ebook img

Electrospun curcumin gelatin blended nanofibrous mats accelerate wound healing by Dkk-1 ... PDF

157 Pages·2017·5.06 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electrospun curcumin gelatin blended nanofibrous mats accelerate wound healing by Dkk-1 ...

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR MEDIZIN Klinik und Poliklinik für Plastische und Handchirurgie Klinikum rechts der Isar Electrospun curcumin gelatin blended nanofibrous mats accelerate wound healing by Dkk-1 mediated fibroblast mobilization and MCP-1 mediated anti-inflammation Xinyi Dai Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doctor of Philosophy (Ph.D.) genehmigten Dissertation. Betreuer: Univ.-Prof. Dr. A. F. Schilling Vorsitzender: Univ.-Prof. Dr. C. Zimmer Prüfer der Dissertation: 1. Univ.-Prof. Dr. H.-G. Machens 2. Priv.-Doz. Dr. R. H. H. Burgkart Die Dissertation wurde am 26.09.2016 bei der Fakultät für Medizin der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 14.12.2016 angenommen. ABSTRACT Background: Acute wounds occur as a result of trauma as well as surgery. It is estimated that 300 million acute wounds are treated globally each year [1]. In the United States alone, approximately 11 million people are affected and 3 million are hospitalized annually. These numbers continue to rise, making wound management a great challenge to society and medical professionals, especially plastic surgeons [2,3]. Traditional reconstructive surgical intervention such as skin flap transplantation still faces the problem of donor tissue insufficiency, post-operative flap compromise, host immunological rejection or even loss of function [4,5,6,7]. Therefore, wound therapy via noninvasive approaches is of major importance and a variety of compounds have been discussed to improve it [8]. Turmeric, the product of Curcuma longa, is one of these compounds and has a very long history of being used for treatment of wounds in many Asian countries. Curcumin, the principal curcuminoid of turmeric, has been recently identified as a powerful modulator of processes involved in healing. However, the inherent limitations of the compound itself, such as hydrophobicity, instability, poor absorption and rapid systemic elimination, pose big hurdles for translation to wider clinical application. Accumulating evidence indicates that nano-formulation is capable of improving solubility of previously unsoluble compounds. Electrospinning, known for many years in the textile industry and organic polymer science, has recently emerged as a novel technique for generating nanoscale biomimetic scaffolds for tissue engineering. The simplicity of the electrospinning process itself and the possibility to incorporate therapeutic compounds into the nonwoven nanofiber meshes during spinning allow the development of controlled drug delivery systems with this method. For wound healing applications, such a system should ideally be able to mimick the structure and biological function of extracellular matrix (ECM) proteins, to provide structural and mechanical integrity as well as support for cellular processes. The aim of the present PhD thesis was it to engineer curcumin/gelatin blended nanofibrous mats by electrospinning to adequately enhance the bioavailability of the hydrophobic curcumin for wound treatment. For this purpose these electrospun curcumin/gelatin blended nanofibrous mats were evaluated as both drug-release system and biomimetic scaffold/dressing for topical application. The potential mechanisms being involved were also scrutinized. Materials and methods: We prepared curcumin/gelatin blended nanofibrous mats by electrospinning and scrutinized their properties including material characterization (SEM, XRD, FITR), curcumin release profile, tensile mechanical properties, cytotoxicity/biocompatibility (LDH, WST, LIVE/DEAD). To further explore curcumin action through such nanoformulation, fibroblast cell based cytokine paracrine profile and subsequent fibroblast migration and monocyte/macrophage cell chemotaxis assays were performed. The healing capacity of the medicated nanofibrous mats was assessed both in vitro and in vivo. Principle findings: 1) curcumin was successfully formulated into gelatin based nanofibers as amorphous nanosolid dispersion and could be control-released to enhance its bioavailability. 2) The resulting medicated nanofibrous mats showed agreeable biocompatibility without cytotoxic effects that facilitated cell-based dermal regeneration in vitro and accelerated wound healing in vivo. 3) The underlying mechanisms of the accelerated wound healing by topically applied curcumin/gelatin nanofibrous mats were found to be a combination of curcumin's ability of in situ fibroblasts mobilization, which is partially mediated by Dkk-1 regulated Wnt/β-catenin signaling, and of its immunomodulatory action, specifically, the persistent inhibition of the inflammatory chemotaxis through decreased expression of MCP-1 by fibroblasts. Conclusions: These results demonstrate the feasibility and effectiveness of bioactive curcumin in a biomimetic nanofibrous structure on accelerated wound healing. These results open an avenue to translate this ancient medicine for modern wound therapy, which is promising for future non-invasive approaches to cure wounds faster through medicated wound dressings. TABLE OF CONTENTS 1. INTRODUCTION ....................................................................................... 1 1.1. The human skin ........................................................................... 1 1.1.1. Anatomy ................................................................................ 1 1.1.2. Function ................................................................................. 6 1.2. Acute wound.............................................................................. 13 1.2.1. Acute wound classification ................................................ 