JournalofVisualizedExperiments www.jove.com VideoArticle Electrophysiological Recordings from the Giant Fiber Pathway of D. melanogaster Hrvoje Augustin1,MarcusJ. Allen2,Linda Partridge1 1InstituteofHealthyAgeing,andGEE,UniversityCollegeLondon-UCL 2SchoolofBiosciences,UniversityofKent Correspondenceto:[email protected] URL:http://www.jove.com/details.php?id=2412 DOI:10.3791/2412 Citation:Augustin H.,Allen M.J.,Partridge L.(2011).ElectrophysiologicalRecordingsfromtheGiantFiberPathwayofD.melanogaster.JoVE.47. http://www.jove.com/details.php?id=2412,doi:10.3791/2412 Abstract WhenstartledadultD.melanogasterreactbyjumpingintotheairandflyingaway.Inmanyinvertebratespecies,includingD.melanogaster,the "escape"(or"startle")responseduringtheadultstageismediatedbythemulti-componentneuronalcircuitcalledtheGiantFiberSystem(GFS). Thecomparativelargesizeoftheneurons,theirdistinctivemorphologyandsimpleconnectivitymaketheGFSanattractivemodelsystemfor studyingneuronalcircuitry.TheGFSpathwayiscomposedoftwobilaterallysymmetricalGiantFiber(GF)interneuronswhoseaxonsdescend fromthebrainalongthemidlineintothethoracicganglionviathecervicalconnective.Inthemesothoracicneuromere(T2)oftheventralganglia theGFsformelectro-chemicalsynapseswith1)thelargemedialdendriteoftheipsilateralmotorneuron(TTMn)whichdrivesthe tergotrochanteralmuscle(TTM),themainextensorforthemesothoracicfemur/leg,and2)thecontralateralperipherallysynapsinginterneuron (PSI)whichinturnformschemical(cholinergic)synapseswiththemotorneurons(DLMns)ofthedorsallongitudinalmuscles(DLMs),thewing depressors.Theneuronalpathway(s)tothedorsoventalmuscles(DVMs),thewingelevators,hasnotyetbeenworkedout(theDLMsandDVMs areknownjointlyasindirectflightmuscles-theyarenotattacheddirectlytothewings,butrathermovethewingsindirectlybydistortingthe nearbythoraciccuticle)(KingandWyman,1980;Allenetal.,2006).Thedi-synapticactivationoftheDLMs(viaPSI)causesasmallbutimportant delayinthetimingofthecontractionofthesemusclesrelativetothemonosynapticactivationofTTM(~0.5ms)allowingtheTTMstofirstextend thefemurandpropeltheflyofftheground.TheTTMssimultaneouslystretch-activatetheDLMswhichinturnmutuallystretch-activatetheDVMs forthedurationoftheflight.TheGFpathwaycanbeactivatedeitherindirectlybyapplyingasensory(e.g."air-puff"or"lights-off")stimulus,or directlybyasupra-thresholdelectricalstimulustothebrain(describedhere).Inbothcases,anactionpotentialreachestheTTMsandDLMs solelyviatheGFs,PSIs,andTTM/DLMmotoneurons,althoughtheTTMnsandDLMnsdohaveother,asyetunidentified,sensoryinputs. Measuring"latencyresponse"(thetimebetweenthestimulationandmuscledepolarization)andthe"followingtohighfrequencystimulation"(the numberofsuccessfulresponsestoacertainnumberofhighfrequencystimuli)providesawaytoreproduciblyandquantitativelyassessthe functionalstatusoftheGFScomponents,includingbothcentralsynapses(GF-TTMn,GF-PSI,PSI-DLMn)andthechemical(glutamatergic) neuromuscularjunctions(TTMn-TTMandDLMn-DLM).Ithasbeenusedtoidentifygenesinvolvedincentralsynapseformationandtoassess CNSfunction. Protocol 1. Equipment and Materials 1. Theseexperimentsuseastandardelectrophysiologysetupcomprisedofastimulator,astimulusisolationunit,twomicroelectrodeamplifiers, adataacquisitionsystemandacomputerwithcollectionsoftware.AdditionalequipmentincludesaFaradaycage,astereomicroscopeona boomstand,avibrationisolationtable,alightsource,andarecordingplatform. 