ebook img

Electrothermal Frequency References in Standard CMOS PDF

218 Pages·2013·5.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electrothermal Frequency References in Standard CMOS

ACSP · Analog Circuits And Signal Processing S. Mahdi Kashmiri Kofi A.A. Makinwa Electrothermal Frequency References in Standard CMOS Electrothermal Frequency References in Standard CMOS ANALOG CIRCUITS AND SIGNAL PROCESSING Series Editors: Mohammed Ismail, The Ohio State University Mohamad Sawan, Polytechnique Montreal For further volumes: http://www.springer.com/series/7381 S. Mahdi Kashmiri • Kofi A.A. Makinwa Electrothermal Frequency References in Standard CMOS S. Mahdi Kashmiri Kofi A.A. Makinwa Texas Instruments, Inc. Delft University of Technology Delftechpark 19 Delft, The Netherlands Delft, The Netherlands ISBN 978-1-4614-6472-3 ISBN 978-1-4614-6473-0 (eBook) DOI 10.1007/978-1-4614-6473-0 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2013931653 # Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Acknowledgment The original manuscript of this book was written as a Ph.D. thesis at Delft University of Technology, where I spent about five fruitful years. This Ph.D. journey would not have been possible without the support of many people, to whom I would like to express my gratitude. At the foremost, I thank my supervisor Kofi Makinwa. Throughout years, Kofi’s belief, enthusiasm and presence was a solid supporting force, which helped me go on. I learnt from him to be as critical as I can, and how to write and to present such that others can actually understand! I am thankful to him for these lifelong skills. I also thank Han Huijsing for his support and encouragement. I would like to thank Michiel Pertijs for his invaluable support with the design of the first reference’s temperature compensation. I need to thank Omid Shoaei from Tehran University, who first raised the passion for analog circuit design in me. He told us, his students, about the glory of writing to the red journal and about being fired if the company misses time-to-market due to design mistakes. It all seemed so exciting! Academic experience during the Ph.D. research is extremely valuable. I am thankful to Marcel Pelgrom and Lucien Breems for the opportunity of assisting them within their data converter design courses at TU Delft. I would like to thank Greta Milczanowska and Marc van Eylen from Europractice, IMEC, for their support with the manufacture of 0.7 μm chips. I express my gratitude to Frank Thus, Paul Noten and Erik Moderegger for their invaluable support and NXP Semiconductors for fabrication of the scaled electro- thermal frequency references in 0.16 μm CMOS. I am thankful to the wonderful room-mates at the electrical engineering faculty of TU Delft, with whom I shared lots of memories. In a chronological order: Andre´ Aita, Lukas Mol, Ferran Reverter, Caspar van Vroonhoven, Luca Giangrande, Saleh Heidary, and Zichao Tan. Caspar worked on thermal-diffusivity-based tem- perature sensors, which is why we enjoyed lots of fruitful discussions, technology and experience sharing, as well as a wonderful camping trip to New Zealand. v vi Acknowledgment Special thanks to the staff of the Electronic Instrumentation (EI) lab of TU Delft, whose valuable work allows the department to run. During my times Inge, Trudie, Pia, Helly, Ilse and Joyce ran the secretary office. Thanks to Willem van der Sluys who made it financially feasible. Thanks to the technical staff Ger, Piet, Jeroen, Maureen, and Zu-Yao Chang. Thanks to Antoon Frehe who took care of the servers and made designing possible. And of course, many friends and colleague whose presence in my life has meant a lot to me. In an alphabetical order: Arvin Emadi, Berenice, ChungKai Yang, Dafina Tanase, Eduardo Margallo, Frerik Witte, Gayathri, Gregory Pandraud, Kamran Souri, Lukasz, Martijn Snoeij, Morteza Alavi, Mohammad Talaie, Mohammad Mehrmohammadi, Mohammad Farazian, M. Nabavi, Nishant, Omid Noroozian, Pedram Khalili, Paulo Silva, Qinwen Fan, Rong Wu, Sha, Sharma, Shishir, Ugur, Wen Wu, Youngcheol Che, Yue Chen and Zili. Also thanks to the wonderful remote colleagues at NXP: Fabio Sebastiano and Mohammed Bolatkale. Thanks to Sarah von Galambos for English corrections of the original Ph.D. thesis draft. The preparation of the original thesis draft took one and half year during which I combined working and writing. This would not have been possible without the support of my colleagues at the precision systems group of Texas Instruments Delft design center (former National Semiconductor). I am especially thankful to my manager Wilko Kindt. I am also thankful to my colleagues: Frerik Witte, Jinju Wang, and Sergio Roche. I am very much indebted to my family, my parents and my brothers, for their support and trust in me. It is thanks to their dedications and love that I have been able to pursue my dreams. Thanks to all of you. And last but not the least: I am indefinitely thankful to my fiance´e, Esme´e. Without her unconditional love, understanding, and support I would not have finished this book. Delft, The Netherlands S. Mahdi Kashmiri Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Frequency and Its Accuracy Measures . . . . . . . . . . . . . . . . . . . . 1 1.2 Challenge of Integrating Frequency References . . . . . . . . . . . . . 