13 1.2.2. Skin regeneration and wound healing .............................. 17 1.3. Curcumin from turmeric: a promising candidate for wound therapy.................................................................................................... 26 1.4. Electrospinning: an encouraging approach for regenerative medicine ................................................................................................. 32 1.4.1. Electrospinning history and fundamentals ...................... 32 1.4.2. Electrospinning for advanced wound dressing ............... 37 1.4.3. Electrospinning for drug delivery ...................................... 38 2. HYPOTHESIS ......................................................................................... 38 3. MATERIALS AND METHODS ................................................................ 39 3.1. Materials .................................................................................... 39 3.1.1. Reagents .............................................................................. 39 3.1.2. Cell culture mediums .......................................................... 40 3.1.3. Buffers ................................................................................. 40 3.1.4. Cell lines .............................................................................. 40 3.1.5. Commercial kits .................................................................. 40 3.1.6. Antibodies ........................................................................... 40 3.1.7. Devices ................................................................................ 41 3.2. Methods ..................................................................................... 41 3.2.1. Electrospinning of Curcumin/Gelatin blended nanofibrous mat 41 3.2.2. Scanning electron microscopy (SEM) ............................... 42 3.2.3. X-ray diffraction (XRD) spectroscopy ............................... 42 3.2.4. Fourier transform infrared (FTIR) spectrometer............... 42 3.2.5. Curcumin release profile .................................................... 43 3.2.6. Tensile mechanical properties........................................... 43 3.2.7. Cell isolation and culture ................................................... 44 3.2.8. LDH and WST-1 assay ........................................................ 45 3.2.9. Live and dead assay ........................................................... 45 3.2.10. Cell visualization on the scaffold ...................................... 46 3.2.11. Fibroblasts in vitro wound healing assay ........................ 46 3.2.12. Fibroblasts cytokine profile array ..................................... 46 3.2.13. Quantified ELISA assay for Dkk-1, SDF-1 α, MCP-1 and TSP-1 47 3.2.14. β-catenin immunofluorescence and fibroblast migration 47 3.2.15. Dkk-1 mediated fibroblast migration ................................ 48 3.2.16. MCP-1 mediated PBMC and macrophage chemotaxis.... 49 3.2.17. Animal housing conditions ............................................... 49 3.2.18. Surgical procedure for acute wound animal model ........ 49 3.2.19. Wound closure analysis .................................................... 50 3.2.20. Histological analysis .......................................................... 50 3.2.21. Collagen content analysis ................................................. 50 3.2.22. Macrophage immunohistochemistry ................................ 51 3.2.23. Statistical analysis ............................................................. 51 4. RESULTS ................................................................................................ 52 4.1. Material characterization .......................................................... 52 4.1.1. Morphology of electrospun nanofibrous mat ................... 52 4.1.2. Electrospinning nanoformulates curcumin ...................... 53 4.1.3. Curcumin incorporation in nanofiber ................................ 54 4.1.4. Curcumin release profile .................................................... 55 4.1.5. Tensile mechanical properties of Cc/Glt NM .................... 56 4.2. Biocompatibility and cytotoxicity ............................................ 57 4.2.1. Cytotoxicity of electrospun NM in vitro ............................ 57 4.2.2. Fluorescence-based cytotoxicity in vitro ......................... 58 4.2.3. Cell visualization on the nanofibrous mat ........................ 60 4.3. Curcumin activates fibroblasts ................................................ 61 4.3.1. Fibroblasts in vitro wound healing .................................... 61 4.3.2. Fibroblasts cytokine paracrine profile array .................... 62 4.3.3. Quantified cytokine expression of Dkk-1, SDF-1α, MCP-1 and TSP-1 ......................................................................................... 63 4.4. Dkk-1 mediates curcumin induced fibroblasts mobilization . 64 4.4.1. β-catenin signaling in migrated fibroblasts ...................... 64 4.4.2. Dkk-1 mediates fibroblast migration ................................. 65 4.5. MCP-1 mediates curcumin induced anti-inflammation .......... 67 4.5.1. Curcumin inhibits PBMC chemotaxis ............................... 67 4.5.2. Curcumin inhibited macrophage (MV-4-11) chemotaxis is mediated by MCP-1 ......................................................................... 68 4.6. Wound healing in vivo .............................................................. 69 4.6.1. Cc/Glt NM accelerates wound closure in vivo .................. 69 4.6.2. Cc/Glt NM enhances dermal regeneration ........................ 70 4.6.3. Cc/Glt NM enhances collagen deposition ......................... 72 4.6.4. Cc/Glt NM inhibits macrophage infiltration in vivo .......... 74 5. DISCUSSION .......................................................................................... 