2. Fivemicromanipulatorsareused.Twomicromanipulatorsrequirefinecontrolsforpositioningtherecordingelectrodes,whiletheotherthree micromanipulatorsonlyrequiregrosscontrolstopositionthetwostimulationelectrodesandthegroundelectrode.Themicromanipulatorfor theDLMrecordingelectrodeisplacedatthetailendofthepreparation(leftofexperimenter)andthemicromanipulatorfortheTTMrecording electrodeisplacedbetweentheexperimenterandthesideofthepreparation(slightlytotheleftoftheexperimenter).Thetwo micromanipulatorsthatwillholdthesimulationelectrodesareplacedattheheadofthepreparation(rightofexperimenter).The micromanipulatorforthegroundelectrodeisplacedatthefarsideofthepreparation 3. Pullglassrecordingmicroelectrodeswithresistancesof40-60MΩandstoreflatinadishsupportedbywax.Forstimulation,two electrolytically(NaOH)sharpenedtungstenelectrodesareused.Atungstenwire,orathirdelectrolyticallyfabricatedelectrodeisusedasa ground.Thestimulatingandgroundelectrodesarepreparedandattachedtothemicromanipulatorsbeforethestartoftheexperimental sessionandneednotbereplacedforthedurationofthesession. 2. Preparing the D. melanogaster 1. Onceyourequipmentissetup,it'stimetopreparetheflies.AnesthetizethefliesbycoolingonthemiceorbyusingCO2.IfCO2isused,then allowsufficienttime(about20mins)fortheeffectsofthegastowearoffpriortobeginningtheexperiment. 2. Useforcepstotransferthefliesgentlybytheirlegstoadishcontainingaplatformofsoftwaxslopedatanangleofapproximately45°.The nextfourstepsaredoneunderadissectingmicroscopeawayfrom(butcloseto)therecordingequipment. 3. Thenextstepistosecuretheflyinwax.Orienttheflyventralsidedown,withitsanteriorfacingupwardsontheslope.Usingapairoffine forceps,extendthelegsoutwards,inpairs,andpushthemintothewax. 4. Familiarizeyourselfwiththelocationofthemusclestoberecordedfrom:thedorsallongitudinalmuscle,orDLM,andthetergotrochanteral muscle,orTTM.ThesubcuticularattachmentsitesoftheDLMscorrespondwiththeregionbetweenthethoracicmidlineandtheanterior dorsalbristles(orsetae).TheTTMattachmentsitesarelocateddorsallyoftheposteriorandanteriorsupra-alarbristles.Makingsurethatthe wingswillnotobstructaccesstotheDLMorTTMfibers,holdthewingsoutwardand'glue'themtothewax. Copyright©2011JournalofVisualizedExperiments Page1of4 JournalofVisualizedExperiments www.jove.com 5. Usingafinepairofforceps,pulltheproboscisoutwardcarefully,andsecureitbyimmersingitintothewax.Thisisacriticalstepthatrequires somepracticesincetheproboscisissoftandiseasilydetachedfromtherestofthehead.Ifthathappens,discardtheflyandstartover. Failuretosecuretheheadinthiswayleadstoproblemswheninsertingthestimulatingelectrodesthroughtheeyes. 3. Placing the Electrodes 1. Oncetheflyisanchoredtothewax,transferthedishwiththeattachedflyunderneaththestereomicroscopethatislocatedinsidetheFaraday cage.Orienttheflysidewayswiththeheadoftheflytotherightoftheexperimenter. 2. Thenextstepistoinserttheelectrodes.Groundandstimulatingelectrodescanbeinsertedwithoutlookingthroughthemicroscope.Good recordingsrelyonpreciseimpalement,soitisagoodideatopracticehandlingthemicromanipulators.Bringtheelectrodesclosetothesites ofinsertionwiththehelpofmicromanipulatorstofacilitatetheirproperplacingandsubsequentrecordings. 3. Lowerthegroundelectrodeintotheposteriorendoftheabdomenusingtheadjustmentwheelsonthemicromanipulator.Toplacethe sharpenedtungstenstimulatingelectrodesinthebrain,usethemicromanipulatortopositionthetipofoneoftheelectrodessoitjusttouches oneoffly'seyes.Dothesamewiththeothersobothelectrodesarejusttouchingtheoutsideofeacheye.Thenpushtheelectrodes,inturn, througheacheyesothetipsoftheelectrodesreachthebrainsituatedatthebackoftheheadcapsule(about2-3mm). 