©EntomologicaFennica.13May2015 Electrophysiological and behavioral responses of Tomicus minor (Coleoptera: Scolytidae) to host volatiles HuaYang+,Hong-WeiWang+,WeiYang*&Chun-PingYang Yang,H.,Wang,H.-W.,Yang,W.&Yang,C.-P.2015:Electrophysiologicaland behavioral responses of Tomicus minor (Coleoptera: Scolytidae) to host vola- tiles.—Entomol.Fennica26:15–24. Toscreenforhostvolatilesthateffectively attractthelesserpineshootbeetle, Tomicusminor(Coleoptera:Scolytidae),animportantforestpest,watervapor distillation extraction and gas chromatography-mass spectrometry were com- binedtoanalyzevolatilesemittedfromuninfestedandinfestedshootsofPinus yunnanensis(Pinaceae).ElectroantennographyandY-tubeolfactometerbehav- ioraltestswereusedtocompareandanalyzetheresponsesofmaleandfemale beetlestoeachofselectedeightcompounds.Thespectrometryresultsshowed that monoterpenes are the primary chemicals emitted by P. yunnanensis. The electroantennogramresponsesofadultT.minortosixoftheplantcompounds peakedat10µg/µL;theexceptionswereterpinoleneandmyrcene,whichhad maximaabove100µg/µL.(+)-(cid:1)-Pineneand(cid:2)-phellandrenewerestronglyat- tractivetothemaleandfemaleadults. H.Yang,H.-W.Wang,W.Yang&C.-P.Yang,KeyLaboratoryofEcologicalFor- estry Engineering of Sichuan Province, College of Forestry, Sichuan Agricul- tural University, Ya’an, Sichuan 625014, China; *Corresponding author’s e- mail:[email protected].+Theseauthorscontributedequallytothisar- ticle Received14July2014,accepted9October2014 1.Introduction Kuzen.Likewise,Miaoetal.(2004)showedthat Dendroctonus valens LeConte was attracted to Volatileorganicchemicalsreleasedbyhostplants (+)-3-careneofitshostinChina.Furthermore,a canattractinsectsandstimulatetheirfeedingand mixtureof(cid:1)-pineneandethanolwasstronglyat- oviposition (Stanjek et al. 1997, Ruther et al. tractivetoT.piniperda(Byers1992).Thesestud- 2000, Du 2001, Inui et al. 2003, Inui & Itioka ies suggest that plant volatile chemicals can be 2007,Huetal.2009).Suchkairomonesinclude importantforattractionandhostlocationbyher- monoterpenes, fatty acid derivatives, phenyl- bivorousinsectsand may beeffectively used to propanoids,andisoprenoids,amongothers(Vis- monitor and control pest activities (Allison & ser1986,Bernays&Graham1988,Bruceetal. Cardé2008,Williamsetal.2008,Ngumbietal. 2005,Zhugeetal.2010). 2009).Inmanycases,electroantennographyfol- Zhang et al. (2007) reported that Ips lowedbyY-tubeolfactometerbehavioraltestsis subelongatusMotschulskywaspreferentiallyat- usedtoscreenandselectcandidatevolatilechem- tracted to (cid:1)-pinene, (cid:2)-pinene, and p-isopropyl- icalsthatelicitresponsesbyinsects(Han&Han toluenereleasedbyitshostLarixgmelinii(Rupr.) 2007,Davidetal.2009). 16 Yangetal. (cid:127) ENTOMOL.FENNICAVol.26 Inthisstudy,compositionandamountsofvol- yunnanensis trees (age: 30 years, height: 18–20 atile chemicals were compared between un- m,diameteratbreastheight:20–25cm)into1–2 infestedandinfestedPinusyunnanensisFranchet metrelongpieces,andputthemintoseveralmesh shoots, and electrophysiological and behavioral cages(2.5×2.5×2.0m)atroomtemperature(25 responsesofTomicusminorHartig,1834(Cole- °C± 2). Theemerging femaleand malebeetles optera:Scolytidae)tosyntheticcompoundswere were collected and placed in individual cages assessed.Thisworkmayleadtotheidentification (5cm×5cm×5cm,stainlesssteelmesh)atthe ofattractantsthatcanbeusedtocontrolandmon- roomtemperature.Femaleandmalebeetleswere itorT.minor. distinguished by the fact that male adults chirp butfemaleadultsdonot(Ye1996). 