspotsif theradiativeforceandg γi0 (cid:18) β0 − β(cid:19) havesphericalsymmetry.Departuresfromsphericitycanbe Notethattheexponent(µ 1)isalwaysnegativeifZ 3 causedbythemagneticfieldsincethediffusionvelocityde- i and,hence,heavyelement−swithZ 3areindeficit(γ≥< pends on its direction and strength. For instance, the radial i i γi0)intheregionwithaweakmagne≥ticfield(B > B0)but, diffusionvelocitiesdifferbyatermoftheorderof onthecontrary,suchelementsshouldbeoverabundantinthe ∆V V (ω τ /Z2)2 (36) ∼ r Bi i i 4 ifthemagneticfieldisparallelandperpendiculartogravity; Acknowledgements.TheauthorthankstheRussianAcademy ω =eB/m cisthegyrofrequencyofimpurities(see,e.g., ofSciencesforfinancialsupportundertheprogrammeOFN- Bi i Vauclair et al. 1979, Alecian & Stift 2006). This difference 15. in the radial velocities rather than V itself leads to forma- r tionofaspottedstructurebecausespotscannotbeformedif References ∆V = 0.Usually,∆V ismuchsmallerthanV formoreor r less realistic stellar magneticfields. For example,using cal- Alecian,G.,&Stift,M.J.2006.A&A,454,571 culationsofVauclairetal.(1979),onecanestimatethat∆V Bonanno,A.,Urpin,V.,Belvedere,G.2005.A&A,440,199 iscomparabletoVr ifB 3 104and 105Gattheoptical Bonanno,A.,Urpin,V.,Belvedere,G.2005.A&A,440,199 ∼ · ∼ depth 1 and 10, respectively. These fields are even stronger Bonanno,A.,Urpin,V.2008a.A&A,477,35 than those detected in Ap-stars. In the case of Hg-Mnstars, Bonanno,A.,Urpin,V.2008b.A&A,488,1 Braginskii, S. 1965. In “Reviews of Plasma Physics” (Ed. themagneticfieldislikelyasweakas10-100Gand,hence, ∆V is typically 108 106 times smaller than V . Since M.Leontovich),vol.1,p.205,ConsultantsBureau,NewYork ∼ − r Brown,E.,Bildsten,L.,&Chang,P.2002.ApJ,574,920 ∆V turnsouttobesmall,thevelocityofcurrent-drivendif- Burgers, J.M. 1969. “Flow Equations for Composite Gases”, New fusion can play an importantrole in real stars. The velocity York:AcademicPress VB exceeds∆V iftheelectriccurrentsatisfiestheinequality Chang,P.,Bildsten,L.2004.ApJ,605,830 Chapman,S.,&Cowling,T.G.1970.“TheMathematicalTheoryof c2 j/(cB/4πH)>A s(ω τ /Z2)2. (37) Non-UniformGases”,Cambridge:CambridgeUniversityPress ic2 Bi i i Havnes,O.1975.A&A,38,105 A Hubrig,S.,Mathys,G.1995.Com.Ap.,18,167 Theparameterω τ issmallinstarsandbecomesgreaterthan i i Hubrig,S.,Castelli,F.2001.A&A,375,963 1if Hubrig, S., North, P., Scho¨ller, M., & Mathys, G. 2006. Astron. B >105n15T4−3/2Λ10 G. (38) HubNriga,chSr..,,G32o7n,sa2l8e9s,J.,Ilyin,etal.2012.A&A,547,A90 Therefore,the current-drivendiffusioncan dominatethe ra- Khokhlova,V.1985.Sov.Sci.Rev.(Sec.E:AstrophysicsandSpace Phys.Reviews),v.4,pp.99-159 diativediffusionevenatarelativelysmallcurrent. Kochukhov,O.2004.IAUSymposium,224,433 The current-drivenmechanismleadsto a driftof ionsin Kochukhov,O.,Bagmulo,S.,Wide,G.,etal.2004.A&A,414,613 the direction perpendicular to both the magnetic field and Makaganiuk, V., Kochukhov, O., Piskunov, N., Jeffers, S., Johns- electriccurrent.Therefore,adistributionofchemicalelements Krull,C.,Keller,C.,Rodenhuis,M.,Snik,F.,Stempels,H.,& instarsdependsessentiallyonthegeometryoffieldsandcur- Valenti,J.2011.A&A,529,A160 rents. In the regionswhere tangentialto the surfacecompo- Makaganiuk, V., Kochukhov, O., Piskunov, N., Jeffers, S., Johns- nentsofthebothmagneticfieldandcurrentaregreaterthan Krull,C.,Keller,C.,Rodenhuis,M.,Snik,F.,Stempels,H.,& Valenti,J.2012.A&A,539,A142 normalones,theconsideredmechanismmayleadtothever- Medin,Z.,&Cumming,A.2014.ApJ,783,3 tical drift of heavy ions. As a result, surface layers can be Michaud,G.1970.ApJ,160,641 overabundant (or underabundant) by heavy element. In the Michaud,G.,Megessier,C.,&Charland.1981.A&A,103,244 regionswherethefieldisapproximatelyperpendiculartothe Piskunov,N.&Kochukhov,O.2002.A&A,381,736 surface but the currentis tangentialor the currentis normal Pyper,D.1969.ApJS,164,347 but the field is tangential, heavy ions drift basically in the Silvester,J.,Wade,G.A.,Kochukhov,O.,Bagnulo,S.,Folsom,C.P., tangentialdirectionandcanformchemicalspots. Hanes,D.2012.MNRAS,426,1003 Spitzer L. 1998. Physical Processes in the Interstellar Medium. Themechanismconsideredcanoperateinvariousastro- Wiley-VCH physicalbodieswheretheelectriccurrentsarenon-vanishing. Tayler,R.J.1973.MNRAS,161,365 Like other diffusion processes, the current-driven diffusion Urpin,V.1981.Ap&SS,79,11 canleadtoaformationofchemicalspotsifthestarhasrela- Urpin,V.,Geppert,U.,&Konenkov,D.1998.MNRAS,295,907 tivelyquiescentsurfacelayers.Thatisthecase,forexample, Vauclair,S.,Hardorp,J.,&Peterson,D.1979.ApJ,227,526 forwhitedwarfsandneutronstars.Manyneutronstarshave Vekshtein,G.,Riutov,D.,&Chebotaev,P.1975.SvJPP,1,220 Wade, G., Abecassis, M., Auriere, M., et al. 2004, in “Magnetic strong magnetic fields and, most likely, topology of these Stars”(eds.Yu.Glagolevskij,D.Kudryavtsev,andI.Romanyuk), fieldsisverycomplexwithspot-likestructuresatthesurface p.108-113. (see,e.g.,Bonannoetal.2005,2006).Asitwasdiscussedin this paper, such magnetic structures can be responsible for the formation of a spot-like element distribution at the sur- face.Suchchemicalstructurescanbeimportant,forinstance, fortheemissionspectra,diffusivenuclearburning(Chang& Bildsten2004,Brownetal.2002),etc.Evolutionofneutron starsisverycomplicated,particularly,inbinarysystems(see, e.g., Urpin et al. 1998) and, as a result, a surface chemistry canbecomplicatedaswell.Diffusionprocessesmayplayan importantroleinthischemistry(see,e.g.,Brownetal.2002, Medin&Cumming2014)andcanbethereasonofchemical sportsonthesurfaceofthesestars.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.