ebook img

Electroweak Symmetry Breaking Beyond the Standard Model PDF

0.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electroweak Symmetry Breaking Beyond the Standard Model

SINP/TNP/2012/02 Electroweak Symmetry Breaking Beyond the Standard Model 1 GautamBhattacharyya SahaInstituteofNuclearPhysics,1/AFBidhanNagar,Kolkata700064,India Abstract 2 1 Inthistalk,Ishalladdresstwokeyissuesrelatedtoelectroweaksymmetrybreaking. First,howfine-tuneddifferent 0 models are that trigger this phenomenon? Second, even if a light Higgs boson exists, does it have to be necessarily 2 elementary? Afterabriefintroduction, Ishallfirstreviewthefine-tuningaspectsoftheMSSM,NMSSM,generalized n NMSSMandGMSBscenarios. IshallthencompareandcontrastthelittleHiggs, compositeHiggsandtheHiggsless a J models.Finally,Ishallsummarizebygivingabroadoverviewonwherewestandattheendof2011. 6 ] h I Introduction p - p e The timing of the last ‘Lepton-PhotonConference’ (Au- h gust 2011) was very special! Every day the LHC was [ S delivering more data than it did during the entire 2010. 1 The time for ‘speculation’ was soon coming to an end! f v 3 Ourimaginationaboutthepossibledynamicsbehindelec- H H 0 troweak symmetry breaking (EWSB), disciplined by the + λ y S 4 constraintsfromelectroweakprecisiontests(EWPT),has f 1 fueleddifferentdirectionsoftheoreticalstudiesandexper- . 1 imentalsearchesoverthelastsomanyyears. Finally,the Figure 1: Cancellation of quadratic divergence to scalar mass- 0 LHC has roared into life, and this is our last chance of squarebetweenfermionandbosonloops. 2 1 putting moneyon our favorite models. It is in this back- : drop that I have prepared a write-up of my talk, being v i aware that even during the last few months since Lepton-Photonthe excluded territory for different Beyond the Stan- X dardModel(BSM)alternativeshasfurthergrowninsize. r a Now, to the point. We know that the SM Higgs mechanism is only an effective description of EWSB. Can LHC shed enoughlightonthe dynamicsbehindthismechanism? Someofthe questionsthatdriveourspeculationare listed below[1]: (i) WhyistheweakscalesomuchseparatedfromthePlanckscale? (ii) WhatisthesymmetrythatcontrolsparticlephysicsattheTeVscale? Inotherwords,nowthatthegaugesymmetry isestablishedwithasignificantprecision,whatisthenextrelevantsymmetrythatawaitsus? (iii) The SM is plaguedby the hierarchyproblem. It originatesfrom the requirementof ad hoc cancellationbetween fermionicandbosonicloopscontributingtotheHiggsmass–seeFig.1.Anunnaturaltuning(1 1026)betweenthebare ÷ Higgsmass-squarem2 andthecorrectionterm∆m2 isnecessarytokeeptherenormalizedmass(m2 = m2 +∆m2) h0 h h h0 h ataround100GeV.Nevertheless,onemustdothistuningorder-by-orderinperturbationtheorytopreventtheHiggsmass 1PlenarytalkattheInternationalLepton-PhotonConference,Mumbai,August2011.Toappearintheproceedings(specialissueofPRAMANA). 