applied sciences Review Electrospun Nanomaterials Implementing Antibacterial Inorganic Nanophases NicolettaDitaranto1 ,FrancescoBasoli2,MarcellaTrombetta2,NicolaCioffi1,* andAlbertoRainer2,* 1 DipartimentodiChimica,UniversitàdegliStudidiBari“AldoMoro”,viaOrabona4,70125Bari,Italy; [email protected] 2 DipartimentodiIngegneria,UniversitàCampusBio-MedicodiRoma,ViaÁlvarodelPortillo21, 00128Roma,Italy;[email protected](F.B.);[email protected](M.T.) * Correspondence:nicola.cioffi@uniba.it(N.C.);[email protected](A.R.); Tel.:+39-08-05-442020(N.C.);+39-06-22-5419214(A.R.) (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:2August2018;Accepted:7September2018;Published:13September2018 Abstract: Electrospinningisaversatile,simple,andlowcostprocessforthecontrolledproductionof fibers.Inrecentyears,itsapplicationtothedevelopmentofmultifunctionalmaterialshasencountered increasingsuccess. Inthispaper,webrieflyoverviewthegeneralaspectsofelectrospinningandthen wefocusontheimplementationofinorganicnanoantimicrobials,e.g.,nanosizedantimicrobialagents inelectrospunfibers. Themostrelevantcharacteristicssoughtinnanoantimicrobialssupportedon (ordispersedinto)polymericmaterialsareconciselydiscussedaswell. Theinterestingliterature issuedinthelastdecadeinthefieldofantimicrobialelectrospunnanomaterialsiscriticallydescribed. A classification of the most relevant studies as a function of the different approaches chosen for incorporatingnanoantimicrobialsinthefinalmaterialisalsoprovided. Keywords: Electrospinning;antimicrobial;metalnanoparticles;nanofibers 1. Electrospinning: Generalities Electrospinningisaneasyfabricationmethodinwhichelectrostaticforcesareusedtoproduce finefibers. Foritsversatility,simplicity,andlowcost,electrospinninghasattractedtheinterestofmany researchersfascinatedbythepossibilitytofabricatefiberswithbothmicroandnano-sizedstructural featuresbyfinelytuningprocessparameters. Forthesereasons,electrospinninghasbeenextensively reviewed with respect to its setup, applications, advantages, and prospective developments [1,2]. Even though the origin of electrospinning can be traced back to the first years of the twentieth century[1,3–7],theterm“electrospinning”isratherrecent. Infact,itwasusedforthefirsttimein1995 byR.H.Renekerandcoworkersintwodifferentscientificarticles[8,9]. Theelectrospinningfabricationprocesscanbebrieflysummarizedasfollows. Ahighvoltage (generallyintheorderofafewtensofkilovolts)isappliedbetweenanextrusionsystem(i.e.,aneedle orspinneret)andacollector. Apolymericsolutionisfedatasetflowratetothespinneretwhere, undertheforceexertedbtheelectricfield,itstartselongatingformingacharacteristiccone-shaped tip(Taylor’scone)[10,11]. Whensurfacetensionisovercomebyelectrostaticforces, ajetofliquid is ejected from the Taylor cone, and reaches the collector in the form of a solid nonwoven web, withsolventevaporatingduringflight[12]. Lateralinstabilitiesinthechargedtravellingjetresultina whippingmotionthatfurthercontributestofiberelongation[13](seeFigure1). Athoroughanalysis ofthephysicalphenomenabehindtheelectrospinningprocessandadetaileddescriptionofthemain experimentalsetupscanbefoundinReference[14]. Appl.Sci.2018,8,1643;doi:10.3390/app8091643 www.mdpi.com/journal/applsci Appl.Sci.2018,8,1643 2of16 Appl. Sci. 2018, 8, x FOR PEER REVIEW 2 of 16 Figure 1. A typical electrospinning set-up, comprising: (i) A spinneret containing the polymeric Figure 1. A typical electrospinning set-up, comprising: (i) A spinneret containing the polymeric solution;(ii)aDChighvoltagesupply;and(iii)agroundedcollector.Achargedjetofpolymersolution solution; (ii) a DC high voltage supply; and (iii) a grounded collector. A charged jet of polymer isextsroalcutteiodnf irso emxtrtahcetesdp firnonme rtehtet sippin(wneirthet atipty (pwiictahl ac otynpeicsahl acponee, isnhathpee, iinns tehte) ainnsdet)r eaancdh reesacthhees ctohlel ector withcaotlylepctiocra lwwithh iap tpyipnigcaml wohtiiopnp.ing motion. TheTehleec terloecstproinspniinnnginpg rporcoecsesssi sisa faffefecctteedd bbyy tthhrreeee cclalasssesse sofo fpapraamraemteerste, risn,cliundcilnugd isnoglutsioonlu tion propeprrtoipeesr(teie.sg .(,e.cgo.,n ccoenncternattriaotnio,nv, ivsicsocossitiyty,,s suurrffaaccee tteennssioionn, ,cocnodnudcuticvtiitvyi, tayn,da nsdolvseonlvt evnaptovra pproersspurrees),s ure), procepsrsopceasrsa mpaertaemrse(tee.rgs .,(seo.gl.u, tsioonlutfieoend freaetde ,raaptpe,l iaepdpvlioeldta gvoel,tnagoez,z lneo-ztoz-lec-otlol-eccotlolercdtoisr tadnisctea)n,caen),d aanmd bient ambient parameters (e.g., humidity and temperature). Seyedmahmoud et al. have demonstrated the parameters(e.g.,humidityandtemperature). Seyedmahmoudetal. havedemonstratedthefeasibility feasibility of applying statistical methods to gain a quantitative and systematic insight about the ofapplyingstatisticalmethodstogainaquantitativeandsystematicinsightabouttheeffectsofprocess effects of process parameters on the resulting fiber properties [15,16]. parametersontheresultingfiberproperties[15,16]. Electrospinning has been the subject of many different setup modifications that have been Electrospinning has been the subject of many different setup modifications that have been implemented over the years to accommodate different