2.Materialandmethods 2.2.Extractionandidentification 2.1.Lesserpineshootbeetle ofvolatilechemicalsemittedfromshoots 2.1.1.Basicbiology Branches from both infested and uninfested 2- year-old P. yunnanensis were collected from Thelesserpineshootbeetle,Tomicusminor,isan Yunnan pine plants in Luding County, Sichuan oligophagous wood boring beetle that feeds on Province. Branches were then cut into 1 cm morethan20hostspeciesofPinaceae,including pieces,and600gwereplacedintoawatervapor Pinus yunnanensis, P. massoniana Lamb, P. ta- distillerfilledwith1200mLdeionizedwaterfor4 buliformisCarr,P.densifloraSieb.etZucc,Larix hoursasdescribedinWangetal.(2002).Thedis- spp., and Picea spp. (Långström 1983, Ying & tilledliquidwasextractedwithanhydrousether Huang 1984). Tomicus minor is widely distrib- (analytically pure; Chengdu Kelong Chemical, utedinChina,Japan,Russia,andEurope(Lund- Chengdu,China)anddewateredwithanhydrous gren 2004, Alonzo-Zarazaga 2013). The beetle sodium sulfate (analytically pure; Chengdu undergoes one generation per year and over- Kelong Chemical). Then, the diethyl ether was wintersasanadultinbark(Yeetal.2004,Xueet removedwithconcentratedN.Finally,2mLofa 2 al.2007).Adultsexittheirholesandfeedonfresh paleyellowtransparentgreasewithastrongaro- shoots from April to May (Kirkendall et al. matic odor was obtained and stored in an ultra- 2008).InChina,P.yunnanensisisthepreferred coldfreezer(–80°C)(Sanyo,Osaka,Japan)and hostforbothlarvaeandadults(Yeetal.2004). usedforchemicalidentification. Aftereclosion,theadultsofT.minorflytothe The extracts were analyzed by gas chroma- crownsofadjacentP.yunnanensistreesandfeed tography (GC) (Shimadzu, model 17A; Kyoto, onshoots.Aftersexualmaturity,theymovetothe Japan)coupledwithaShimadzuQP5050Aelec- trunkwheretheymateandoviposit.Thedamage tronionizationmassdetector(MS).TheGC-MS tostemsmay causetreemortality by disrupting was operated in the splitless mode, and was waterandnutrientflowbetweenthefoliageand equippedwithaDB-5(30m×0.25mm×25µm) roots(Lietal.2006)andcanalsoresultinwith- capillary column (Agilent Technologies, Santa eredandbrokenshoots(Yingetal.1984,Ye& Clara,CA,USA).Thecolumnoventemperature Ding1999).Thus,controllingthevirginmaleand wasprogrammedtorisefromtheinitialtempera- femaleadultsduringtheshoot-feedingperiodis tureof70°C(1min)to100°Cat10°Cmin–1, critical to prevent T. minor outbreaks in P. thento250°Cat5°Cmin–1,atwhichthecolumn yunnanensisstands. wasmaintainedfor2minutes. Forthemassspectrometer,thevoltageofthe 2.1.2.Beetlecollectionandrearing electronimpactionsourcewas70eV,thetemper- ature of the GC-MS connector was 250 °C, the Lesser pine shoot beetles were collected from temperature of the ion source was 200 °C, the YunnanpineplantsinfieldsnearLuding,Sichuan scanningspeedwas0.4s,thescanningrangewas Province, China in May, 2013. We cut five P. mass-to-chargeratio(m/z)40–450,andtheelec- ENTOMOL.FENNICAVol.26 (cid:127) ResponsesofTomicusminortohostvolatiles 17 triccurrentinthefilamentwas150µA.Themass vice.Whenthebaselinewasstable,theantenna spectrogram was directly checked against the wasstimulated. Thestimulationtimewas0.5s, standard mass spectrogram from the NIST (the andtheintervalbetweenstimuliwas30s,which national institute of standards and technology) permittedrecoveryoftheantennalreceptors.For database of this device to identify the chemical each compound, twelve antennae (from six dif- component. ferentmalesandfemales)weretested,andeach antennawasstimulatedfivetimes.Distilledhex- ane was the standard, and the mean of the ob- 2.3.Syntheticcompounds servedfivevaluesforeachantennawasdivided bythemeanofthetwostandardvaluestogivethe BasedontheGC-MSanalysis,weselectedeight relativeantennalresponse(Yangetal.2013). compoundsofthehighestrelativeabundanceto betestedforEAGdose-response.Onlytheeight compoundswereselectedfortheEAGdose-re- 2.5.Bioassayofbehavioralresponses sponsetestsinordertomatchtothelimitedlabo- ratoryconditions,expenditureetc.Thesynthetic Totestthebehavioralresponsesofadultbeetles,a compounds of these eight chemicals were pur- glassY-tubeolfactometerwiththeinsidediame- chasedfromTokyoChemicalIndustry Co.