1 fromshootinguptothe highestscale ofthe theory. Thisconstitutesthehierarchyproblem. Quite a fewremedieshave beenadvocatedsofar. But,whichsolution(ifany,atall!) ofthehierarchyproblemiscorrect? (iv) Isthenaturalnessconsiderationagoodguidingprincipleorapowerfuldiscriminatorbetweenmodels?Isitsstudya stepintherightdirection[2]? (v) IsHiggselementaryorcomposite[3,4]? CanitbesettledattheLHC? (vi) WhatiftheHiggsisnotthereatall? II Supersymmetry II.1 Basicaspects Supersymmetryisthemostwell-studiedBSMmodelthatoffersanaturalexplanationoftheweakscale[5]. Itisa new space-timesymmetryinterchangingbosonsandfermions,relatingstatesofdifferentspins.ThePoincaregroupisextended byaddingtwoanti-commutinggeneratorsQandQ¯ totheexistingp(linearmomentum),J (angularmomentum)andK (boost), such that Q,Q¯ p. Since the new symmetry generatorsare spinors, not scalars, supersymmetry is not an { } ∼ internalsymmetry,andthesuper-partnersdifferfromtheirSMpartnersinspin.Someattractivefeaturesofsupersymmetry relevantinthepresentcontextareasfollows: (i) Supersymmetrysolvesthegaugehierarchyproblem:ThequantumcorrectionstotheHiggsmassfromabosonicloop and a fermionic loop exactly cancel if the couplings are identical and the boson is mass degenerate with the fermion. Foreveryfermion(boson)oftheSM,spersymmetryprovidesamassdegenerateboson(fermion). Inreallife,however, supersymmetryisbadlybroken. Butifthebreakingoccursinmassesandnotindimensionlesscouplings,thequadratic divergencestillcancels.Theresidualdivergenceisonlylogarithmicallysensitivetothesupersymmetrybreakingscale. (ii) Supersymmetry leadsto gaugecouplingunification: This is a bonus! Supersymmetrywas not inventedto achieve this. WhentheSMgaugecouplingsareextrapolatedtohighscale,withLEPmeasurementsasinput,theydonotmeetat asinglepoint.SupersymmetrymakesthemdoatascaleM 2 1016GeV,withTeVscalesuper-particles. GUT ∼ × (iii) Supersymmetry triggers EWSB: Starting from a positive value in the ultraviolet, the up-type Higgs mass-square m2 turnsnegativeintheinfraredtriggeringEWSB.IntheSMthenegativesigninfrontofthescalarmass-squareinthe Hu potentialisputinbyhandtoensureEWSB.Insupersymmetrythesignflipoccursinadynamicalway. II.2 Naturalness criterion Naturalnessisanaestheticcriterion.Itcomesfromtherealizationthatiflargecancellationamongunrelatedquantitiesis requiredtoachieveasmallphysicalquantity,thesituationisunnaturalandreflectsasignofweakhealthofthetheory.A theoryisless‘natural’ifitismore‘fine-tuned’. Inthecontextofminimalsupersymmetrywithtwo Higgsdoublet(i.e. MSSM),thescalarpotentialminimizationyields 1 m2 m2 tan2β M2 = Hd − Hu µ2, (1) 2 Z tan2β 1 − − withm2 = m2 ∆m2,where∆m2 isthecorrectionduetoRGrunningfromtheGUTscaletotheweakscale. The Hu Hd − largetopYukawacouplinghasasignificantnumericalinfluenceonRGrunning.AproperEWSBoccurswhenm2 turns Hu negativedue to the effect of runningand the correctvalue of M is reproduced. This refersto a cancellationbetween Z 2 100 MSSM 500 100 90 90 80 80 70 400 70 [GeV]M1/2300 456000Fine tuning Fine Tuning456000 30 30 200 20 20 10 10 0 0 200 400 600 800 1000 0 m [GeV] 80 85 90 95 100 105 110 115 120 0 m [GeV] H Figure2:(a)Left:Fine-tuningincMSSM.(b)Right:Fine-tuningasafunctionofmh.Fordetailssee[8]. supersymmetrybreakingsoftmassesandsupersymmetrypreservingµparameter. Howmuchcancellationbetweenthese completelyuncorrelatedquantitiesis aesthetically pleasant? BarbieriandGiudice introduceda quantitativemeasure of fine-tuning[6] ∂M2/M2 ∆ Z Z , (2) i ≡ ∂a /a (cid:12) i i (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) whereaiarehighscaleinputparameters.Anupperlim(cid:12)iton∆canb(cid:12)etranslatedtoanupperlimitonsuper-particlemasses. II.3 Naturalness ofcMSSM IncMSSM,theconstrainedversionoftheMSSM(with4parametersand1sign),Eq.