application needs. In fact, besides the more implementedovertheyearstoaccommodatedifferentapplicationneeds. Infact,besidesthemore conventional randomly oriented fiber mats, a variety of morphologies and structures can be conveanchtiioevneadl brayn pduormpolsyeloyr ciehnantegdinfigb there meleacttsr,oaspvinarniientgy coofnmditoiorpnhs oanlodg bieys maonddifsytirnugc tthuer esestcuapn (eb.ge.,a tchhei eved bypusrppinonseerleyt cahnadn tghien cgoltlhecetoerle, catmroosnpgi notnhienrgs) c[o17n]d. itionsandbymodifyingthesetup(e.g.,thespinneret andthecoMllaetc mtoorr,pahmoloonggy o(it.eh.e, frisb)e[r1 a7l]ig.nment and pattern) can be influenced by the collector geometry. MIn aotrdmeor rtpo hporolodguyce( ia. er.a,nfidboemrlayl iogrniemnteendt naonnd-wpoavtetenr nm)act,a an sbtaetiicn flpluaennarc etadrgbeyt tish ethceo clolencvteonrtigoenoaml etry. choice, whereas to obtain aligned fibers, collection is performed around a rotating cylindrical target Inordertoproducearandomlyorientednon-wovenmat,astaticplanartargetistheconventional [18,19]. In different designs, a series of parallel electrodes have been used to generate aligned fibers choice,whereastoobtainalignedfibers,collectionisperformedaroundarotatingcylindricaltarget[18, [20,21]. For more specific applications, collectors have been designed with customized geometries to 19]. Indifferentdesigns,aseriesofparallelelectrodeshavebeenusedtogeneratealignedfibers[20,21]. obtain specific orientations or patterns, such as a knife-edge rotating disk to collect highly aligned Formorespecificapplications,collectorshavebeendesignedwithcustomizedgeometriestoobtain fibers [22], or the use of grid-shaped collectors to create patterned nanofibrous mats [23]. specificorTiheen tsaptiinonnesreotr wpaast taelrsno st,hseu scuhbjaescta okf nvaifreio-euds gmeordoitfaictaintigondsi stakrgtoetcinogll espctechifiigch alpypallicigatnioednsfi. Obenres [22], ortheofu stheeo fmgarjiodr- sahdavpaendcecso lilne cteolercstrtooscprienantiengp aitst errenperdesnenatneodfi bbyro uthsem ianttsro[d2u3c].tion of the coaxial Tcohnefisgpuirnantieorne tiwn as20a0ls3o t[2h4e],s uebnjeabctlionfg vathrieo upsromdoudctiifiocna tioofn scotarreg-sehteinllg mspiecrcoifiarccahpitpecltiucaretiso nws.itOh neof themcaojmorpaardtmvaenncteeds ipnroepleecrttireoss. pFiunrnthinerg iinscrreempreensteanl timedprboyvethmeeinntstr (oi.deu., cttriioaxniaolf stphiennceoraext)i ahlacvoen lfiedg utor ation in200th3e[ 2fa4b],riecnaatibolni nogf tmheupltirloadyeurcetdio fniboefr csotrrue-csthureelsl m[2i5c]r owairtchh ittheec tpuoresssibwiliitthy ctoom inpdaerptmenednetnetdlyp truonpee rties. thickness, degradation rate, and diffusion properties of each layer for advanced drug delivery Furtherincrementalimprovements(i.e.,triaxialspinneret)haveledtothefabricationofmultilayered applications. fiber structures [25] with the possibility to independently tune thickness, degradation rate, and In 2008, Liu et al. [26] demonstrated the possibility to fabricate electrospun nano-fibers by a diffusionpropertiesofeachlayerforadvanceddrugdeliveryapplications. needless setup. Using an aerated polymer solution, they managed to produce continuous and In 2008, Liu et al. [26] demonstrated the possibility to fabricate electrospun nano-fibers by a uniform nanofibers. In fact, insufflation of gas inside a vessel containing the polymer solution led to needltehses fsoermtuapt.ioUns oinf gbuabnblaeesr oante tdhep osolylumtieorn ssoulrufaticoen, ,ththate ycomuladn gaigveed ritsoe ptor othdeu ecxetrcaocntitoinnu oof unsanaonfdibuernsi form nanoufipboenr s.theIn afpapclti,caitniosnu fflofa taio npootefngtiaasl. iTnhsied ekeay vaedsvsaenltacgoenst aoinf itnhgis thnoevpelo ldyemsiegrn,s ocalullteido nbulebdbleto the formationofbubblesonthesolutionsurface,thatcouldgiverisetotheextractionofnanofibersupon theapplicationofapotential. Thekeyadvantagesofthisnoveldesign,calledbubbleelectrospinning, isrepresentedbytheeasinesstoovercomethesurfacetensionofthesmallbubbles,andthescalability Appl.Sci.2018,8,1643 3of16 oftheprocess, whichhasthepotentialforthemass-productionofnanofibers. Moreover, different from classical electrospinning, in which spinnability mainly depends on the solution properties, inbubble-electrospinningitmainlydependsonthesizeofthebubbles[27]. Electrospun meshes are characterized by high surface-to-volume ratio, dimensions ranging fromtensofnanometerstomicrometers,highporosity,andvariableporesizedistribution,showing morphological similarities to the natural extracellular matrix (ECM). Hence, one of the main applicationsforelectrospunfibershasbeenasscaffoldsfortissueengineering. Additionally, the possibility to modify fiber surface and the ease of incorporating molecules or nanoparticles of interest in the solution to be electrospun further enhanced their range of application, including drug delivery systems [28–30], water treatment [31,32], energy conversion and storage [33,34], biosensing devices [35], gas sensors [36,37], electronics [38], as sorbents in microextractiontechniques[39],aschromatographicphases[40],asseparators,concentrators,ormixers inmicrofluidicsystems[41–43]. 