(To- terof0.5cmwasused.Themainarmofthede- kyo, Japan): (+)-(cid:1)-pinene (95% pure) and (cid:2)- vicewas6cmlong,aswaseachsidearm.Thean- caryophyllene (90% pure), and from Aladdin gle between the two side arms was 75 degrees, Chemistry Co. (Shanghai, China): ((cid:2)-pinene andtheendsofthearmshadground-glassedges. (98% pure),(+)-3-carene (90% pure), (+)-limo- Thetwosidearmswereconnectedtotwo250-mL nene(97%pure),myrcene(90%pure),terpino- volumetricflasksbyTeflontubes.Amicro-sam- lene(85%pure),and(cid:2)-phellandrene(99%pure). plerwasusedtoextract10µLofacompoundand They were each dissolved in distilled hexane at solution(distilledhexane) for eachcomparison, concentrationsof0.01,0.1,1,10,and100µg/µL and the liquid was dropped onto a filter paper andusedfortheelectroantennogramanalysisbe- (1×1cm). low. Filterpaperswereseparately placedintothe twovolumetricflasks,whichwereconnectedby Teflon tubes to a distilled water humidification 2.4.Electroantennograms bottleandacharcoalfilter.Theairflowspeedwas controlledat0.5–0.6L/min.Thetestswererunat Antennal recordings of the responses of female 08:00–12:00,whenthetemperatureofthelabora- and male T. minor to the eight individual com- torywas25±2°C. pounds were made using Syntech (Hilversum, AdultT.minorwasintroducedintotheinletof The Netherlands) equipment comprising themainarmoftheY-tube,andtimingbeganaf- micromanipulators,aCS-05stimulusaircontrol- tertheyhadmovedforward2cmfromtheinlet. ler,andanIDACsignalconnectionboxfordata Adultshadtomakeachoiceatthejunctionofthe acquisition. Electroantennogram (EAG) signals Y-tube. The tests were conducted for 5 min for anddatawereanalyzedusingacustomizedsoft- eachadult.Ifabeetlewentforward2cmintoa warepackage(EAGforWindowsXP,Syntech). sidearmandstayedforatleast1min,itwasre- The antennae of T. minor were excised and cordedashavingmadeachoiceofthatodor;oth- mountedbetweenAgandAgClglasselectrodes erwise,itwasrecordedtohavemadenochoice. filledwithRingersolution. Aftereveryfiveadults,thetwoarmsoftheY-tube A2-µLodorsourcesample(oneoftheeight wereinterchangedtoeliminatethepossibleinflu- monoterpenoidcompounds)wastakenwithami- ence of individual arms on the insect behavior. cro-sampler. It was uniformly dripped onto a After each treatment, the Y-tube olfactometer, foldedfilterpaper(1.5×1.5cm)thatwasputinto Teflontubes,andvolumetricflaskswerewashed a10-cmsampletube.Theendofthesampletube with ethanol and allowed to air dry. For each wasconnectedtoanodor-stimulatingcontrolde- treatment, threereplicates of30 females and 30 18 Yangetal. (cid:127) ENTOMOL.FENNICAVol.26 Table1.Gaschromatography-massspectrometryresultsasrelativeabundances(%,mean±SE,N=3)of42 compoundsofuninfestedandinfestedshootsofPinusyunnanensis.Retentiontimesareshownbelowrelative abundances. Compound Uninfested Infested t Tricyclene 0.28±0.01 0.06±0.01 10.02 3.72 3.72 P=0.001 (+)-(cid:1)-pinene 40.8±1.28 8.29±0.80 16.23 3.84 3.84 P0.001 Camphene 1.10±0.10 0.34±0.05 7.01 4.04 4.04 P=0.002 Sabinene 0.92±0.08 0.10±0.01 9.76 4.32 4.32 P=0.001 (cid:2)-pinene 10.48±0.70 12.39±0.94 –1.64 4.39 4.39 P=0.177 (cid:1)-phellandrene 0.12±0.02 0.11±0.01 0.08 4.76 4.76 P=0.448 (+)-3-carene 4.72±0.05 4.12±0.11 4.90 4.86 4.86 P=0.008 