(1)boilsdownto[7] M2 2µ2 +0.2m2+0.7 2.6M 2, (3) Z ≈− | | 0 1/2 (cid:0) (cid:1) where m and M are the common scalar and gauginomasses, respectively, and the gluino mass is given by m 0 1/2 g˜ ≃ 2.6M . Twoobservationsarenoteworthy: 1/2 (i) Intheabsenceofanycancellation,thenaturalexpectationwouldbeM µ m M . Butthispossibilityhas Z 0 1/2 ∼ ∼ ∼ beenexploredandruledoutbyLEP-2andTevatron. (ii) By now, the CMS and ATLAScollaborationshave pushedthe gluinomass limit to close to a TeV. This impliesa tuningoforder1%fromEq.(3). TheLHCisthusprobingsparticlemasseswhichareaboutaloopfactoraboveM . Z Thereisanotherwaytoshowthatthefine-tuninginMSSMis 1%level.Theradiativelycorrectedmassofthelightest ∼ CP-evenHiggsbosonisgivenby 3m4 m2 m2 m2 ( M2)+ t ln t˜ . (4) h ≃ h0 ≤ Z 2π2v2 m2t! Sincem > 114GeVfromLEP-2,m shouldbearound1TeVorheavier,thusimplyingafine-tuningtothetuneofa h t˜ per-cent.Thisconstitutesthe‘littlehierarchy’problemofsupersymmetry. A quantitative analysis of fine-tuning has recently been carried out in [8] (see also [9] where some of the technical aspects for measuring the tuning are a little different) in the context of the cMSSM. Fig. 2a corresponds to tanβ = 3 3 and A = 0. The different parts of the white region is ruled out for different reasons (non-occurrence of EWSB, 0 experimentalexclusionoftheslepton/neutralino/charginomasslimits,Higgsmasslowerlimit,staubecomingtheLSP). TheexperimentalboundsfromATLAS(black)andCMS(red)havebeendrawnforaguidetotheeyeusing1/fbdata. Thefine-tuningisatbest 2%whichcorrespondsto∆ 50.WenowlookatFig.2bwherefine-tuninghasbeenplotted ∼ ∼ againstm . TheLEP-2lowerlimithasnotbeenimposedhere. Itisinterestingtoseethatthetuningisminimumaround h m = 108 GeV. If m is lower than that, the fine-tuning becomes larger as sparticle masses are constrained by their h h experimentallowerlimits. Ontheotherhand,ifm ishigherthanthisvalue,thenduetoitsln(m -dependencethereis h t˜ anexponentialgrowthoffine-tuning. Itisinterestingtonotethatforvaluesofm 700GeVandM 350GeV,theamountoffine-tuningisdecided 0 1/2 ≤ ≤ bytheLEP-2limitontheHiggsmass. Ontheotherhand,forlargerm andM ,theoriginoffine-tuningcanbetraced 0 1/2 totheadjustmentbetweenµ2andscalarsoftmass-squaresthatyieldsthecorrectM . Z II.4 Naturalness ofNMSSM FirstweconsidertheNMSSMscenariowhichhasanadditionalgaugesingletsuperfieldScomparedtoMSSM[10]. The NMSSMsuperpotentialhastwoimportantadditionalpieces, 1 W =W +λSH H + κS3. (5) NMSSM Yukawa u d 3 ThevevsofthescalarcomponentofS yieldsaneffectiveµ =λs. Infact,thiswasthemainmotivationbehindadding eff thesinglet. TheNMSSMmodelsarelessfine-tunedthanMSSMforthreereasons[8]: (i)TheSH H terminEq.(5)generatesaquarticinteractioninthescalarpotential,increasingtreelevelm [11], u d h0 m2 M2cos22β+λ2v2sin22β. (6) h0 ≈ Z TheadditionaltreelevelcontributionallowsustoconsideralighterstopinthelooptogeneratethesameHiggsmassas intheMSSM.Fine-tuningisthereforereduced. (ii)ThephysicalHiggsbosoncanhavealargesingletadmixture,andtherefore,areducedgaugecouplingwhichhelpsit evadetheLEP-2limit. Thisagainimpliesthatwecanemployalighterstopintheloop,thusreducingfine-tuning. (iii)ThepossibilityofHiggsdecayingintotwolighterpseudo-scalarsalsohelpstoevadetheLEP-2limit. Theminimalfine-tuninginNMSSMhasbeenplottedinFig.3a. Forsmallervaluesofm andM ,i.e. intheregion 0 1/2 wheretheLEP-2limitonm istherelevantconstraint,fine-tuningisconsiderablylessthanincMSSM.