2. Nanoantimicrobials Inthelasttwodecades,antimicrobialnanomaterials—conciselyaddressedasnanoantimicrobials (NAMs)—haverisenatremendousinterestinbothfundamentalandapplication-orientedresearch[44]. The continuous search for new agents capable of preventing the growth of pathogens and other undesired microorganisms, urged by the increased worldwide concern about antimicrobial resistance[45],hasstimulatedamassivedevelopmentofnewmaterialsandprocessesimplementing NAMs[46–48]. Thisclassofbioactivematerialsisbeingusedinformulations,technologicalsolutions, andcommercialproducts,whichareavailablefortheconsumer[49]. AmongthedifferentinorganicNAMs,nanomaterialscomposedoftransitionmetalssuchasAg, Cu, Zn, and their oxides are the most diffused, since they provide a wide-range biocidal activity, andontheotherside,theyarewelltoleratedbyhumanbeingsatconcentrationlevelsthatareeffective alreadytowardsthegrowthofseveralmicroorganisms[48]. Acomprehensiveoverviewonreal-life applications of NAMs is provided by References [44,50–57]. Silver-based NAMs are definitively the most investigated. This is due to the concurrence of different causes. Firstly, silver provides an efficient biocidal effect toward a broad range of microorganisms; and secondly, the general lack of solubility that silver salts and compounds show in several aqueous media (for instance chloride-containingfluids)intrinsicallybufferstheconcentrationofbioactiveionicspeciesthatcanbe releasedbyAgnanophases,thusprolongingtheirbiocidaleffects. Finally,thenumberofsynthetic routestocoinagemetalnanophasesisenormous;thisguaranteesaneasyaccesstonanosilverbiocidal agents,andsupportstheproductionofanalmostinfinitenumberofgoodsimplementingAg-NAMs. Suchawideandindiscriminatediffusionofactivenanomaterialsisrisinganincreasingconcernabout theirenvironmentaltoxicity,andparticularlytherisksrelatedtotheNAMsactiontowardsnon-target organisms[58]. Inthisrespect,engineerednano-sizedagentswhichareprotected,encapsulated,orin anycase,preventedfromdirectreleaseintocontactmediaarebyfarthemostinterestingNAMs. Since 2004[59],weproposedtheinclusionofcoppernanoparticlesintowaterinsolublepolymersasoneof thebestroutestogainacontrolledbioactivityfromNAMs. Inotherwords,NAMsshouldbebetter usedasnano-reservoirsinacompositematerial,providingatunablereleaseofbioactivespecies(such asmetalions),ratherthanbeingjustadded(asentirenanophases)tothesystemwherethebiocidal effectissought. ThemostimportantrequisitefortheresultingmaterialistoprotecttheNAMsfrom beingdirectlyreleasedintothecontactsolution,butontheotherside,theinorganicnanophaseshasto retainpartofitsreactivity,inordertoundergothecorrosionandionicreleaseprocesses,whichsupport thefinalbiocidaleffects[60]. Morerecently,wehavefurtherexploredthisapproach,combiningmicroscopyandanalytical spectroscopytechniques,demonstratingthataproperNAMadhesionorencapsulationinpolymer coatingspreventsthereleaseofentirenanoparticles[61],pavingthewaytothedevelopmentofefficient andsafeNAMs[62]. Appl.Sci.2018,8,1643 4of16 Withthisinmind,webelievethatthecombinationofNAMswithinnovativepolymersynthesis and/or processing technologies, such as the electrospinning technique, affording a high level of morphologicalandcompositioncontrolovertheresultingmaterial,willrepresentapropersolution forafurtherstepinthediffusionandexploitationoftheseagents. 3. Electrospun(Nano)MaterialsImplementingAntibacterialProperties Theadvantageofusingantimicrobialpolymerstofighttheincreasingresistanceagainstclassical antibioticsarisesfromthepossibilityofsynergisticallycombiningthesematerialsandapplyingthem indifferentphysicalforms(e.g.,coatings,films,emulsionsandfibers). Polymerfibersproducedvia electrospinningareamongthemostefficientandcosteffectivesystemsfortwomainreasons: Inthe first place, because of their huge surface area-to-volume ratio; and secondly, the polymers can be implemented with antimicrobial functionalities before or after electrospinning. This provides the opportunitytodesignandmodifythefibersinthesmartestwaytospecificallytargetdifferenttypes ofmicroorganisms. Antimicrobial polymers can be classified into two categories. The first one includes all those polymerswithinherentantimicrobialorantisepticproperties,thatcanbedirectlyappliedorusedina varietyofsubstrates,namelytextiles,metalmaterialsorplasticsones. Thesecondcategorycontains inertpolymersincorporatingadditionalantimicrobialphases/agentsthatarereleasedovertime. Thefirstclasscomprisesnaturalandsyntheticpolymers,includingpolypeptides. Antimicrobial peptidesarenaturallyassociatedtothedefensesystemofmicroorganismsandhumans[63],andare generallycationicspecieswithanoverallnetpositivecharge. Basedonthosestructures,synthetic amphiphilicpolymershavebeendesignedtomimictheantimicrobialpeptides[64,65]. Whilemany antimicrobialpeptideshavebeendescribed,theirlarge-scaleproductionisexpensive,theirinvivo stabilityisgenerallypoorandrelativelylittleinvestigated[66,67]. Electrospunnanofibrousmembranesofnaturalpolymershaverecentlydrawnmuchattention asnovelmaterialsinbiomedicalapplications,suchaswounddressing,tissueengineering,anddrug delivery. While the use of bio-based materials as precursors for electrospinning seemed to be an excellentsolutiontoaddressalltheraisedconcerns,manydifficultiesaroseontheactualpractical