75 5.1. Electrospun Cc/Glt NM successfully nano-formulates crucmumin and enhances its bioavailability for wound therapy ...... 77 5.2. Electrospun Cc/Glt NM is ideal for topical wound treatment 89 5.3. Delivered curcumin exterts synergistic signalling to accelerate wound healing ..................................................................... 98 5.4. Electrospun Cc/Glt NM could be a benificial complement to current wound therapy ........................................................................ 108 6. GENERAL CONCLUSIONS AND PERSPECTIVES ............................. 115 7. APPENDIX ............................................................................................ 116 8. ACKNOWLEDGEMENTS ..................................................................... 118 9. REFERENCES ...................................................................................... 126 LIST OF FIGURES AND TABLES Figure 1: Structure of the human skin ........................ 错误!未定义书签。 Figure 2: "Brick and Motar" pattern of the stratum corneum ................. 8 Figure 3: Acute wounds ........................................................................... 14 Figure 4: Molecular structures of turmeric-derived curcuminoids....... 28 Figure 5: Electrospinning process .......................................................... 33 Figure 6: Bending instability .................................................................... 34 Figure 7: Morphology ............................................................................... 52 Figure 8: Curcumin nanoformulation ...................................................... 53 Figure 9: Curcumin incorporation in gelatin nanofiber ......................... 54 Figure 10: Curcumin release in vitro ....................................................... 55 Figure 11: Mechanical property of Cc/Glt NM ......................................... 57 Figure 12: Cytotoxicity of electrospun NM in vitro ................................ 58 Figure 13: Fluorescence-based cytotoxicity in vitro ............................. 59 Figure 14: Cell visualization on the nanofibrous mat ............................ 61 Figure 15: Fibroblast in vitro wound healing ......................................... 62 Figure 16: Paracrine profile of fibroblasts .............................................. 63 Figure 17: Quantified cytokine expression............................................. 64 Figure 18: β-catenin signaling in migrated cell ...................................... 65 Figure 19: Dkk-1 mediates fibroblast migration ..................................... 66 Figure 20: Curcumin inhibits PBMC chemotaxis ................................... 67 Figure 21: Curcumin inhibited macrophage (MV-4-11) chemotaxis is mediated by MCP-1............................................................................ 68 Figure 22: Topical application of Cc/Glt NM accelerates wound closure in vivo ................................................................................... 69 Figure 23: Topical application of Cc/Glt NM enhances dermal regeneration ....................................................................................... 71 Figure 24: Topical application of Cc/Glt NM enhances collagen deposition .......................................................................................... 73 Figure 25: Topical application of Cc/Glt NM inhibits macrophage infiltration in vivo ............................................................................... 74 Figure 26: Scheme of curcumin nanoformulation through electrospinning .................................................................................. 87 Figure 27: Scheme of potential mechanism of curcumin induced accelerated wound healing ............................................................. 104 LIST OF ABBREVIATIONS AKT or PKB Protein kinase B Bcl-2 B-cell lymphoma 2 bFGF /FGF-2 Basic fibroblast growth factor BSA Bovine serum albumin CAT Catalase Cc/Glt NM Curcumin/Gelatin nanofibrous mats CCL5 Chemokine (C-C motif) ligand 5 CE Collision energy CM-Cc/Glt Conditioned medium of curcumin/gelatin nanofibrous mat NM CM-Glt NM Conditioned medium of gelatin nanofibrous mat CXP Collision cell exit potential Dkk-1 Dickkopf-related protein-1 DMEM Dulbecco's Modified Eagle's Medium DMSO Dimethyl sulfoxide DNA Deoxyribonucleic acid Dox Doxorubicin hydrochloride DP Declustering potential E. coli Escherichia coli ECM Extracellular matrix EEP Ethyl ethylene phosphate EGF Epidermal growth factor EHD Electrohydrodynamic FDA US Food and Drug Administrationthe FTIR Fourier transform infrared Glt NM Gelatin nanofibrous mats GPx Glutathione peroxidase GRAS Generally recognized as safe HB-EGF Heparin binding epidermal growth factor HBO Hyperbaric oxygen HGF Hepatocyte growth factor HHC Hexahydrocurcumin HO Heme oxygenase HPLC High-performance liquid chromatography HS-27 Human fibroblast cell line I.P. Intraperitoneal injection IGF Insulin-like growth factor IKK I kappa B kinase IL-1 Interleukin-1 IL-6 Interleukin-6 IL-8 Interleukin-8 KGF Keratinocyte growth factor LD50 Lethal 50% dose values LDH Lactate dehydrogenase LPS Lipopolysaccharide MCP-1 Monocyte chemoattractant protein 1 MMPs Matrix metalloproteinases MNPs Magnetic nanoparticles MRSA Methicillin-resistant Staphylococcus aureus MV-4-11 Human Macrophage cell line NAC N-acetyl-l-cysteine NFDs Nanofiber-based wound dressings NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells NGF Nerve growth factor NM Nanofibrous mat NO Nitric oxide

Description:
For wound healing applications, such a system should ideally be able to mimick the structure and .. Dulbecco's Modified Eagle's Medium. DMSO blood vessels, lymph-vessels, nerves, muscles and various kinds of cutaneous .. contain both the machinery needed to produce calcitriol and vitamin D.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.