∆canbeassmall h as14inthisregion(asagainst33forcMSSM).However,forlargervaluesofm andM theoriginoffine-tuninglies 0 1/2 in thesmallnessofweakscale comparedto thesoftmasses, andinthisregionitis hardto reducefine-tuning. Overall, NMSSMislessfine-tunedthancMSSM,orforthatmatterinMSSMwithuniversalboundaryconditions. II.5 Naturalness ofGeneralized NMSSM(G-NMSSM) G-NMSSMhasanunderlyingZ orZ discretesymmetry[12]. Itssuperpotentialreads 4 8 1 1 W = W +(µ+λS)H H + µ S2+ κS3, where µ µ (m ). (7) G−NMSSM Yukawa u d 2 S 3 ∼ S ∼O 3/2 4 H/S mixing 500 100 90 80 400 70 V] 60ng [GeM1/2300 4500Fine tuni 30 200 20 10 0 0 200 400 600 800 1000 m [GeV] 0 Figure3:(a)Left:Fine-tuninginNMSSM[8].(b)Right:Fine-tuninginG-NMSSM[12]. 8 β 3.0 30 40 50 n 7 ∆=3 ∆=10 ∆=30 ∆=100 a t 2.5 6 20 15 2.0 5 VL 10 e 5 TH 1.5 4 mS 1.0 3 1 2 0.5 50 100 150 200 250 m /GeV 10 100 1000 10000 ∼eR MHTeVL Figure4:(a)Left:Fine-tuninginλSUSY[14].(b)Right:Fine-tuninginGMSB[15]. IthastwodistinctadvantagesbeyondNMSSM.First,ithasadiscreteRsymmetry,contrarytoadiscrete–butnon-R – symmetryin NMSSM, whichhelpsto removethe domainwall problemspresentin NMSSM [13]. TheR symmetry isbrokenataveryhighscalemakingthedomainwallsdecaywellbeforenucleosynthesis. Andsecondly,fine-tuningin G-NMSSM isconsiderablylessthanin NMSSM. Themainreasonbehindthis isthe additionalstabilizingtermsinthe potential.Toappreciatethis,takealargeµ limitandintegrateouttheSsuperfieldatthesupersymmetriclevel.Thisgives S atermλ2(H H )2/µ inthesuperpotential,whichreducesfine-tuning. Forafixedvalueof∆onegetsaheavierHiggs u d S and, interestinglyenough,the fine-tuningis minimumform 130GeV. Fig. 3b showsus howfine-tuningimproves h ∼ fromMSSMtoNMSSMandfromNMSSMtoG-NMSSM. II.6 Naturalness ofλSUSY Considerthe NMSSM and assumethatthe trilinearcouplingλ is ratherlarge[14], atleast 1 atthe weak scale. The ∼ solepurposehereistoreducefine-tuningbyincreasingthesinglet-inducedtreelevelcontributiontotheHiggsmass,so thatthedominanttermism2 λ2v2sin22β. Forexample,thevaluesmmax 2(3)M forλ(Ł) = √4π correspond h0 ∼ h ≃ Z to Λ = 104 TeV (100 TeV) – see Fig. 4a. The flip side is that by having such a low cutoff, the prized possession of supersymmetry,namely,gaugecouplingunification,issacrificedtobuynaturalness! 5 II.7 Naturalness ofGMSBmodels In gauge mediated supersymmetry breaking (GMSB) models, a natural determination of M in terms of the model Z parametersyieldsaratherupperlimitonthemassoftherightselectron–seeFig.4b. Theuniversalboundaryconditions ofscalarmassesincMSSMdonotpermitthelightestscalartobemuchlighterthanm2 . Butingaugemediatedmodels, Hu theproportionalityofscalarmassestodifferentgaugecouplings(square)atthemessengerscaleM createsquiteabitof splittingamongthedifferentscalarmassesattheweakscale,whichinturnleadstomorefine-tuningthanincMSSM[15]. III Little Higgs III.1 Basicaspects LittleHiggsmodelswereintroducedasasolutiontothelittlehierarchyproblem(forareview,see[16,17]). TheHiggs is considered to be a pseudo-Goldstoneboson associated with some global symmetry breaking. A Goldstone boson φ hasashiftsymmetryφ φ+c,wherecisaconstant,andaslongasthissymmetryismaintainedaGoldstoneremains → masslessatallorder.Butifthereisaninteractionwhichcouplesφnotas∂ φtheshiftsymmetryisexplicitlybrokenand µ theGoldstonebecomesmassive.Thiswaywegetapseudo-Goldstoneboson.RecallthatpionisaGoldstonewhichresults fromthe spontaneousbreakingofchiralsymmetrygroupSU(2) SU(2) tothe isospingroupSU(2) . Sincequark L × R I massesandelectromagneticinteractionexplicitlybreakthechiralsymmetry,pionsareinfactpseudo-Goldstonebosons. Electromagnetismattributesa mass to π+ of orderm2 (e2/16π2)Λ2 . If we think of Higgsmass generationin π+ ∼ QCD thesameway, usinggaugeorYukawainteractionasa sourceforexplicitbreakingofthechiralsymmetry,wecanhave m2 (g2/16π2)Λ2 . Thispictureisnotphenomenologicallyacceptable,sincem 100GeVimpliesΛ 1TeV, h ∼ NP h ∼ NP ∼ butsuch a low cutoff is stronglydisfavoredby EWPT. If, on the otherhand, we can somehowarrangethatthe leading termintheHiggsmassis g2g2 m2 1 2 Λ2 , (8) h ∼ (16π2)2 NP thenfora100GeVHiggsmass,wegetΛ 10TeV.Thecutoffisthuspostponedfrom1to10TeVthankstotheextra NP ∼ suppressionfactor of 16π2, withouthaving to apparentlypayany price for fine-tuning. The idea of ‘little Higgs’ is all aboutachievingthisextra16π2 factorinthe denominatorofEq.(8), andthisis whereitdiffersfroma pion. Notethat both g and g should be simultaneouslynon-vanishingin orderto generatethe Higgs mass. If any of these couplings 1 2 vanishesthentheglobalsymmetryispartiallyrestoredandtheHiggsremainsaGoldstoneboson. Thisistheconceptof ‘collectivesymmetrybreaking’. Thebasicfeaturesofthelittle HiggstrickaredepictedinFig.5a. TheglobalgroupGspontaneouslybreakstoH at a scale f(> v). A part of G, labeled F, is weakly gauged and the overlap region between F and H is the unbroken SM group I. The Higgs, which is a doublet of the gauged SU(2) of the SM, is a part of the Goldstone multiplet that parametrizesthecosetspaceG/H. ThegeneratorscorrespondingtoHiggsdonotcommutewiththeheavygaugeboson generators.Gauge(also,Yukawa)interactionsinducemasstotheHiggsbosonatone-looplevel.Sincethegaugegroupis expanded,wehaveadditionalgaugebosonsandfermions. ThequadraticdivergencetotheHiggsmassatone-looplevel arising froma Z bosonloopcancelsagainsta similar contributionfroma heavyZ loop, andthe same thing happens H betweenatloopandaheavyT loop–seeFig.5b. Thisisanexampleof‘samestatisticscancellation’. 6 t,T T G h h h h F I H γ,W,Z A ,W ,Z H H H h h h h (a) (b) Figure5: (a)Left: LittleHiggscartoon. (b)Right: Feynmandiagramsamongwhichsamestatisticscancellationtakesplace. T isa newheavyquark,andAH,WH,ZH arenewheavygaugebosons. III.2 Twocrucial features (i) Thesamestatisticscancellationenablesustoexpressm2 f2/16π2ln(Ł2/f2). Butthequadraticcutoffsensitivity h ∼ comesbackparametricallyattwo-looporder. Theorderparameterisf isnotprotectedfromquadraticcutoffsensitivity, justliketheelectroweakvevvisnot[18]. Asaresult, Λ2 f2 F2 =f2+ (whereŁ 4πf), (9) → 16π2 ∼ Then,whatdidwegaincomparedtotheSM?ForlittleHiggsmodels F2 Ł2 m2 (LH) ln . (10) h ∼ 16π2 F2 (cid:18) (cid:19) (cid:18) (cid:19) Thisimpliesthat∆m2 (LH) Ł2/(16π2)2,whichshouldbecomparedwithm2(SM) Ł2/(16π2). ForlittleHiggs, h ∼ h ∼ wethushaveanextrasuppressionfactorof16π2,whichindicatestheparametrictwo-loopsensitivityofŁ2. Ifwewant m (f/4π) 100GeV,oneshouldhavef F 1TeV,andΛ 10TeV. h ∼ ∼ ∼ ∼ ∼ (ii) AcleverconstructionofalittleHiggsmodelshouldyieldthefollowingelectroweakpotential: (g )4 Ł2 V = SM f2ln (H H)+g2 (H H)2, (11) − 16π2 f2 † SM † (cid:18) (cid:19) i.e.,thebilineartermshouldhaveaone-loopsuppressionbut,crucially,thequarticinteractionshouldbeun-suppressed, whereg isagaugeorYukawacoupling.Ifbothquadraticandquartictermsaresuppressed,onecannotsimultaneously SM obtainthecorrectW bosonmassandanacceptableHiggsmass. III.3 EWPTvs Naturalness Contributions of new physics to two dimension-6 operators Ø H D H 2 and Ø H σaHWa B should T ∝ † µ S ∝ † µν µν be small enough to keep EWPT (T and S parameters, respectively) under control. A large class of little Higgs mod- (cid:12) (cid:12) els gives a large contribution to T. Consequently, the constraint is(cid:12)quite stro(cid:12)ng: f > (2 5) TeV [19]. A large − 7 f means that to obtain the Higgs mass in the 100 GeV range one must fine-tune the parameters. The constraints arise primarily from the tree level mixing of the SM particles with the new particles. In the littlest Higgs model (G = SU(5), H = SO(5)), the T parameter receives a large contribution from the custodial symmetry breaking op- erator HTΦH, which mixes the doublet scalar H with the triplet scalar Φ. To avoid this mixing, the authors of [20] introduced T-parity (similar to R-parity in supersymmetry) under which all (but one) new particles are odd and the SM particles are even. Under this symmetry H H, but Φ Φ, so HTΦH coupling is absent. As a re- → → − sult, f as low as 500 GeV can be accommodated [21]. Interestingly, there exists one new, yet T-even, state in this scenario, the so-called ‘top partner’, which cancels the standard top induced quadratic divergence to the Higgs mass. Rememberthatwesetouttosolvethelittlehierarchyproblemand, 1000 apparently,wesettledthatbyacquiringanextrasuppressionfactorof 16π2. But could we actually reduce the fine-tuning in realistic little SM Higgsmodels? Veryimportantly,asizabletuningamongvariouscon- ∆ tributionstotheHiggsquarticcouplingisnecessarytokeeptheHiggs 100 T-parity mass small. Fine-tuning is relatively small when the Higgs mass is Littlest 2 Littlest ratherhigh,butthisoptionisatoddswith therequirementofEWPT. Simplest This underlines the tension between naturalness and EWPT. In fact, MSSM fine-tuning is 1% in the phenomenologicallyacceptable region of 10 ≤ the parameter space, and the general conclusion is that little Higgs 100 150 200 m2 5 0(GeV3)00 350 400 h modelsarelessnaturalthanMSSM[22]–seeFig.6. Figure6: Fine-tuningindifferentlittleHiggsmodels (adaptedfrom[22]). III.4 CollidersignalsoflittleHiggsmodels Newgaugebosons: InthelittlestHiggsmodel,about30000Z can H beproducedannuallyattheLHCwith100fb−1luminosity.TheywoulddecayintotheSMfermions(ZH ff¯),orinto → theSMgaugebosons(Z W+W ,W WZ,orintotheHiggsandSMgaugeboson(Z Zh).Thebranching H − H H → → → ratioswouldfollowadefinitepattern,whichwouldserveasthe‘smokinggunsignals’[23,24]. New fermions: Colored vector-like T quark appears in almost all little Higgs models. It may be producedsingly by bW T attheLHC.Typically,Γ(T th) Γ(T tZ) 1Γ(T bW). Thesebranchingratiorelationswould → → ≈ → ≈ 2 → constituteacharacteristicsignatureforT quarkdiscovery[23,25]. New scalars: Thepresenceofa doublychargedscalar φ++, asa