side. Infact,naturalpolymersareusuallydifficulttobeelectrospun,thereforethestartingsolutionis frequentlycomposedbyasyntheticpolymerinblendwiththenaturalone. Anotherpossibleapproach istochemicallymodifythenaturalpolymer,chitosanprocessingrepresentsaclassicexampleofthis approach. Chitosanisaninherentlyantimicrobialnaturalpolymerbeinghighlyactiveagainstboth gram-positiveandgram-negativebacteria. Thus,itwouldbeanexcellentcandidatefortheproduction ofantimicrobialnanofibers[68]. Anyhow,purechitosancannotbemerelyelectrospunintonanofibers, andthisleadtotheneedofblendingchitosanintothestartingsolutionwithotherpolymers(e.g., polyethylene oxide, polyvinyl alcohol, polycaprolactone) even though this dilution could lead to loweringthebiocidalpropertiesoftheasmadenanofibrousmembranes. Aninterestingoverviewof differentnaturalelectrospunnanofibersforantibacterialuses,includingausefullistofpurepolymers andtheirblendssuccessfullyprocessedbyelectrospinning,isgivenbyVineisetal. andBshenaet al.[69,70]. Thesecondclassofantimicrobialnanofibersisbyfarthemostinvestigated,sincedifferentactive agentsaswellasdifferentstrategieshavebeenexplored. Mostcommonly,biocides(e.g.,antibiotics, ammoniumsalts,cyclodextrins,chlorhexidine,metal,ormetaloxidenanoparticles,etc.) areattached toorencapsulatedintosupportingfibers,bymeansofdifferentpreparationapproaches. Themost straightforwardoneconsistsinanchoringtheactiveagentontothesurfaceofpre-synthesizedfibers. This approach, however, provides little control over the release rate, that is usually characterized byaburst. Alternatively,theactivematerialcanbeencapsulatedinsidethefibereitherbyblending theactiveagentinthepolymersolutionbeforeelectrospinningorbyfirstlyencapsulatingtheactive agent into nanostructures to be dispersed in the electrospinning solution. Additionally, precursor compounds can be blended in the solution to be electrospun, and conversion to their active form Appl.Sci.A2p0p1l.8 S,c8i., 21061483, 8, x FOR PEER REVIEW 5 of5 1o6f 16 Additionally, precursor compounds can be blended in the solution to be electrospun, and canbepcoenrvfoerrsmioend taos athpeior sta-cetlievcet rfoosrpmi ncnainn gbetr epaetrmfoermnte.dT haes sea appopstr-oealecchtreossparineneinffge cttrievaetminenptr.o Tvhideisne ga sustainaepdprroealecahsees oafret heeffaeccttiivvee iang epnrot,vrideignugl aat esdusbtayinitesd drieflfeuassieo noft hthroe uagchtivteh eagpeonlty, mreegrumlataetdr ixb,yb iytst he degraddaitfifounsioonf tthhreomugaht rthixe, poorlybmyear cmoamtrbixi,n bayt itohne dtheegrraedoaf.tiMono orfe thsoe pmhaitsrtiixc, aotre bdya ap cpormobaicnhaetisoanl tshoerfoeoref.s ee More sophisticated approaches also foresee the use of a multi-axial electrospinning setup, in order to theuseofamulti-axialelectrospinningsetup,inordertoconfinetheactiveagentinthecoreofthe confine the active agent in the core of the obtained fibers, enhancing the control over the achievable obtainedfibers,enhancingthecontrolovertheachievablereleaseprofiles(seeFigure2). release profiles (see Figure 2). Manytypologiesofantibacterialnanofibershavebeenproducedbytheelectrospinningtechnique, Many typologies of antibacterial nanofibers have been produced by the electrospinning basedontheincorporationofdifferentbiocides,asextensivelyreviewedinReference[71],wherea technique, based on the incorporation of different biocides, as extensively reviewed in Reference very comprehensive explanatory table is reported. As meaningful examples, we could focus on [71], where a very comprehensive explanatory table is reported. As meaningful examples, we could antibioftoiccsusi nocno rapnotirbaiotitoicns (inncuomrpeorroautiosnh y(ndurmoperhoiulisc haynddrohpyhdilrico panhdo bhiycdarnotpihboiobticic asnhtiabvioetibces ehnavues ebdee)n[ 71] andcyculsoedde) x[7tr1i]n aensdi nccylculosdioenxtr[7in2e–s7 i5n]cliunstioona [p7o2l–y7m5] einritco sao pluotlyiomne.rAic tstoelnuttiioonn.h Aatstetnotiboen thaakse tno tboe tthaekednr ug concenttor atthieo ndr,uags caonnceexnctreastsiown,i alls panro ebxacbeslsy wleilal dprtoobacbhlayn legaeds ttoo cphaonlygmes etro eploelcytmroesr peilencntraobsipliintyn,aabnilditya, s a conseqaunedn caes ,ao cnonfisbeeqrusemncoe,r ponh ofilboegrsy ,mdourephtoolcohgya,n dguees ttoo cshoalnugtieos ntop sroolputeirotnie psraopsecrotineds uasc tciovnitdyu,cvtiivsictoys, ity, viscosity, and surface tension. andsurfacetension. FigureF2i.guVrea rio2.u sVmareiothuos dsmoetfhiondcso rpofo rainticnogrpboiroatciindge sbiinotcoideesle ctinrotos puelnecntraonspoufinb ernsa.no(1fi)bebrlse. nd(1in) g/ dispersbiolenndoifntgh/ediascpteirvseioang eonf ttihne thaectpivoel yamgeenrt soinlu tthioen pporliyomretro esolelucttrioons ppinrinoirn gto; (2el)eccotrnofispnienmnienng;t o(2f)t he activeacgoennfitnienmtehnet coofr ethoef tahcetivfieb eargtehnrt oiung hthceo -caoxreia loef lethcetr ofisbpeirn nthinrogu;g(h3 )ceon-caaxpiasl uellaetcitornos/paidnnsoinrgp;t i(o3n) of encapsulation/adsorption of the active agent in nanostructures before dispersion in the theactiveagentinnanostructuresbeforedispersionintheelectrospinningsolution;(4)conversionof electrospinning solution; (4) conversion of a precursor to active agent in the nanofibers after aprecursortoactiveagentinthenanofibersafterelectrospinning;and(5)attachmentoftheactive