2,6-dimethylbenzenemethylether 0.16±0.01 – – 4.96 – – (+)-limonene 6.05±0.11 5.09±0.21 4.09 5.15 5.15 P=0.015 (cid:2)-phellandrene 11.02±0.15 12.48±0.38 –3.61 5.17 5.17 P=0.023 Ocimene 0.22±0.01 0.14±0.01 9.80 5.40 5.40 P=0.001 (cid:3)-terpinene 0.28±0.02 0.16±0.03 3.52 5.63 5.63 P=0.024 Terpinolene 3.52±0.14 3.92±0.14 –2.03 6.15 6.15 P=0.112 Fenchol – 0.10±0.02 – – 6.59 – Camphor 0.22±0.02 0.33±0.04 –2.61 7.15 7.15 P=0.059 Camphol 0.24±0.04 0.21±0.01 0.78 7.49 7.49 P=0.478 4-terpenol 0.33±0.04 0.26±0.03 1.30 7.67 7.67 P=0.263 (cid:1)-terpilenol 0.60±0.04 2.42±0.18 –10.00 7.89 7.89 P=0.001 Verbenone 0.06±0.01 – – 8.26 – – 2-isopropyl-5-methylanisole 0.13±0.01 0.17±0.03 –1.12 8.63 8.63 P=0.325 Bornylacetate 1.78±0.19 1.02±0.09 3.59 9.65 9.65 P=0.023 (-)-(cid:1)-cubebene – 0.04±0.01 – – 10.93 – (cid:1)-pinene 0.10±0.01 0.36±0.05 –5.34 11.48 11.48 P=0.006 (cid:2)-elemene 0.29±0.07 0.52±0.05 –3.63 11.76 11.76 P=0.022 (cid:2)-caryophyllene 7.42±0.34 14.75±1.21 –5.85 12.32 12.32 P=0.004 Aromadendrene – 0.05±0.01 – – 12.65 – (E)-(cid:2)-farnesene 0.19±0.02 – – 12.82 – – ENTOMOL.FENNICAVol.26 (cid:127) ResponsesofTomicusminortohostvolatiles 19 Table1continued Compound Uninfested Infested t (cid:2)-sesquiphellandrene – 0.34±0.08 – – 12.83 – (cid:1)-caryophyllene 1.21±0.17 2.68±0.12 –6.94 12.91 12.91 P=0.002 Myrcene 5.56±0.30 20.52±1.52 –9.67 13.38 13.38 P=0.001 (cid:1)-selinene – 0.32±0.02 – – 13.48 – Germacrene 0.12±0.02 0.46±0.06 –5.50 13.59 13.59 P=0.005 (cid:1)-muurolene – 2.35±0.27 – – 13.66 – (cid:4)-cadinene – 0.22±0.01 – – 13.81 – 2,6-di-tert-butyl-4-methylphenol – 0.62±0.14 – – 13.85 – (cid:3)-cadinene 0.32±0.02 1.18±0.10 –8.27 13.94 13.94 P=0.001 (cid:4)-cadinene 1.24±0.11 – – 14.09 – – (cid:1)-elemene – 0.15±0.02 – – 14.14 – (-)-isocaryophyllene – 0.30±0.05 – – 15.29 – t-cadinol – 1.48±0.19 – – 16.43 – t-muurolol – 1.95±0.18 – – 16.69 – a-cadinol 0.52±0.05 – – 16.70 – – –= Compoundnotdetected. malesofthesameeclosiontimewereperformed, ioral responses to different compounds, sepa- andeachadultwasusedonlyonce. rately for females and males. After ANOVAs, Duncan’s multiple range tests were used to test thedifferencesintheattractionamongthecom- 2.6.Statisticalanalyses pounds from P. yunnanensis (Dong et al. 2000, Liuetal.2005).Theratesofattraction,repellence Statistical analyses were performed using the and indifference (no choice) were calculated as SPSS18.0statisticalpackage(IBM,Chicago,IL, follows(Dingetal.1996,Yanetal.2006): USA). Independent-sample t-tests and Bonfer- ronicorrectionwereusedtocomparetherelative A=100×N /N (1) t abundances of individual compounds in un- infested and infested plants as well as EAG re- whereAisattractionrate(%),N isthetotalnum- t sponses of female and male adults to the same ber of T. minor in the treatment arm of the dose.Chi-squaredtestswereusedtotestwhether olfactometer,andNisthetotalnumberofT.mi- femaleandmaleadultswereattractedtothese- nortested. lectedeightcompoundsintheolfactometertrials (Yang et al. 2013). A one-factor randomized R=100×N /N (2) c complete block analysis of variance (ANOVA) wasconductedontheolfactometerdataofbehav- whereRisrepellencerate(%),N isthetotalnum- c 20 Yangetal. (cid:127) ENTOMOL.FENNICAVol.26 Fig.1.Electrophysiologicaldose–responsecurvesofTomicusminorantennaetoeightselectedcombounds(CK =distilledhexane,asastandardreference).Asterisksindicatesignificantdifferencesbetweenfemaleandmale beetlesatthespecifieddose(independent-samplest-testswithBonferronicorrection,P<0.05,N=6malesand 6females). ENTOMOL.FENNICAVol.26 (cid:127) ResponsesofTomicusminortohostvolatiles 21 ber of T. minor in the control arm of the 3.3.LaboratorybioassayofT.minor olfactometer,andNisasinequation(1)above. adultresponsestosyntheticcompounds Except for (+)-limonene, (cid:2)-carophyllene and I=100–(A+R) (3) myrcene, the remaining compounds tested had significant attraction rates for female T. minor whereIisrateofindifference(%),AandRasin (Fig. 2a). Of those five compounds, (+)-(cid:1)- equations(1)and(2). pinene,(cid:2)-pineneand(cid:2)-phellandrenehadsignifi- cantattractionalsotomaleadults(Fig.2b). 