componentofa complextripletscalar, is a hallmark signature of a large class of little Higgs models. Its decay into like-sign dileptons (φ++ ℓ+ℓ+) would lead to an → unmistakablesignalwithaseparableSMbackground[23]. IV Composite Higgs IV.1 Basicideas The composite Higgs models emerged as an improved realization of the little Higgs scenarios both in terms of UV completion and the naturalness consideration. In the composite picture the Higgs is some kind of a composite bound stateemergingfromastronglyinteractingconformalsector[26](forareview,see[3,27]andreferencestherein). Itisa pseudo-GoldstonebosonwhichresultswhenaglobalgroupGofastronglycoupledsectorbreakstoH atascalef(>v). The coset G/H containsthe Higgs. We know thatAdS/CFT correspondenceallows us to relate a stronglycoupled4d 8 theorytoaweaklycoupled5dAdStheory.Usingthiscorrespondence,whileontheCFTsidetheHiggscanbeviewedas apseudo-Goldstoneofsomestronglycoupleddynamics,ontheAdSside,inwhatiscalledtheGauge-Higgsunification scenario[28], thesameHiggscanbeinterpretedasthe5thcomponentofa gaugefield (A ) propagatinginthewarped 5 extradimension, ItisalsocalledaholographicHiggs[29]. Theholographic5dto4dtranslationinvolvesthepresenceoftwosectors- weakandstrong.Theweaklyinteractingsectorcontainingelementaryobjects(theSMgaugebosonsandsomefermions) islocatedatthey = 0(Planck)brane,andthestronglyinteractingCFT sectoratthey = L(TeV−1)brane. Thelatter sectorcontainstheTeVboundstatesatascale 1/L,andtheHiggsisonesuchboundstate. Buttohavealittlehierarchy ∼ betweenm and1/L,werequiretheHiggstobeaGoldstoneresultingfromsomeG H breakingintheCFTsector. h → Moreprecisely,theHiggsisapseudo-GoldstoneasthecouplingsoftheSMgaugeandmatterfieldswiththeCFTsector explicitlybreakG. A very satisfactory feature of composite Higgs is that a non-linearly realized global symmetry of the CFT sector protectsits mass andguaranteesthe absence of quadraticdivergenceatall order. The finiteness of the Higgsmass can be understood as follows: the Higgs is at the TeV brane, the scalar that breaks the bulk gauge symmetry lives at the Planck brane. The Higgs mass is generated by radiative corrections with loops involving bulk KK gauge fields which propagatefromonebranetoanother. ThismediationmechanisminvolvesatransmissionofinformationfromthePlanck toTeVbrane,whichmakesitanon-localeffect,andhencethepotential(and,therefore,theHiggsmass)sogeneratedis calculableandfinite. ThisisabigadvantageovertheconventionallittleHiggsconstructionwhichsuffersfromquadratic cutoffsensitivityattwolooplevel. Also, the global symmetry that protects the Higgs mass is a symmetry of the strong CFT sector. Therefore, one expectstoseeasetofnewelectroweakresonanceswhichshouldappearascompletemultipletsoftheglobalgroup. For example,intheSO(5)/SO(4)model,additionalfermionicstatesbesidestheSMfermionsarerequiredtofillthespinorial representation4ofSO(5). Thespectrumofnewparticlescanthereforerevealthenatureoftheglobalsymmetry,andis certainlyricherthanthatoftheconventionallittleHiggsmodels. IV.2 Collidertests (i) A generic prediction of composite Higgs is that its gauge and the Yukawa couplings are reduced from their SM v2 values[30]. Itcanbeparametrizedas(ξ ) ≡ f2 g =gSM (1 C ξ), g =gSM (1 C ξ) . hff hff − f hVV hVV − V whereξ 