electrospinning; and (5) attachment of the active agent onto the nanofibers after electrospinning. agent onto the nanofibers after electrospinning. Reprinted from Reference [71], Copyright 2014, Reprinted from Reference [71], Copyright 2014, with permission from John Wiley and sons. withpermissionfromJohnWileyandsons. Another relevant drawback comes from the burst release associated to the loading of high drug Anotherrelevantdrawbackcomesfromtheburstreleaseassociatedtotheloadingofhighdrug amounts. Indeed, as soon as fibers are submerged into an aqueous solution, antibiotics will tend to amountlesa.cIhn doeuetd ,raapsisdolyo.n Tahsifis bbeerhsaavrieors upbrmoveorkgeesd ain rteodaunceadq ufueonuctsiosnoalulittyio no,f atnhtei bnioantiocfsibweirl lmteenmdbtroanleea ch outrapaidglayi.nTsth bisacbteerhiaav biyo rrpelreoavsionkge salal rtheed uancetidbifoutniccst iionn aa lvietyryo sfhthoret ntaimneo fifrbaemrem wemithboruatn geuaagraainntseteibnagc tae ria byreleapsrionlognagleldth ceoavnertaibgieo tpicesriiond.a Tvoe rayvsohido rbtutirmst erferlaeamsee, wdiitffheoreunttg sueat-ruapnst eheainvge abeperno luosnegde: dCcooavxeiarla ge period.elTeoctarovsopiidnnbiungrs trteeclehansiqeu,ed iffaelrleonwtss ett-ou pscrheaavtee bae enpuoslyemd:erC oa(ex.iga.l, elepcotlryocsapprinolnaicntogntee ch[n76iq] ue allowsptoolycr(leaactteic-acop-gollyycmoleicr a(eci.dg)., [p77o]l,y pcoalpyr(olalcatcict oanceid[)7 [67]8]p, oployl(yla(mcteitch-ycol -mgleythcaoclriyclaatcei)d/n)y[l7o7n] ,[p79o]l, ya(nladc tic acid)[7p8o],lyp(oL-llya(cmtideeth-cyol-cmapertholaaccrtyonlaet)e )[/8n0y])l osnhe[7at9h] ,athnadt peonlcya(pLs-ulalcattied eth-ceo -acnatpibroiolaticct o(ne.eg).,[ 8g0e])ntsahmeaytchint,h at ampicillin, tetracycline hydrochloride) component into the core section of the nanofibers. Another encapsulatetheantibiotic(e.g.,gentamycin,ampicillin,tetracyclinehydrochloride)componentinto common approach for a sustained release of the antibiotics is to adsorb or encapsulate the drug in a thecoresectionofthenanofibers. Anothercommonapproachforasustainedreleaseoftheantibiotics istoadsorborencapsulatethedruginananostructuresuchashydroxyapatitenanoparticlesbefore dispersing it in the polymer solution [81–83]. This approach does not allow a high drug payload, butstillprovidesasufficientantibacterialactivity. Amongtheothers,potentantimicrobialmaterials Appl.Sci.2018,8,1643 6of16 thathavebeeninvestigatedinconjunctionwithpolymersarethequaternaryammoniumsalts(QACs) andN-substitutedhalamines[84]. ThestrategyofpreparingantimicrobialpolymersbasedonQACsis veryattractive,becausetertiaryor/andsecondaryaminogroupsprovideconvenientreactivemoieties tobeproperlymodified. OneoftheapproachesistopermanentlyattachtheactiveQACsagentsbymeansofcoupling agents,suchasalkoxysilanes,toavarietyofdifferentsubstratesthroughcovalentinteractions[85–88]. Besides,othermethodsincludetheuseofammoniumsaltsderivativesasmonomersinaquaternization reactionorsimplyaddingamixtureofthemtodifferentpolymersolutions. Acomprehensivereview byJaegeretal.[89]discussedthemultiplesyntheticroutesofvariouschargedpolymersystemsthat havequaternaryammoniummoieties. Recently, some concerns have been raised over possible drawbacks in the use of nanoparticles/nanomaterials (including nanosized antimicrobial agents) and synthetic antibiotics. Ithasbeenpointedoutthattheycouldbeofsomehazardtotheenvironment,couldhavecollateral effectsonhumanhealth,and/orcouldpossiblycreatebacterialresistanceissues. Ontheotherhand, is strictly demanding an effective prevention of infections caused by biofilm-forming pathogens. Toaddressthoseissues,manyengineerednanofibrousmembranescontainingmetaland/ormetal oxidesnanoparticleshavebeenproposed,mainlybasedontheuseofsilver,copper,andzinc,thanks totheirwell-establisheddisinfectantproperties. Itisgenerallyacceptedthattheeffectofmetalsina nanoparticlesformisduebothtothereleaseofmetalionsandtothedirectcontactwiththebacterial cellmembranes; anyhow, metalnanoparticlespresenttheadvantageofactingasactivereservoirs. Inthiscontext,thedecreasedamountofmetal,combinedwiththeencapsulation/stabilizationinto electrospunfibers,isexpectedtoproduceenvironmentallysustainablematerials,nontoxicforhuman health,withreducednanotoxicologyissues[90]. InclusionofMetalNanophasesasBiocides Silverhaslongbeenknownasaneffectiveantibacterialagentandithasbeenusedinvarious applicationsthankstoitschemicalversatility. Copperandcopperoxide,aswell,possessantimicrobial propertiesthathavebeenknownforcenturiesonthemacroscale[91].Withtheprogressoftechnological applications,thecostcontrolremainsakeyfactorwhenconsideringthescaleupandthewiderange ofapplicationsonalargescale. Forthisreason,cheapermetals(copper,zinc,iron,titanium)have increasinglybecometheselectedmetalstoconferantimicrobialproperties,inplaceoforincombination withsilver. Amongothers,electrospunnanofibermaterialshavebeenproducedincorporatingmetal nanostructuresbydifferentstrategiesandwithvariouspolymers,accordingtothefinalapplication. Oneofthewidespreadmethodsconsistsofasaltsolutionmixedwithapolymeronetoobtain thefinalelectrospinningmixture(blending). Inthisconditionsthemetalspeciesarestabilizedinthe nanoparticle form by means of the polymer itself, acting both as reductant