3.Results Amongthefivecompoundsthatattractedfe- males, there were significant differences in the rateofattraction(P=0.030,df =4,df =10,F= 3.1.Comparisonofchemicalcompositions 2.85). (+)-(cid:1)-pinene had a high1er attra2ction rate oftissuesfromuninfestedandinfested P.yunnanensis forfemalesthan(cid:2)-pineneandterpinolene,while (+)-3-carene and (cid:2)-phellandrene did not differ fromanyoftheothercompounds(Fig.2a).How- FromuninfestedandinfestedP.yunnanensis,30 ever, among the three compounds that attracted and 37 compounds were identified by GC-MS, males,therewerenosignificantdifferencesinthe respectively. Monoterpenes are the primary rateofattraction(P=0.127,df =2,df =6,F= chemicalsemittedbyP.yunnanensis.Thereinto, 1 2 1.71). eightofthosecompoundshadthehighestrelative abundancesinbothtypesofplants:(+)-(cid:1)-pinene, (cid:2)-pinene, (+)-3-carene, (+)-limonene, terpino- lene, (cid:2)-carophyllene, (cid:2)-phellandrene, and myr- 4.Discussion cene.Theretentiontimesandrelativeproportion oftotalpeakareasofallidentifiedcompoundsare Host volatiles identified in infested and listedinTable1. uninfestedshootsofP.yunnanensiswerediffer- ent.Feedingby T.minorinducednewchemical compoundsinthetissues,suchasfenchol,(-)-(cid:1)- 3.2.EAGactivityofsyntheticcompounds cubebene, aromadendrene, (cid:2)-sesquiphellandre- ne,(cid:1)-selinene,(cid:1)-muurolene,(cid:4)-cadinene,(cid:1)-ele- Therewasaclearelectrophysiologicaldose–re- mene, (-)-isocaryophyllene, t-cadinol, t-muuro- sponserelationshipforalleightcompounds.The lol, and 2,6-di-tert-butyl-4-methylphenol. Pro- EAGresponsesofT.minoradultspeakedwhen duction of novel compounds due to herbivory thecompoundconcentrationswere10µg/µL,ex- feeding is in parallel to the findings of earlier ceptforterpinoleneandmyrcene,forwhichthe studiesthatthetypesandquantitiesofchemicals responseswerestillrisingat100µg/µL(Fig.1). released by plants chewed by phytophagous in- In most cases, female and male beetles sectsaredifferentfrom“constitutive”chemicals showednodifferencesintheirEAGresponsesto (Mamiya&Enda1972)andareaffectedby the thecompounds(Fig.1).TheEAGresponseoffe- feedingactivitiesofinsects(Lou&Cheng2000, maleadultswassignificantlyhigherthanthoseof Degenhardt & Lincoln 2006). Paré and Tum- maleadultsfor(+)-3-careneat1µg/µL(t=3.844, linson(1997)usedCO-impulselabelingtoprove 2 df=5,P=0.018),10µg/µL(t=3.733,df=5,P= that only insect feeding induced production of 0.020), and 100 µg/µL (t = 2.761, df = 5, P = newvolatileorganiccompoundsthatarenotre- 0.044),whiletheEAGresponseofmaleadultsto leasedbyundamagedplants.Likewise,Loughrin myrcene was significantly higher than those of etal.(1995)showedthatcrabappleleavescanbe femaleadultsat0.01µg/µL(t=-2.739,df=5,P= inducedbytheJapanesebeetletoreleaseagreat 0.045). dealofterpenoids. Different host plant volatile compounds can havevaryingimpactsoninsectactivities,because thephysiologicalactivityofacompoundcanvary 22 Yangetal. (cid:127) ENTOMOL.FENNICAVol.26 Fig.2.Y-tubeolfactometerresponsesofTomicusminoradultsto10µg/µLofdifferentodors. –a.Females.