0.2issmallenoughtokeepthecontributionofthenewresonancestotheobliqueparametersundercontrol. ∼ HereC andC arenumberswhichdependonthechoicesofthegroupsGandH. Thequestionis,however,whetherthe f V Higgsproductioncrosssectiontimesitsbranchingratiosindifferentchannelscanbemeasuredwithanaccuracyof,say, (10-20)%orbetter? Wewouldperhapsneedtogotosuper-LHCorbettertoILCtoconfirmorruleoutcompositenessin adefinitiveway. (ii) SincethegaugecouplingoftheHiggsissmallerthang,therewillbeincompletecancellationofdivergenceinthe gaugebosonscatteringamplitude.Asaresult, A(V V V V ) s/f2. L L L L → ∼ Therefore,onehopestoseeexcesseventsinV V V V channels. Again,thisdiscussionisnotperhapsexperimen- L L L L → tallyrelevantbeforewereach14TeV,maybenotbeforethesuper-LHCstage! 9 Figure7:(a)Left:5dHiggslessmodel[32],(b)Right:LHCsignatureinHiggslessmodel(Adaptedfrom[35]). (iii) The composite Higgs models usually contain heavy colored fermions of exotic charge, e.g. electric charge 5/3, althoughthisisamodeldependentstatement. Theirproductionanddecaymayproceedasfollows: qq¯,gg q q¯ W+tW t¯ W+W+bW W ¯b. → 5∗/3 5∗/3 → − → − − Thedecayproductscontainhighlyenergeticsamesignleptons,plus6jetstwoofwhichtwoaretaggedbjets. Detecting thoseboundstateswouldofcourseconstitutethebesttestforcompositeness[31]. V Higgsless scenarios TheideahereistotriggerelectroweaksymmetrybreakingwithoutactuallyhavingaphysicalHiggs. Thisisintrinsically an extra dimensionalscenario. The basic constructiongoesas follows: the extra dimensionis compactifiedon a circle ofradiusRwithan orbifolding(S1/Z ). Therearetwofixedpoints: y = 0,πR. Electroweakbreakingisachievedby 2 imposingdifferentboundaryconditions(BC)ongaugefieldsaty = 0,πR. TheBCshavetobecarefullychosensuch thattherankofagaugegroupislowered. Thedetailscanbefoundin[32]. Theextradimensioncanbeflatorwarped. It is difficultto controlthe T parameter in flat space, but in warped space one can constructa scenario which satisfies allEWPT constraints. AppropriateBCs are chosento ensurethe followinggaugesymmetryin the bulkand inthe two branes(seeFig.7a): Bulk: SU(2) SU(2) U(1) , y = 0brane: SU(2) SU(2) SU(2) , y = πR L× R × B L L× R → D brane: SU(2) U(1) U(1) . Withoutgoing i−nto the details, for which we refer the readersto [32,33], we R × B L → Y mentionthattheW andZ−bosonmasses,andthe(S,T)parameterscanbenicelyfitinawarpedscenario. Wehighlightheretwofeatureswhichdeserveattention. (i) Tension between unitarity and EWPT: Recall that without a Higgs, unitarity violation would set in the SM at around a TeV. What is expected in the Higgsless scenario? Here, the exchange of KK states would retard the energy growthoftheW -W scatteringamplitude,postponingtheviolationofunitarityinacalculablewaybeyondaTeV.More L L specifically,Λ 3π4M2 /(g2M(1)) 4TeVforM(1) 1TeV.Ifwewanttopostponetheonsetofunitarityviolation ∼ W W ∼ W ∼ evenfurther,wehavetodecreasetheW(1)mass. Butthis,inturn,increasestheT parameter,implyingatensionbetween unitarityandEWPT[34]. W(1) (ii) LHC signature: We dealwith a specific signaturehere [35]. Considerthe scattering channelWZ WZ. If −→ M(1) 700GeV,itturnsoutthatg gWWZMZ2 0.04.Wethenexpecttoseesharpresonanceduetoschannel W ≈ WZV1 ≤ √3MW(1)MW ∼ mediation,withastrikingfeatureofnarrowwidth–seeFig.7b. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.