and as capping agent. Followingthisapproach,Quiròsatal[92]obtainedAg-,Zn-andCu-poly(vinylpyrrolidone)(PVP) compositematsatdifferentcopperloadings,withgoodantibacterialperformancesagainstE.coliand S.aureus. Thesameapproachhasbeenreportedusingpoly(vinylalcohol)(PVA),asoneofthemostusedand desirablematerialforbiomedicalapplications. Itshighlyfavorableproperties,suchasbiocompatibility, nontoxicity,andbioadhesivecharacteristicsmakeitagoodcandidatetobemodifiedwithbiocidal nanophasesinclusion. AstheincorporationofAgsaltsintoeasilyelectrospinnablepolymersmatrices produces an even particles distribution, many papers have been published on the AgNPs/PVA system [93–95]. Typically, the polymer acts as stabilizer of the nanocomposite fibers and also has good reductant capabilities to yield Ag nanoparticles directly formed during the electrospinning process[96]. Insomecases,post-treatmentprocessesarerequired,likeaddingasecondreductant[97] oracombinationofUVirradiationand/orheattreatment/calcination[98,99]. Thisapproachcould bealsobeneficialfromtheapplicationpointofview. Forinstance,Celebiogluetal.[97]reportedon theinfluenceofAgNPssizeand/orasecondcomponentontheantimicrobialeffect(seeFigure3). AAppppll.. SSccii.. 22001188,, 88,, xx FFOORR PPEEEERR RREEVVIIEEWW 77 ooff 1166 Appl.Sci.2018,8,1643 7of16 ttrreeaattmmeenntt//ccaallcciinnaattiioonn [[9988,,9999]].. TThhiiss aapppprrooaacchh ccoouulldd bbee aallssoo bbeenneeffiicciiaall ffrroomm tthhee aapppplliiccaattiioonn ppooiinntt ooff vviieeww.. FFoorr iinnssttaannccee,, CCeelleebbiioogglluu eett aall.. [[9977]] rreeppoorrtteedd oonn tthhee iinnfflluueennccee ooff AAggNNPPss ssiizzee aanndd//oorr aa sseeccoonndd WhileccooJmimnppeootnnaeenln.tt[ 9oo6nn] ttshhteue daaninettdiimmhiicocrrwoobbidiaaillf feeeffrffeeecncttt ((rsseeedee u FFciigignuugrreec o33)n).. d WWithihoiilnlee s JJicinna neetta afaflle.. c[[9t966t]h] essttmuuddoiieredpd h hhooolwowg dydiifofffeferrAeenngtt- PVA nanorfireebddeuurccsiinn(Fgg i cgcoounnrddeiit4tiio)o.nnss ccaann aaffffeecctt tthhee mmoorrpphhoollooggyy ooff AAgg--PPVVAA nnaannooffiibbeerrss ((FFiigguurree 44)).. FigurFFeiigg3uu.rrTeeh 33e.. TpThhheoe tppohhgoorttaoopggrhraasppohhfss a oonff t aainbntatiicbbtaaeccrttieearrliiaatlel tstetesisnttiignnggo foofnf nananannooofiffbiibbrroroouuusss mmmaaatttsss ttthhhaaattt wwweeerrreee pppeeerrfrfofoorrmmrmeedde d aaggaaagiinansisntt st(a) E.col(i(aaa))n EEd.. cc(ooblli)i aaSnn.dda u((bbr)e) u SSs.. . aauRurreeepuusrs.i. nRRteeeppdrriinfnrttoeedmd ffr[ro9om7m] , [[9C977o]],p, CCyoorpipgyyhrritigg2hh0tt 1 22400,114w4,, iwwthiitthph eppreemrrmmisiissssisoiioonnn f ffrrrooommm EEElllssseeevvviieieerr.r. . Figure4. Onthe(left): TEMofPVAnanofiberselectrospunfrom12wt%PVAsolutionscontaining 1wt%ofAgNO :(a)Notrefluxed,(b)refluxedat80◦Cfor1h,and(c)refluxedat80◦Cfor2h.Onthe 3 (right):TEMofPVA(polyvinylalcohol)nanofiberselectrospunfrom12wt%PVAsolutionscontaining 1 wt% of AgNO after being annealed at (a) 50 ◦C, (b) 80 ◦C, and (c) 110 ◦C for 14 h. Reprinted 3 from[96],Copyright2007,withpermissionfromElsevier. Appl. Sci. 2018, 8, x FOR PEER REVIEW 8 of 16 Figure 4. On the (left): TEM of PVA nanofibers electrospun from 12 wt% PVA solutions containing 1 wt% of AgNO3: (a) Not refluxed, (b) refluxed at 80 °C for 1 h, and (c) refluxed at 80 °C for 2 h. On the (right): TEM of PVA (polyvinyl alcohol) nanofibers elect rospun from 12 wt% PVA solutions Appl.Sci.201c8o,n8ta,i1n6i4n3g 1 wt% of AgNO3 after being annealed at (a) 50 °C, (b) 80 °C, and (c) 110 °C for 14 h. 8of16 Reprinted from [96], Copyright 2007, with permission from Elsevier. ElectErolescptruonspCunu -CPuV-APVfiAb efirbserhs ahvaeveb ebeenenp prroodduucceedd iinn ccoonnjujunnctciotino nwiwthi tChuCCul2C [1l200[]1 0o0r ]cooprpceor pper acetataece[1ta0t1e ]t[o10o1b]t aitno PoVbAta-ipnr otPeVctAe-dprcootpecpteerd nacnoopppearr ticnlaenso.pAadrtdicilteios.n aAlldy,dmitiioxneadllym, etmalixneadn omstreutaclt ures nanostructures have been produced, like CuO-ZnO, and have been included in PVA. The havebeenproduced,likeCuO-ZnO,andhavebeenincludedinPVA.Thecombinationoftwometals combination of two metals was demonstrated to be effective as enhanced adsorption and wasdemonstratedtobeeffectiveasenhancedadsorptionandantimicrobialefficiencywereobtained antimicrobial efficiency were obtained with these nanocomposite fibers [102]. Along with the withthesenanocompositefibers[102]. Alongwiththeantimicrobialresults,theauthorsalsoproposed antimicrobial results, the authors also proposed a mechanism responsible for the bactericidal action amechanismresponsibleforthebactericidalactionofthosenanofibers(seeFigure5). of those nanofibers (see Figure 5). FigurFeig5u.re( a5). C(ao) mCpomarpaatrivateivpe loptlort erperperseesenntitningg tthhee aannttiibbaaccteteriraila lacatcivtiitvyi tyof oCfuCOu-ZOn-OZ n(COZ() CloZa)dleoda ded nanofinbaneorsfibweristh wditihff edrieffnertecnot nccoenncetrnattriaotinosnsa gagaaininsstt GGFFPP--EE.. ccoollii ((GG−−) a)nadn dS. Sa.uraeuurse u(Gs+()G; +(b)); P(bro)pPorsoepdo sed mechmaneicshmaniosfmb oafc tbearcitceirdicaildaalc taicotnionC ZCZn annanoofifbibeerrss;; aanndd ((cc)) FFluluoorersecsecnecnec sepsepcterac trdaepdicetpinicgt itnhge RthOeS ROS generation with different