–b.Males.Meanpercentages(±SE)ofadultschoosingthetestcompound,con- trol,orwithnochoicearereported(N=90).Totheleftofthebars,significantdifferencesbe- tweentreatmentandcontrolaredenoted;Chi-squaredtests:**(P<0.01),*(P<0.05),NS (P(cid:5)0.05).Forthecompoundsshowingsignificantattraction,differencesintherateofattraction amongthecompoundsareshowntotherightofthebars;compoundswithdifferentlettersdiffer significantly(P<0.05,Duncan’smultiplecomparisontest).Beetleswereconsideredtomakeno choicewhentheyspentthewholetestperiodinmainarmoftheolfactometerorvisitedeither testarmforlessthan1min. withconcentration(Fanetal.2004).Thereisan suggeststhattheantennaeoffemaleandmaleT. optimum dose range for the insect response to minoradultsmightdifferinthetypeandnumber eachvolatilecompound.Withinthisrange,there- ofreceptorsorinphysiologicalfunctioning(Lu sponse rate rises as the dose increases. Beyond 2008). this range, insect attraction declines as the dose Westudiedtheantennalresponseforonlythe changes(Fanetal.2003).Wefoundthatmaleand eightcompoundswiththehighestabundancesin femaleT.minorresponsesreachedmaximumat theGC-MSanalyses.However,therewerecon- 10 µg/µL for (+)-(cid:1)-pinene, (cid:2)-pinene, (+)-3- siderable differences between infested and carene, (+)-limonene, (cid:2)-carophyllene, and (cid:2)- uninfestedplantsalsoinsomelessabundantcom- phellandrene,whileformyrcenethey peakedat pounds (Table 1). Insects can be responsive to 100µg/µL.Interestingly,insomecases,theEAG very low concentrations of some compounds, responsesofmaleandfemaleantennaeweredif- meaningthatitisworthtoincludelow-concentra- ferent,e.g.forterpinolene,theEAGresponsesof tioncomboundsinfuturestudiesofantennalre- femalesweremaximumat10µg/µL,whilethose sponsesandattractiontoinsects. ofmaleswerehighestat100µg/µL.Thisstrongly Plant chemicals are of vital importance in ENTOMOL.FENNICAVol.26 (cid:127) ResponsesofTomicusminortohostvolatiles 23 host-plantselectionbybarkbeetles.Inthisstudy, cationbyGC-EADofthetwo-componenttrail-follo- bothsexesshowedbasicallysimilarresponsesto wingpheromoneofProrhinotermessimplex(Isoptera, Rhinotermitidae, Prorhinotermitinae). — Journal of thetestedcompoundsintheselectiontestsinaY InsectPhysiology55:751–757. tube,inspiteofthefactthattheEAGresponsesof Degenhardt,D.C.&Lincoln,D.E.2006:Volatileemis- femaleandmaleantennaeweredifferentforsome sionsfromanodorousplantinresponsetoherbivory compounds. (+)-(cid:1)-pinene, (cid:2)-pinene, and (cid:2)- andmethyljasmonateexposure.—JournalofChemi- phellandrenewereattractivetobothmaleandfe- calEcology32:725–743. Ding,H.J.,Guo,Y.Y.&Wu,C.H.1996:Designand malebeetles,while(+)-3-careneandterpinolene applicationoffourarmsolfactometrywiththestudyof wereattractiveonlytofemalebeetles.Somebark olfactionbehaviorofinsect.—EntomologicalKnow- beetlespecieshavebeenpreviouslyshowntobe ledge33:241–243.[InChinese.] attractedtohostplantvolatiles,including(+)-(cid:1)- Dong,W.X.,Wang,R.&Zhang,Z.N.2000:Electroanten- pinene,(+)-3-carene,and(cid:2)-pinene(Hobsonetal. nalresponsesofaparasitoid(Microplitismediator)to cottonplantvolatiles.—ActaEntomologicaSinica43 1993).Likewise,Miaoetal.(2004)reportedthat (Supplement):119–125.[InChinese.] (+)-(cid:1)-pinene, (+)-3-carene, and (cid:2)-pinene were Du,J.W.2001:Plant–insectchemicalcommunicationand repellenttoDendroctonusvalenswhenreleased itsbehaviorcontrol.—ActaPhytophysiologicaSinica at150mg/day.Theseresultsmayimplynomajor 27:193–200.[InChinese.] differencesinolfactionbetweenmaleandfemale Fan,H.,Li,J.Q.&Jin,Y.J.2003:Electrophysiological and behavioral responses of adult Anoplophora beetles,butfurtherstudiesarewarranted.How- glabripennis(Motschulsky)tovolatilecomponentsof ever, our electrophysiological and behavioral host–plant.—ForestryStudiesinChina5:25–29.[In dataindicatethatfuturefieldstudiesmayyieldre- Chinese.] sultsthatareusefulforthedevelopmentoftraps Fan,H.,Jin,Y.J.,Li,J.Q.&Chen,H.J.2004:Advances tomonitorelesserpineshootbeetlepopulations. onplantvolatilesemiochemicalsattractingherbivo- rousinsects.—JournalofBeijingForestryUniversity 26:76–81.[InChinese.] Acknowledgements.WeacknowledgethestaffoftheFor- Han,B.Y.&Han,B.H.2007:EAGandbehavioralre- estryBureauofLuding,SichuanProvince,China,fortheir sponsesofthewinglessteaaphidToxopteraaurantii kindhelpwithourfieldinvestigation.Wealsothankthe (Homoptera:Aphididae)toteaplantvolatiles.—Acta anonymous reviewers for valuable comments on the EcologicaSinica27:4485–4490.[InChinese.] manuscript.ThisworkwasfundedbytheFinancingPro- Hobson,K.R.,Wood,D.L.,Cool,L.G.,White,P.R., jectoftheConstructionofEcologicalForestryEngineer- Ohtsuka,T.,Kubo,I.&Zavarin,E.1993:Chiralspeci- ingfortheUpstreamYangtzeRiver,China. ficityinresponsesbythebarkbeetleDendroctonus valens to host kairomones. — Journal of Chemical Ecology19:1837–1846. References Hu,J.,Angeli,S.,Schuetz,S.,Luo,Y.&HajkeA.E.2009: Ecology and management of exotic and endemic AsianlonghornedbeetleAnoplophoraglabripennis. Allison,J.D.&Cardé,R.T.2008:Malepheromoneblend —AgriculturalandForestEntomology11:359–374. preferencefunctionmeasuredinchoiceandno-choice Inui,Y.,Miyamoto,Y.&Ohgushi,T.2003:Comparisonof windtunneltrialswithalmondmoths,Cadracautella. volatileleafcompoundsandherbivorousinsectcom- —AnimalBehaviour75:259–266. munitiesonthreewillowspecies.—PopulationEco- Alonzo-Zarazaga,M.A.2013:FaunaEuropaea:Tomicus logy45:41–46. minor. Fauna Europaea version 2.6. URL http:// Inui, Y. &Itioka, T. 2007:Species-specificleafvolatile www.faunaeur.org.(Sitevisitedon14October,2014) compounds of obligate Macaranga myrmecophytes Bernays,E.A.&Graham,M.1988:Ontheevolutionof andhost-specificaggressivenessofsymbioticCrema- hostspecificityinphytophagousarthropods.—Eco- togaster ants. — Journal of Chemical Ecology 33: logy69:886–892. 2054–2063. Bruce,T.J.A.,Wadhams,L.J.&WoodcockC.M.2005: Kirkendall,L.R.,Faccoli,M.&Ye,H.2008:Description Insecthostlocation:avolatilesituation.—Trendsin oftheYunnanshootborer,TomicusyunnanensisKir- PlantScience10:269–274. kendall&Faccolisp.n.(Curculionidae,Scolytinae), Byers,J.A.1992:Attractionofbarkbeetles,Tomicuspini- anunusuallyaggressivepineshootbeetlefromsout- perda,HylurgopspalliatusandTrypodendrondomes- hernChina,withakeytothespeciesofTomicus.— ticum and other insects to short-chain alcohols and Zootaxa1819:25–39. monoterpenes. — Journalof ChemicalEcology 18: Långström,B.1983:Lifecyclesandshoot-feedingofthe 2385–2402. pineshootbeetles.—StudiaForestaliaSuecica163: David,S.D.,Blanka,K.,Pavel,J.,Anna,B.,Josef,C.,Ro- 1–29. bertH.,Jan,S.,Christian,B.&Irena,V.2009:Identifi- Li,L.S.,Liu,H.P.,Chen,P.,Li,H.R.,Långström,B.& 24 Yangetal. (cid:127) ENTOMOL.FENNICAVol.26 Francoies,L.2006:Comparisonstudyonecological Wang,Y.Y.,Dong,G.&Liu,W.B.2002:Improvementof characteristicsofTomicuspiniperdaandT.minor.— distillationtestequipmentformakingwatervapor.— JournalofWestChinaForestryScience35:1–5.[In JilinForestryScienceandTechnology31:51–52.[In Chinese.] Chinese.] Liu,Y.,Guo,G.X.,Chen,J.L.&Ni,H.X.2005:Behavio- Williams,L.,Rodriguez-Saona,C.,Castle,S.C.&Zhu,S. ralandelectrophysiologicalresponsesoffourpredato- 2008: EAG-active herbivore-induced plant volatiles ryinsectspeciestosemiochemicalsofwheat.—Acta modifybehavioralresponsesandhostattackbyanegg EntomologicaSinica48:161–165.[InChinese.] parasitoid.—JournalofChemicalEcology34:1190– Lou,Y.G.