4. CorrectlyplacedelectrodeswillactivatetheGiantFiberSystem.Totestthatthestimulatingelectrodesareplacedcorrectly,applyashort (0.03ms)stimulusof30-60Vacrossthestimulatingelectrodes,andlookformovementofthewingsandtwitchesoftheflight/legmuscle' 5. Thenextstepistoback-filltheglassmicroelectrodeswith3MKClusingaHamiltonorheat-pulledplasticsyringe,andplacethemintothe fine-controlmicromanipulators.Properlyinsertedmicroelectrodescanbeusedforseveralroundsofexperiments. 6. ThefirstrecordingelectrodewillbeinsertedintoaDLMfiber.TherearetwobilaterallysymmetricDLMs;eachoneiscomposedofsix individualmusclefibers.Therecordingscanbedonefromanyofthesixfibers;however,themostcommonlyusedareDLMfibers45aand 45bduetotheirgoodaccessibilitythroughthedorsalsideofthethoraciccuticle,andthefactthatbothfibersareinnervatedbythesame motorneuron. 7. Usingthemicromanipulatoronthesidefarthestfromyou,insertarecordingelectrodeintoDLMfiber45aorb.Theslopeoftheplatform allowstheDLMelectrodetoenterthedorsalcuticleata~60-90°angle,whichaidspenetration.Usethesoftwareinoscilloscopemodeand lookatthecomputermonitorwhileinsertingrecordingelectrodesintothethorax.Whentheelectrodehasenteredamusclethebaselinewill droptonearzerooranegativevalue.Testwithasinglestimulustoseeifyoucanobservethemuscleresponse. 8. InserttheotherrecordingelectrodeintotheTTMclosesttoyou.Thiselectrodeisinsertedlaterally,infrontofyou,duetothelocationofthe muscleattachmentsite.Againobservethemonitorwhiledoingthisandtestwithasinglestimulusoncethetraceindicatestheelectrodeisin themuscle. 4. Stimulation and Recording 1. Youarenowreadytobeginstimulatingthebrainandrecordingresponsesfromthelegandflightmuscles.Applyashort(0.03ms)stimulus acrossthestimulatingelectrodesstartingat30Vandincreasingto60Vuntilyouobservearesponse(i.e.amuscletwitch,andamusclecell depolarizationasobservedonthecomputermonitor).Fortheremainderoftheexperiment,setthevoltage5-10Vabovetheresponse threshold. 2. Tomeasureresponselatency,giveatleast5singlestimuliwitha5secondrestperiodbetweeneachstimulus. 3. Determinethe"frequencyoffollowing"byprovidingtrainsofstimuliatdifferentrates.Typically10trainsof10stimuliaregivenat100Hz (10msbetweeneachstimulus),200Hz(5msbetweeneachstimulus)and300Hz(3msbetweeneachstimulus).Allowarestperiodof2 secondsbetweeneachtrainofstimuli. 5. Results: Response Latencies and Frequency of Following in the Giant Fiber Pathway 1. Theresponselatencyisthetimebetweenstimulationofthebrainanddepolarizationofthemuscle.Thisfigurecomparestheresponse latenciesforDLMandTTMtoasinglestimulus.Latenciesbetween0.7and1.2msfortheGF-TTMpathwayandbetween1.3and1.7msfor theGF-DLMpathwayindicateahealthypreparationandproperrecordingtechnique.Thelatenciescanvarywithgenotype,genetic background,temperatureandage. Figure1(AandB).RepresentativetracesshowingresponsesrecordedfromtheTTMsandDLMsfollowingasinglestimulusappliedtothe brain. 2. Asshownhere,recordingsfromtheTTMshowmorevariabilityintermsofamplitudeandshapeofthepostsynapticpotential(PSP)compared tothosefromthelargeDLMfibers;thisincreasedvariabilityisduetothesmallsizeoftheTTMmusclefibers.Thisvariability,however,does notaffecttheresponselatencyvaluesfortheGiantFiber-to-TTMpathway. Figure1(CandD).Further'responselatency'tracesfrom4individualfliesforboththeTTMandDLM.NoteTTMtracesexhibitvariabilityin PSPshapebutresponselatencyisunaffected.ForDLMthereislessvariabilityinPSPshape. Copyright©2011JournalofVisualizedExperiments Page2of4 JournalofVisualizedExperiments www.jove.com 3. Comparethe"frequencyoffollowing"at100Hz,200Hz,and300Hzbycalculatingtheproportionofsuccessfulresponses(outof10)forboth DLMandTTMpathwaysateachstimulationfrequency.At100Hz,bothTTMandDLMfollowthestimuli1:1.Atstimulationfrequenciesabove 100Hz,theDLMresponsesstarttoshowfailuresbecausetheintermediarychemicalsynapsebetweentwointerneuronsdoesnothave sufficienttimetorecoverbetweenstimuli.TheTTMresponses,however,remain1:1withstimulievenbeyond300Hz. Figure2.Representativetracesshowingthe"frequencyoffollowing"recordings.At100Hz,bothTTMsandDLMsrespondtoall10stimuli (left).At200Hz,theDLMresponsesstarttofail(asterisk). 