concentrations of CZ nanofibers. Reprinted from [102], Copyright 2017, generationwithdifferent concentrations ofCZnanofibers. Reprinted from[102], Copyright2017, with permission from Elsevier. withpermissionfromElsevier. One of the major applications for electrospun fibers has long been in the filtration field and One of the major applications for electrospun fibers has long been in the filtration field and polyacrylonitrile (PAN) has been the most used, due to its high mechanical strength and chemical polyacrylonitrile(PAN)hasbeenthemostused,duetoitshighmechanicalstrengthandchemical stability. One of the drawbacks in the filtration process is the rapid fouling by bacteria, negatively stability. Oneofthedrawbacksinthefiltrationprocessistherapidfoulingbybacteria,negatively affecting the permeability and the throughput of the membrane. Moreover, PAN or composite affectcienlglultohsee/PpAerNm feibaebrisl iatyre awniddetlhy eemthprlooyuegdh ipnu btioomfetdhiecaml deemvibcreas,n we.heMre othreeo bvaecrt,erPiaAl Nconotrrocl oism apn osite celluliosssuee/.P IAn Nthifis breesrpseacrt,e CwuiNdPesly aenmd pAlgoNyPesd minayb iaodmd ead cilceaalr dbeevniecfeits w,whehne reemtbheeddbeadc tienr ieallecctoronstprouln isan issue.PIAnNth ainsdre cseplleuclto,sCe ufiNbePrss. aAndddAitigoNnaPllsy,m ina ythaisd cdasae,c ltehaer bbleenndeifintg waphpernoaecmh bise dthdee mdoinst einlevcetsrtoigspatuend; PAN andcseilllvuelro saenfidb ecorsp.pAerd dsaitlitos n[a1l0ly3,–i1n05t]h, isocr asper,eftohrembelde nZdninOg-CaupOp-rNoaPcsh [i1s0t6h],e mareo stinicnlvuedsetdig ainte dth;es ilver electrospinning solution. An interesting alternative is represented by the cellulose nanofibers, andcoppersalts[103–105],orpreformedZnO-CuO-NPs[106],areincludedintheelectrospinning because the high number of –OH groups offers a location for fibers functionalization, thus regulating solution. An interesting alternative is represented by the cellulose nanofibers, because the high the nanophases upload and their release. Gouda et al. [107] published a comprehensive paper about numberof–OHgroupsoffersalocationforfibersfunctionalization,thusregulatingthenanophases carboxymethyl cellulose functionalized with copper, iron, and zinc NPs. They reported on the uploadandtheirrelease. Goudaetal.[107]publishedacomprehensivepaperaboutcarboxymethyl cellulosefunctionalizedwithcopper,iron,andzincNPs. Theyreportedonthedifferentmorphology accordingtothedifferentMeNPs(Figure6),alongwithcompositenanofibersreleasepropertiesand theirexcellentantibacterialactivity. Appl. Sci. 2018, 8, x FOR PEER REVIEW 9 of 16 Appl. Sci. 2018, 8, x FOR PEER REVIEW 9 of 16 different morphology according to the different MeNPs (Figure 6), along with composite nanofibers release properties and their excellent antibacterial activity. Appl.Sdcii.ff2e0r1e8n,t8 ,m16o4r3phology according to the different MeNPs (Figure 6), along with composite nanofibers9 of16 release properties and their excellent antibacterial activity. FFiigguurrFeei g66u.. rOOe nn6. ttOhhene (t(lhleeef f(ttl))e::f TTt)EE: MTME Miimm iamaggaeegsse oso ffo CfC CMMMCCC e eellleeeccctttrrrooossspppuuunnn n nnaaannnoofoifibfiebbree (rra ()(a aa))n adann CddM CCCMM-MCCN--MMPsNN ePlPessc teerloleesccptturronos sppuunn nanofibers CuNPs (b), FeNPs (c) and ZnNPs (d). On the (right): SEM images of CMC electrospun nnaannoofifibbeerrss CCuuNNPPss ((bb)),, FFeeNNPPss ((cc)) aanndd ZZnnNNPPss ((dd)).. OOnn tthhee ((rriigghhtt)):: SSEEMM iimmaaggeess ooff CCMMCC eelleeccttrroossppuunn nanofiber (a) and CMC-MNPs electrospun nanofibers CuNPs (b), FeNPs (c) and ZnNPs (d). nnaannoofifibbeerr (a()a)a nadnCd MCCM-MC-NMPNsePlse cetrloecsptruonspnuann onfiabneorsfiCbeurNs PCsu(bN),PFse N(bP)s, (Fce)NanPds Z(nc)N Pansd(d )Z.nRNepPrsi n(tded). Reprinted by permission from [107], Springer Nature, Copyright 2017. bRyeppreirnmteidss bioyn pferrommis[s1i0o7n] ,fSropmrin [g1e0r7]N, Sapturrine,gCero Npyartiugrhet, 2C0o1p7y.right 2017. The attachment and core-sheath preparation methods are far less common and usually involve a TThhee aattttaacchhmmeenntt aanndd ccoorree--sshheeaatthh pprreeppaarraattiioonn mmeetthhooddss aarree fafar rlelesss scocommmmoonn anandd usuusaulalyll yinivnovlovlev ea two or three-step procedure. Nevertheless, they provide electrospun nanofibers with worthy atwtow opoeror frothrtmrheraeen-esc-etse tapes p apnprtorimocecidcerduourbeira.e l. NmNeaevtevereriatrhltshe. leIelnse ssp,s a,rtthtihceueyly arpp, rwroovhviedinde ea peeplleleiccctatrrtoioossnppsuu innn vnonalavnneo ocffioibbaeteirnrssg sww [1iitt0hh8 ] wworoo rrtthhyy ppeerrffoobrrammrraaiennrcc eem aaessm aabnnrattniimmesii cc[rr1oo0b9b]ii,aa llt hmmosaaett eemrriieaatllhsso.. dIIsnn oppffaaerrrtt iigccouuolladar r,,r ewwsuhhleetsnn. Maappopprelliioccvaaettrii,oo nnthsse iinnmvvuooltllivv-seet eccpoo aapttriionncggessd u[[11re00 88]] oorr bbaarrrriieeorrff memrese mtmhbebr rpaaonnsesesisb[ i1[li01t9y0] 9,t]ot, httuohnsoees meth eem tmheotahdteosrdioasfl fseo prffrgeoorp oegrdtoireoesds a unrledtss .umMlotsro.p rheMoolovoregery,o,t vhbeyer ,ma ctuthinletg i-m sotnue plptiop-ssrtto-escpyen dpthureroseciseo dffuerrse tohfefeprsod sitfshfieebr eiplniotty spstaiobraitlmuitneyte etrtosh . etSuhmni eaa ttte