&Cheng,J.A.2000:Herbivoreinducedplant 1201. volatiles:Primarycharacteristics,ecologicalfunctions Xue,Y.G.,Ding,Q.H.,Hua,Z.J.,Xia,W.J.&Ga,Z.J.M. anditsreleasemechanism.—ActaEntomolgicaSini- 2007:PreliminarystudyonlifehistoryandharmofTo- ca20:1097–1106.[InChinese.] micusminor.—AnhuiAgriculturalScienceBulletin Loughrin, J. H., Potter, D. A. &Hamilton-Kemp, T. R. 13:154–155.[InChinese.] 1995:Volatilecompoundsinducedbyherbivoryactas Visser,J.H.1986:Hostodorperceptioninphytophagous aggregationkairomonesfortheJapanesebeetle(Po- insects.—AnnualReviewofEntomology31:121– pillia japonica Newman). — Journal of Chemical 144. Ecology21:1457–1467. Yan,S.C.,Cheng,H.,Yang,H.,Yuan,H.E.,Zhang,J.& Lu,R.C.2008:StudyontheecologyofTomicusyunna- Chi,D.F.2006:EffectsofplantvolatilesontheEAG nensis and Tomicus minor (Coleoptera: Scolytidae) responseandbehaviorofthegreytigerlongicorn,Xy- andtheirkairomones.—BeijingForestryUniversity, lotrechusrustius(L.)(Coleoptera:Cerambycidae).— Beijing.16pp.[InChinese.] ActaEntomologicaSinica49:759–767.[InChinese.] Lundgren,J.G.2004:ExoticForestPestInformationSys- Yang,H.,Yang,W.,Yang,C.P.,Zhu,T.H.,Huang,Q., temforNorthAmerica:Tomicusminor.NorthAmeri- Han,S.&Xiao,J.J.2013:Electrophysiologicaland canForestCommission.URLhttp://spfnic.fs.fed.us/ behavioralresponsesofthewhite-stripedlonghorned exfor/data/pestreports.cfm?pestidval=115&langdis. beetle, Batocera lineolata, to the diurnal rhythm of (Sitevisitedon14October,2014) host plant volatiles of holly, Viburnum awabuki. — Mamiya,Y.&Enda,N.1972:TransmissionofBursaphe- JournalofInsectScience85:1–11. lenchuslignicolus(Nematoda:Aphelenchoididae)by Ye,H.1996:StudiesonthebiologyofTomicuspiniperda Monochamusalternatus(Coleoptera:Cerambycidae). (Col.,Scolytidae)intheshoot-feedingperiod.—Acta —Nematologica18:159–162. EntomolgicaSinica39:58–62.[InChinese.] Miao,Z.W.,Zhang,Z.N.,Wang,P.X.,Guo,Y.Y.&Sun, Ye,H.&Ding,X.S.1999:ImpactsofTomicusminoron J.H.2004:Responseoftheredturpentinebeetle,Den- distribution and reproduction of Tomicus piniperda droctonusvalensLeConte(Coleoptera:Scolytidae)to (Col.,Scolytidae)onthetrunkofthelivingPinusyun- hostsemiochemicalsanditsimplicationinmanage- nanensis trees. — Journal of Applied Entomology ment.—ActaEntomologicaSinica47:360–364.[In 123:330–333. Chinese.] Ye,H.,Lu,J.&Francois,L.2004:OnthebionomicsofTo- Ngumbi,E.,Chen,L.&Fadamiro,H.Y.2009:Comparati- micusminor(Hartig)(Coleoptera:Scolytidae)inYun- veGC-EADresponsesofaspecialist(Microplitiscro- nanProvince.—ActaEntomologicaSinica47:223– ceipes)andageneralist(Cotesiamarginiventris)para- 228.[InChinese.] sitoid to cotton volatiles induced by two caterpillar Ying,H.F.&Huang,F.S.1984:Economicinsectfaunaof species.—JournalofChemicalEcology35:1009– China.Fascicle23,Coleoptera:Scolytidae.—Scien- 1020. cePress,Beijing.53pp.[InChinese.] Paré,P.W.&Tumlinson,J.H.1997:Inducedsynthesisof plantvolatiles.—Nature385:30–31. Zhang,Q.H.,Schlyter,F.,Chen,G.F.&Wang,Y.2007: Ruther,J.,Reinecke,A.,Thiemann,K.,Tolasch,T.,Fran- ElectrophysiologicalandbehavioralresponsesofIps cke,W.&Hilker,M.2000:Matefindingintheforest subelongatustosemiochemicalsfromitshosts,non- cockchafer, Melolontha hippocastani, mediated by hosts,andconspecificsinChina.—JournalofChemi- volatiles from plants and females. — Physiological calEcology33:39–404. Entomology25:172–179. Zhuge,P.P.,Luo,S.L.,Wang,M.Q.&Zhang,G.2010: Stanjek,V.,Herhaus,C.,Ritgen,U.,Boland,W.&Städler, ElectrophysiologicalresponsesofBatocerahorsfiedi E. 1997: Changes in the leaf surface chemistry of (Hope)adultstoplantvolatiles.—JournalofApplied Apiumgraveolens(Apiaceae)stimulatedbyjasmonic Entomology134:600–607. acidandperceivedbyaspecialistinsect.—Helvetica ChimicaActa80:1408–1420.