6. Representative Results Wildtypeshort-latencyresponses(stimulatedelectrodesareplacedintheeyes,bypassingsensoryreceptorsandtriggeringtheGFcircuit directly)dependongenotype,geneticbackground,temperatureandage,andrangebetween0.7and1.2msfortheGF-TTMpathwayand1.3 and1.7msfortheGF-DLMpathway(TanouyeandWyman,1980;ThomasandWyman,1984;EngelandWu,1992;AllenandMurphey,2007; Phelanetal.,2008;Augustinetal.,unpublished).ThisveryshortTTMlatencyisduetotherobustGF-TTMnelectrochemicalsynapseofthe monosynapticpathwayandthelongerDLMlatencyoccursbecauseofthedisynapticnatureofthepathwayaswellasthepresenceofachemical synapse(PSI-DLMn).Intermediate-andlong-latencyresponses(>3ms)resultfromtheactivationoftheGFafferentsandareachievedeitherby usingalowerintensitystimulationorprovidingavisual("light-off")signal.At100HzbothTTMandDLMshouldfollowthestimuli1:1.Above100Hz DLMresponseswillstarttoshowfailuresasthechemicalsynapsebetweenPSIandtheDLMnsdoesnothavesufficienttimetorecoverbetween stimulilessthan10msapart.TTMresponses,however,willremain1:1withstimulievenbeyond300Hz(TanouyeandWyman,1980;Engeland Wu,1992;Allenetal.,2007;Martinezetal.,2007).MutationsintheshakBgene,encodingaDrosophilagapjunctionchannel("innexin"), significantlyincreasetheresponselatencyoftheGF-TTMpathway(~1.5ms)whiletheGF-DLMbranchisunresponsive(AllenandMurphey, 2007;Phelanetal.,2008).Themutantresponsecanberestoredbystimulatingthoracicgangliadirectly,demonstratingthatthedelayedeffectis notduetodisruptedneuromusculartransmission.Theabilitytofollowhighfrequencystimulationisalsoimpairedinthesemutantscomparedto wildtypeflieswheretheGF-DLMandGF-TTMpathwaysareusuallyabletofollow10stimuliwith1:1ratioupto100Hzand300Hz,respectively. Itisimportanttonotethatthesefrequenciesareconsiderablyabovenormalstimulationfrequenciesreceivedbythecontractingmusclesduring thesustainedflight(3-10Hz)(HummonandCostello,1989). AnotherparameterusedtodescribethestabilityoftheGFSoutputsisthe"refractoryperiod",ortheminimaltimebetweentwinstimuluspulses thatstillproducestworesponsesfromthemuscle.Therefractorytimevariesbetween1-4msforTTMsand7-15msforDLMs.Thecomparatively longrefractoryperiodforDLMsisduetorelativelylabilechemicalsynapsesatthePSI-DLMnjunction(TanouyeandWyman,1980;Gorczycaand Hall,1984;EngelandWu,1992;Banerjeeetal.,2004;AllenandGodenschwege,2010). Copyright©2011JournalofVisualizedExperiments Page3of4 JournalofVisualizedExperiments www.jove.com Discussion Oneofthemostimportantthingsonehastopayattentiontowhentryingtoobtainhighqualityrecordingsistheproperorientationandhealthof thepreparation.Ideally,theflyshouldstillbealiveattheendoftherecordingsessionandresponsivetoelectricalstimuli.Fortherecording electrodestomostefficientlypenetratethethoracicexoskeleton,theflyshouldbegluedtothesurfaceinsuchawayastoformarightanglewith theelectrodes;ifnecessary,theinsertionofelectrodescanbefacilitatedbyremovingaportionofthedorsalthoraciccuticlewithatungsten scalpelthusexposingtheDLMflightmuscle(thisstepoffersanadditionaladvantageofmakingitharderforthetipsofglasselectrodestobreak). Also,thecaremustbetakentoavoidpushingtheelectrodesthroughthesubcuticularlylocatedDLMsandTTMs.Theheadoftheflyshouldbe wellsecuredtoallowforthestimulatingelectrodestobeproperlyinsertedintothebrainandtopreventthemfrombeingpulledoutduringthe recordingsession. Duetoitssizeandwell-describedmorphology,theGFSrepresentsoneofthemostaccessibleneuronalpathwaysinDrosophila.The permeabilityofelectricalsynapsestosmallmolecularweighttracerdyesallowsforthevisualisationofelectricallycoupledneurons,andseveral availableGAL4linesmakeitpossibletomanipulategeneexpressionlevelsinasubsetofcellsorcellgroups(Jacobsetal.,2000;Allenetal., 2006)Inadditiontotheabovementionedadvantages,bothafferentandthoraciccomponentsofthecircuitdisplaypropertiessuchashabituation, spontaneousrecoveryanddishabituation,makingtheDrosophilaGFSaconvenientmodelsystemforstudyingneuronalplasticity(EngelandWu, 1996). Disclosures Noconflictsofinterestdeclared. Acknowledgements ThisworkwassupportedbyaWellcomeTrustgranttoL.P. References 1. Allen,M.J.,Godenschwege,T.ElectrophysiologicalRecordingsfromtheDrosophilaGiantFiberSystem.In:BingZhang,MarcR.Freeman, ScottWadde,DrosophilaNeurobiology:ALaboratoryManual(1stLabed.),ColdSpringHarborPress,pp.(2010). 2. Allen,M.J.,Godenschwege,T.A.,etal.Makinganescape:developmentandfunctionoftheDrosophilagiantfibresystem.SeminCellDev Biol17(1):31-41(2006). 3. Allen,M.J.,andMurphey,R.K.ThechemicalcomponentofthemixedGF-TTMnsynapseinDrosophilamelanogasterusesacetylcholineas itsneurotransmitter."EurJNeurosci26(2):439-445(2007). 4. Banerjee,S.,Lee,J.etal.Lossofflightandassociatedneuronalrhythmicityininositol1,4,5-trisphosphatereceptormutantsofDrosophila.J Neurosci24(36):7869-7878(2004). 5. Engel,J.E.,andWu,C.F.Interactionsofmembraneexcitabilitymutationsaffectingpotassiumandsodiumcurrentsintheflightandgiant fiberescapesystemsofDrosophila.JCompPhysiolA171(1):93-104(1992). 6. Engel,J.E.,andWu,C.F.AlteredhabituationofanidentifiedescapecircuitinDrosophilamemorymutants.JNeurosci16(10):3486-3499. 7. Gorczyca,M.andHall,J.C.IdentificationofacholinergicsynapseinthegiantfiberpathwayofDrosophilausingconditionalmutationsof acetylcholinesynthesis.JNeurogenet1(4):289-313(1984). 8. Hummon,M.R.,andCostello,W.J.GiantfiberactivationofflightmusclesinDrosophila:asynchronyinlatencyofwingdepressorfibers.J Neurobiol20(6):593-602(1989). 9. Jacobs,K.,Todman,M.G.,etal.Synaptogenesisinthegiant-fibresystemofDrosophila:interactionofthegiantfibreanditsmajor motorneuronaltarget.Development127(23):5203-5212(2000). 10. King,D.G.,andWyman,R.J.AnatomyofthegiantfibrepathwayinDrosophila.I.Threethoraciccomponentsofthepathway.JNeurocytol 9(6):753-770(1980). 11. Martinez,V.G.,Javadi,C.S.,etal.Age-relatedchangesinclimbingbehaviorandneuralcircuitphysiologyinDrosophila.DevNeurobiol 67(6):778-791(2007). 12. Miller,A.TheinternalanatomyandhistologyoftheimagoofDrosophilamelanogaster.In:M.Demerec,Editor,BiologyofDrosophila(2nded.), (Hafner,NewYork)pp.502-503(1965). 13. Phelan,P.,Goulding,L.A.,etal.MolecularmechanismofrectificationatidentifiedelectricalsynapsesintheDrosophilagiantfibersystem. CurrBiol18(24):1955-1960(2008). 14. Power,M.E.Thethoracico-abdominalnervoussystemofanadultinsect,Drosophilamelanogaster.JCompNeurol88(3):347-409(1948). 15. Tanouye,M.A.andWyman,R.J.MotoroutputsofgiantnervefiberinDrosophila."JNeurophysiol44(2):405-421(1980). 16. Thomas,J.B.andWyman,R.J.MutationsalteringsynapticconnectivitybetweenidentifiedneuronsinDrosophila.JNeurosci4(2):530-538 (1984). Copyright©2011JournalofVisualizedExperiments Page4of4