4 1.3 Frequency Generation Based on the Thermal Properties of Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.6 Organization of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Silicon-Based Frequency References . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Silicon MEMS Based Oscillators . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 LC Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 RC Harmonic Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5 RC Relaxation Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.6 Ring Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.6.1 Open-Loop Compensation . . . . . . . . . . . . . . . . . . . . . . . 31 2.6.2 Closed-Loop Compensation . . . . . . . . . . . . . . . . . . . . . . 32 2.7 Mobility-Based Frequency References . . . . . . . . . . . . . . . . . . . . 36 2.8 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 Frequency References Based on the Thermal Properties of Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 Thermal Properties of Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3 Electrothermal Filters in CMOS . . . . . . . . . . . . . . . . . . . . . . . . 51 vii viii Contents 3.4 ETF Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4.1 General Heater Considerations . . . . . . . . . . . . . . . . . . 55 3.4.2 General Thermopile Considerations . . . . . . . . . . . . . . 55 3.4.3 Design of a Bar ETF . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4.4 Design of an Optimized ETF . . . . . . . . . . . . . . . . . . . 58 3.5 Modeling for Time-Domain Analysis . . . . . . . . . . . . . . . . . . . . 60 3.6 Thermal Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.7 Electrothermal Frequency-Locked Loops . . . . . . . . . . . . . . . . . 64 3.8 Electrothermal FLL as Foundation for Frequency References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.9 Dynamics of an Electrothermal FLL . . . . . . . . . . . . . . . . . . . . 70 3.10 FLL Behavioral Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.11 The Effect of Noise on an FLL’s Jitter . . . . . . . . . . . . . . . . . . . 78 3.11.1 ETF Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.11.2 Implications for FLL Design . . . . . . . . . . . . . . . . . . . . 80 3.11.3 VCO Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.12 Challenges Associated with the Previous FLL’s . . . . . . . . . . . . 83 3.13 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4 A Digitally-Assisted Electrothermal Frequency-Locked Loop in Standard CMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2 Proposing a Digitally-Assisted FLL . . . . . . . . . . . . . . . . . . . . . 89 4.2.1 Operating Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.2.2 DAFLL System-Level Specifications . . . . . . . . . . . . . . 90 4.2.3 DAFLL Realization Phases . . . . . . . . . . . . . . . . . . . . . 91 4.3 First Test Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.3.1 PDΔΣM System-Level Architecture . . . . . . . . . . . . . . 92 4.3.2 PDΔΣM Circuit Design . . . . . . . . . . . . . . . . . . . . . . . 98 4.3.3 First Chip Experimental Results . . . . . . . . . . . . . . . . . 107 4.3.4 Conclusions from the First Test Chip . . . . . . . . . . . . . 110 4.4 Second Test Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.4.1 DCO System-Level Architecture . . . . . . . . . . . . . . . . . 112 4.4.2 Complete DAFLL System-Level Simulations . . . . . . . 112 4.4.3 DCO Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.4.4 Experimental Results with the Second Test Chip . . . . . 118 4.5 Measuring the Effective Thermal-Diffusivity of CMOS Chips Using a DAFLL . . . . . . . . . . . . . . . . . . . . . . . 120 4.5.1 The Essence of Measuring Deff . . . . . . . . . . . . . . . . . . 121 4.5.2 Thermal Diffusivity Measurement Using CMOS ETFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Contents ix 4.5.3 An Electrothermal FLL as a Test Vehicle in Measuring Deff . . . . . . . . . . . . . . . . . . . . . . . 123 4.5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5 An Electrothermal Frequency Reference in Standard 0.7 μm CMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.2 Temperature Compensation of Electrothermal Frequency-Locked Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.3 Realization of an Electrothermal Frequency Reference in a 0.7 μm CMOS Process . . . . . . . . . . . . . . . . . . . . 134 5.3.1 System-Level Design of the Reference . . . . . . . . . . . . . . 134 5.3.2 The Band-Gap Temperature Sensor Design . . . . . . . . . . . 137 5.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6 A Scaled Electrothermal Frequency Reference in Standard 0.16 μm CMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.2 Scaling Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.3 System-Level Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.4 Error Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.5 Circuit Realizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 6.5.1 ETF and PDΔΣM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 6.5.2 DCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6.5.3 Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6.5.4 Heater Drive Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . 176 6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 7.1 Main Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 About the Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.