hareli.a [ml1s0ap8tr]e orrpeiapelorstr itpeersdo aopnned rAtmige-soP raApnNhdo nlmoangooyrf,pibbheyorlsao cogtbiynta,g ibnoyend a pscotoiasnktg-ins oygn ne tlphecoetssritos-sspdyuinfnfte hreesnist pdaifrfaemrfeibenetter srp sian.rtaoSm hsiielvtaeetrr san.l i.Strh[a1it e0a 8st]o alrule.t pi[o1on0r,8 tae]n drde opwnoerrAtee gsdu- PboAsneN qAugenn-aPtnlAyo Nfipeb rnefoarsrnmooifbnibtgae airn sre eoddbustcaotiianoknei dnre gsaocetalikoenicnt. rgIon se Fpleiugcuntrroefi sbpeurns ifnibtoerss7i litvnheteor S nsEiiMltvr aecrthe anrsiaotcrltauetrteii zosanot,ilouantni oodfn wt,h aeonrseed s fwiubbeerrssee iqssu ureebpnsoetlrqytuepdee,n wrtflhyoer prmee irintf ogisr amevriienddgeun atc ttriheoadntu trcheteai oicnntfi loruenea.ncIctnei ooFnfi .gs iIulnvr eeFri 7gtuhree salt concentration and reaction time on the adsorption effect and crystallization ability of silver ions. S7E tMhe cShEaMra ccthearriazcatteiorinzaotfiotnh oosfe thfiobseer sfiibserresp ios rrteepdo,rwtehde, rwehiteirse eivt iids eenvtidthenatt tthheati nthfleu iennfclueeonfcsei lovfe srilsvaeltr Then, the subsequent silver reduction step is a further independent parameter. csoalntc ceonntcraentitornatiaonnd arneda crteiaocntiotinm teimoen otnh ethaed asdosrportipotnionef efeffcetcat nadndc rcyrystsatlallilzizaatitoionna abbiliiltityy ooff ssiillvveerr iioonnss.. TThheenn,, tthhee ssuubbsseeqquueenntt ssiillvveerr rreedduuccttiioonn sstteepp iiss aa ffuurrtthheerr iinnddeeppeennddeenntt ppaarraammeetteerr.. Figure 7. SEM images of pretreating PAN (polyacrylonitrile) nanofibers in Ag NO3 solution at different soaking times, different concentrations, and different reduction reaction time. Reprinted from [108], Copyright 2015, with permission from Elsevier. FFiigguurree 77..S ESEMMim imagaegseosf porf eptrreeattrienagtiPnAgN P(ApNoly (apcorylyloancrityrliolen)intrainleo)fi nbaenrsofinibAergs NinO 3Asgo luNtOio3n saotlduitfifoenre natt sdoifafkeirnegntt ismoaeks,indgif fteimreenst, cdoinfcfeernetnrat tcioonnsc,eanntrdatdioifnfes,r eanntdr eddiuffcetrieonnt rreeadcuticotniotnim reea.cRtieopnr intitmede. frRoempr[i1n0te8d], Cfroopmy r[i1g0h8t],2 C01o5p,ywriigthhtp 2e0r1m5i, swsiiotnh fpreormmEislssieovni efrr.om Elsevier. Appl.Sci.2018,8,1643 10of16 Anincreasedstabilizationofthenanophasesintothemembranesisalwaysbeneficialandcould be obtained by means of encapsulation approach, in order to avoid loosely attached nanoparticles tobedispersedintheenvironment. Fewpapershavebeenpublishedsofarfollowingthismethod, which allows also a controlled release of metal species [110,111]. In particular, Quiròs et al. [110] reportedhowsilverandcopperNPssupportedinsepioliteandsilicaactasreservoirsabletoaffect microorganismgerminationandgrowth,andtoreducefungalmetabolicactivity. Table 1 reports a summary with some representative studies dealing with electrospun antimicrobialfibersembeddingmetalnanoparticles. Table 1. Some representative studies where electrospun antibacterial nanofibers incorporate metalnanoparticles. AntibacterialAgent ElectrospunPolymerComposite References CuNPs,CuONPs Coppersalt+PVP [92] CommercialCuO+PHBV [109] Supportedcoppersalt+CA [110] Cu/CuOx+PAN [103,104,111] Coppersalt+PVA [100,101] Coppersalt+CMC [107] Coppersalt+PVDF [112] Coppersalt+PU [113,114] AgNPs Silversalt+PVP [92,93] Supportedsilversalt+CA [105,110] Silversalt+PAN [108] Silversalt+PVA [94–99] OtherMe/MeoxidesNPs Coppersalt+zincsalt+PVA [102] Zincsalt+CMC [107] Ironsalt+CMC [107] Nomatterthepreparationmethod,alltheabovementionedcompositeelectrospunnanofibershave beenprovedtoexertgoodantibacterialpropertiesagainstmanyGram-positive[70,92,97,99,102–108,113,114] and Gram-negative [70,92,97,99,102,103,105–108,113,114] species, as well as antifungal effect [70,108–110]. Thedetailedanalysisontheantibacterialmechanismsinvolvedandtheoverviewonthedifferentantimicrobial testsisbeyondtheaimofthisreview;nevertheless,thereadersinterestedinthetopiccanreferto[115–120]. 4. Conclusions Inthelastdecades,greatadvanceshavebeenachievedintheunderstandingoftheelectrospinning process,intermsofinstrumentaldevelopmentandperspectiveapplications. Asaresult,itisnow possible to easily produce uniform nanofibers from most synthetic polymers and many natural polymers in the lab scale and also for industrial needs. Moreover, numerous biocides have been successfully incorporated into nanofibers to obtain electrospun mats potentially used as medical implants,scaffolds,wounddressings,textiles,orasfiltermedia. Amongothers,differentinorganic nanomaterialscomposedoftransitionmetalswereconsidered,thankstotheirwiderangeofbiocidal activityandbecausetheirionsarewelltoleratedbyhumanbeingsatconcentrationlevelsthatare effectivetowardsseveralmicroorganisms. Despitethesignificantadvances,severalissuesstillneedtobefurtheraddressedinantibacterial nanofibers,mainlyrelatedtothecontrolledreleaseoftheantibacterialagentsfromthenanofibers. Withthisinmind,webelievethatthecombinationofmetalnanoparticleswithinnovativepolymer synthesisand/orprocessingtechnologies,suchastheelectrospinningtechnique,affordingahighlevel ofmorphologicalandcompositioncontrolovertheresultingmaterial,willrepresentapropersolution forafurtherstepinthediffusionandexploitationoftheseagents.
Description: