ebook img

Electrons Atoms and Molecules in Inorganic Chemistry. A worked Examples Approach PDF

748 Pages·2017·18.784 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electrons Atoms and Molecules in Inorganic Chemistry. A worked Examples Approach

Electrons, Atoms and Molecules in Inorganic Chemistry A Worked Examples Approach Joseph J. Stephanos Anthony W. Addison ©2017ElsevierInc. ISBN:978-0-12-811048-5 ForinformationonallAcademicPresspublicationsvisitour websiteathttps://www.elsevier.com/books-and-journals Contents Preface XIII 2.5 The Angular Equation 47 2.6 The <!>-Equation 48 2.7 The 8-Equation 51 1. Particle Wave Duality 2.8 The Radial Equation 57 1.1 Cathode and Anode Rays 2.9 The Final Solution for the Full Wave 1.2 Charge of the Electron 4 Function, 111n tm(r, 0, (/J) 66 1.3 Mass of Electron and Proton 6 2.10 The Orthonormal Properties of the 1.4 Rutherford's Atomic Model 9 Real Wave Functions 71 1.5 Quantum of Energy 10 2.11 The Quantum Numbers: n, I, and m 76 1 1.6 Hydrogen Atom Line-Emission Spectra; The Principle Quantum Number, n 76 Electrons in Atoms Exist Only in Very The Quantum Numbers I and Angular Specific Energy States 13 Momentum 76 1.7 Bohr's Quantum Theory of the The Angular Momentum Quantum Hydrogen Atom 15 Numbers, I and m 78 1.8 The Bohr-Sommerfeld Model 18 Picture and Represent Precisely m 1 1.9 The Corpuscular Nature of Electrons, Vectors of p- and d-Orbitals 78 Photons, and Particles of Very Small Mass 18 2.12 The Spin Quantum Number, s 84 1.10 Relativity Theory: Mass and Energy, 2.13 The Boundary Surface of s-Orbital 85 Momentum, and Wavelength 2.14 The Boundary Surface of p-Orbitals 87 Interdependence 21 2.15 The Boundary Surface of d-Orbitals 91 1.11 The Corpuscular Nature of 2.16 Calculating the Most Probable Radius 99 Electromagnetic Waves 21 2.17 Calculating the Mean Radius The Photoelectric Effect 22 of an Orbital 100 The Compton Effect 25 2.18 The Structure of Many-Electron Atoms 108 1.12 de Broglie's Considerations 26 2.19 The Pauli Exclusion Principle 109 1.13 Werner Heisenberg's Uncertainty 2.20 Slater Determinant 111 Principle, or the Principle of 2.21 Penetration and Shielding 113 Indeterminacy 27 2.22 The Building-Up Principle 11 7 1.14 The Probability of Finding an Electron 2.23 Term Structure for Polyelectron and the Wave Function 28 Atoms 121 1.15 Atomic and Subatomic Particles 29 2.24 Term Wave Functions and Single Elementary Particles 29 Electron Wave Functions 129 Suggestions for Further Reading 32 2.25 Spin-Orbital Coupling 131 2.26 Spin-Orbital Coupling in External 2. Electrons in Atoms Magnetic Field 133 Suggestions for Further Reading 144 2.1 The Wave Function (the Schri:idinger Equation) 37 3. Chemical Bonding 2.2 Properties of the Wave Function 39 2.3 Schri:idinger Equation of the 3.1 Electronegativity and Electropositivity 149 Hydrogen Atom 40 3.2 Electronegativity and Electropositivity 2.4 Transformation of the Schri:idinger Trends 150 Equation From Cartesians to Spherical 3.3 Molecular and Nonmolecular Polar Coordinates 41 Compounds 151 vii viii Contents 3.4 Types of Bonds 152 Macrocyclic Effect 193 3.5 Metallic Bonding and General Solvation Enthalpy Differences 196 Properties of Metals 152 Donor Atom Basicity 196 Conductivity and Mobility of Electrons 153 Cavity Size 197 Luster and Free Electron Irradiation 154 Solvent Competition 197 Malleability, Cohesive Force, Number Steric Effect 198 of Valence Electrons 154 Stability and Metal Oxidation State 198 Theories of Bonding in Metals 155 Stability and Metal Ionization Potential 201 Free Electron Theory 155 3.9 Intermolecular Interactions 204 Bond Lengths 156 van der Waals Forces 204 Crystal Structures of Metals (Metallic ion-Induced Dipole Forces, Structures) 156 ion-Dipole Forces, and Hydrogen Alloy and Metallic Compounds 158 Bonding 206 3.6 Ionic Bonding 159 3.10 Covalent Networks and Lattice Energy and Cohesion Giant Molecules 212 of Atomic Lattice 159 Graphite, Fullerenes, Graphene, Carbon Born-Haber Cycle and Heat of Formation 163 Nanotubes, and Asbestos 214 Ionic Crystal Structures and the Radius Suggestions for Further Reading 225 Ratio 164 Stoichiometric and Nonstoichiometric 4. Molecular Symmetry Defects 169 Ionic Character and Covalency 4.1 Molecular Symmetry 228 Interference 170 4.2 The Symmetry Elements 230 Ionic Character and Melting Point 1 71 Identity, E 230 Solubility of the Ionic Salts 171 Proper Rotation Axis, Cn 230 3.7 Covalent Bonding 173 Plane of Symmetry, a 233 The Lewis Structures and Octet Rule 173 (Pntpr of Symmetry, i 2.15 Exceptions to the Octet Rule 173 Sn: Improper Rotation Axis 236 Bonding and Polarity 174 4.3 The Symmetry and Point Group 238 3.8 Coordinate Covalent Bond 4.4 Some Immediate Applications 239 (Dative Bonding) 175 Dipole Moments and Polarity 239 Coordination Number and the Chirality 244 "18-Eiectron Rule" 176 Equivalent Atoms: (Or Group of Atoms) 244 Ligand Denticity 176 Crystal Symmetry 245 Nomenclature of Complexes 176 4.5 Group Theory: Properties of the Complex Formation 178 Groups and Their Elements 250 Coordinative Comproportionation 4.6 Similarity Transforms, Conjugation, Reaction 181 and Classes 252 Complexation Equilibrium 182 4.7 Matrix Representation 254 Multiligand Complexation 183 Matrices and Vectors 254 Stepwise Formation Constants and the Matrix Representation of Symmetry Sequential Analysis 184 Operation 255 Complex Stability 186 Matrix Representation of Point Group 258 Hard and Soft Interactions, HSAB 186 Irreducible Representations 260 Chemical Features of Hard and Soft Ions, Irreducible and Degenerate and Classification 189 Representations 261 Rule of Interactions 190 4.8 Motion Representations of the Hard-Hard and Soft-Soft Interactions 190 Groups 262 Hard-Soft Interaction and Anion Translation Motion 262 Polarizabi I ity 190 Rotational Motion 264 Chelate Effect 191 4.9 Symmetry Properties of Atomic Entropy and Chelate Formation 192 Orbitals 266 Stability and the Geometry of the Mullikan Notation 266 Chelate Ring 193 Atomic Orbital Representation 267 Contents ix 4.10 Character Tables 269 6.5 Heterodiatomic Molecules 347 Properties of the Characters of 6.6 Polyatomic Molecules 349 Representations 270 6.7 Molecular Orbitals for a Centric Molecule 351 4.11 Relation Between any Reducible and 6.8 Properties Derived From Molecular Irreducible Representations 272 Wave Function 366 The Direct Product 274 6.9 Band Theory: Molecule Orbital Theory 4.12 Group Theory and Quantum and Metallic Bonding Orbit 394 Mechanics: Irreducible Representations 6.10 Conductors, Insulators, and and Wave Function 275 Semiconductors 397 Suggestions for Further Reading 280 Suggestions for Further Reading 401 7. Crystal Field Theory 5. Valence Bond Theory and Orbital Hybridization 7.1 The Advantages and Disadvantages of Valence Bond Theory 405 5.1 Valence Bond Theory 282 7.2 Bases of Crystal Field Theory 405 5.2 VSEPR Theory and Molecular d-Orbitals in Cubic Crystal Field 405 Geometry 283 f-Orbitals in Cubic Crystal Field 406 5.3 lsoelectronic Species 284 7.3 The Crystal Field Potential 407 5.4 Procedures to Diagram Molecular Octahedral Crystal field Potential, Voct. 407 Structure 284 Square Planar Crystal Field Potential, Vsq.PI. 412 5.5 Valence Bond Theory and Metallic Tetragonal Crystal Field Potential, VTetrag. 415 Bonds 288 Tetrahedral Crystal Field Potential, Vrd 417 5.6 Orbital Hybridization 290 7.4 Zero-Order Perturbation Theory 419 5.7 Rehybridization and Complex Formation 291 The Linear Combination of Atomic 5.8 Hybridization and o--/rr-Bonding 294 Orbitals, LCAO-MO, and Energy 5.9 Orbital Hybridization and Molecular Cillc:uliltion 419 Symmetry 296 The Perturbation Theory for Degenerate Trigonal Planar Hybridization 296 Systems 421 The Extend of d-Orbital Participation in The Splitting of d-Orbitals in Octahedral Molecular Bonding 301 Crystal Field, Voct. 423 Trigonal Bipyramidal Hybridization 301 The Splitting of d-Orbitals in Tetrahedral Tetragonal Pyramidal Hybridization 303 Crystal Field, Vrd 430 Square Planar Hybridization 304 The Splitting of d-Orbitals in Tetragonal Tetrahedral Hybridization 306 Crystal Field, Vo.h 435 Octahedral Hybridization 308 7.5 Types of Interactions That Affect the 5.10 Hybrid Orbitals as Symmetry Crystal Field Treatment 442 Adapted Linear Combination of Atomic 7.6 Free Jon in Weak Crystal Fields 442 Orbitals (SALC) 311 Problems and the Required 5.11 Molecular Wave Function as Symmetry Approximations 442 Adapted Linear Combination of Atomic The Effect of the Crystal Field on S Term 442 Orbitals (SALC) 322 The Effect of the Cubic Crystal Field on Suggestions for Further Reading 330 P Term 442 The Effect of a Cubic Crystal Field on 6. Molecular Orbital Theory D Term 44f) 6.1 Molecular Orbital Theory Versus The Effect of a Cubic Crystal Field Valence Bond Theory 332 on F Term 447 6.2 Molecular Orbital Wave Function and The Effect of a Cubic Crystal Field on G, Symmetry 333 H, and I 455 6.3 The Linear Combination of Atomic 7.7 Strong Field Approach 457 Orbitals-Molecular Orbital (LCAO-MO) Determinantal Wave Functions 457 and Hi.ickel Approximations 333 The Determinantal Wave Functions of d2 6.4 Atomic Orbitals Combinations for the in Strong Field of Tetragonal Structure, Second Row Diatomic Molecules 338 Trans-ML Z 457 4 2 X Contents The Symmetry and the Energy of 9.8 Vibrations of Polyatomic Molecules 532 Determinant Wave Functions of D2 in 9.9 Polyatomic Molecular Motions and a Strong Field of Trans-ML Z 458 Degrees of Freedom 532 4 2 The Appropriate Hamiltonian in Strong 9.10 Normal Modes of Vibration, Normal Field 459 Coordinates, and Polyatomic The Diagonal Interelectronic Repulsion 460 Molecules 533 The Nondiagonal Interelectronic Repulsion 9.11 Vibrational Energy of Polyatomic and the Energy of Each Level of the d2 Molecules 536 Configuration in Strong Field of Trans- 9.12 Vibrational Displacements 536 ML Z 463 9.13 Vibrational Energy and Normal 4 2 Suggestions for Further Reading 470 Coordinates 537 9.14 Stretching Vibrations of Linear 8. Ligand Field Theory Molecules 543 9.15 Symmetry and Normal Modes of 8.1 The Advantages and Disadvantages of Vibration 545 Crystal Field Theory 472 9.16 Assigning the Normal Modes of 8.2 Symmetry and Orbital Splitting by Vibration 549 Ligand Field 473 Normal Modes of Vibration for 8.3 Correlation Table 478 Linear Triatomic Molecule 552 Orbital Correlation Table 478 9.17 Force Constants and the GF-Matrix Term Correlation Tables 480 Method 555 8.4 Correlation Diagrams of Strong and Lagrange's Equation in Terms of Weak Fields 481 Symmetry Coordinates 565 Correlation Diagram of Strong and 9.18 Selection Rules 568 Weak Field States of Oh 481 IR-Selection Rules 568 Method of Descending Symmetry Raman Selection Rules 571 (Descending Multiplicities of the 9.19 Center of Symmetry and the Mutual Orbital States) 485 Exclusion Rule 575 Correlation Diagram of Weak and Strong 9.20 Isolation of a Particular Type of Field States of Td 486 Motion 576 8.5 Orgel Diagram 488 9.21 Detecting the Changes of Symmetry Orgel Diagram of D Term Configuration 488 Through Reaction 581 Orgel Diagram ofF Term 489 Suggestions for Further Reading 582 Configuration and Term Interactions 493 8.6 Tanabe-Sugano Diagrams 498 The Advantages 498 dn and d10- n Diagrams 499 10. Electronic Spectroscopy d5 Diagram 502 10.1 Beer-Lambert Law 587 Suggestions for Further Reading 503 Molar Extinction Coefficient, 9. Vibrational Rotational Spectroscopy Oscillator Strength, and Dipole Strength 587 9.1 Infrared and Raman Spectroscopy 507 10.2 Allowed Electronic Transition 589 9.2 Permanent Dipole and Polarizability 509 The Transition Moment and Electronic 9.3 The Classical Explanation of Infrared Transitions 589 and RAMAN Spectroscopy 509 The Born-Oppenheimer Approximation 590 9.4 Rotation of Diatomic Molecules 511 Even and Odd Functions and the Rigid and Nonrigid Models 514 Symmetry Considerations 590 9.5 Vibration of Diatomic Molecules 515 Symmetry Representations and the Vibrational Energy Levels 516 Allowed Transitions 591 Anharmonic Oscillation 521 10.3 Basis of the Selection Rules 592 9.6 The Quantum Mechanics of the 10.4 Selection Rules 593 Translation, Vibration, and Spin, Orbital, and Vibrational Rotation Motions 523 Constraints 593 9.7 Vibration-Rotation Energies of Diatomic 10.5 Unexpected Weak Absorbance 595 Molecules (Vibrational-Rotational State) 529 10.6 Spectroscopy of Electronic Excitations 597 Contents xi 10.7 Electronic Spectra of Selected Examples 601 11. Magnetism Jahn-Teller Theorem and Vibronic Coupling: d1 Configuration 601 11.1 Magnetic Susceptibility 648 11.2 Types of Magnetic Behaviors 649 The Expected Position of Absorption Peaks: d2 Configuration 603 11.3 Diamagnetic Behavior 652 Configuration Interaction: d3 11.4 Spin-Only Magnetic Susceptibility, Magnetic Moment, and Thermal Configuration 605 Spreading 654 Temperature and Absorption Spectra 607 11.5 Orbital Magnetic Moment 659 Spectrochemical Series 607 Configuration: Cr(H20)6 2+ Versus 11.6 Second-Order Zeeman Effect and Cr(H20)63+ 609 Van Vleck Equation 662 Octahedral Versus Tetrahedral: d5 11.7 Spin-Orbital Coupling and Magnetic Susceptibility 664 Configuration 609 11.8 Spin-Orbital Coupling: In A and E Simultaneous Pair Excitations: Bridged Ground Terms 671 Dinuclear Metal Centers 612 11.9 Spin-Orbital Coupling: In T Ground Bandwidth in the Electronic Spectra 614 The Low-Spin Versus High-Spin: d6 Terms 672 11.10 Curie Law, Deviation, and Data Configuration 615 Representations 678 The Effect of Low Symmetry 618 Band Intensity and Ligand-Field: d7 11.11 The Magnetic Behaviors of Compounds Contain a Unique Configuration 621 dB Configuration: d2 Versus dB Magnetic Center 681 Spin Crossover Compounds 681 Complexes 623 11.12 Structure-Linked Crossover, Thermal Calculation of Oq and fJ for Isomerization 688 Octahedral Ni(ll) Complexes 624 d9 Configuration: rc-Binding 626 11.13 Interactions Between Magnetic Centers 691 Intensely Colored Metal Complexes 630 Homobinuclear Interaction 691 Donor-Acceptor Complexes 631 Heterobinuclear Interaction 696 10.8 Spectroscopy of Porphyrins 632 Coupling Mechanisms in Binuclear Configuration Interaction, Absorption Compounds 700 of the Unpolarized Light 632 11.14 Measurement of the Magnetic The Vibronic Excitation of Ov-Band (/}) Susceptibility 701 in Electronic-Spectra of Hemoproteins 635 Gouy's Method 702 10.9 The Magnetic Dipole Moment and Faraday's Method 705 the Absorbance Intensity 635 Quincke's Method 706 Circular Dichroism Spectroscopy 636 NMR Method 708 The Effects of Lower Symmetry 639 Suggestions for Further Reading 709 Absolute Configuration 640 Kuhn anisotropy Factor and Deducing the Energy Levels Within the Mathematics Supplement 711 Molecule 641 Character Tables 729 Suggestions for Further Reading 644 Index 739 Preface This book presents the chemical concepts that govern the chemistry of molecular construction. The emphasis is on the building up of an understanding of essential principles and on familiarization with basic inorganic concepts. Necessary backgroundinformationisintroducedtocomprehendthefieldfrombothchemicalandpracticalareas.Thebookexplains anddetailsthefundamentalsthatserveasasourceofnumerousbasicconceptsofmethodsandapplications.Thecombi- nationofthebasicconcepts,methodsandapplicationswithexampleexercisesyieldsamorepositiveoutcomeforstudents andteachers. Manyinorganictextbooksthatareavailablecovertoomuchmaterialanddonotgointothedepthneededforfunda- mentalprinciples.Mostoftheseareseemtobeeitherfairlyelementaryorveryadvanced.Studentsmightbedispleasedby thecurrentselectionavailable,andthereisagreatneedforaninorganicprinciplesofchemicalbondingtext.Inourbook, webridgeandintegratebothelementaryandmoreadvancedprinciples.Astudentshouldbeabletobecomefamiliarwith thetopicspresentedwiththisonebook,ratherthanlearnthebasicsinoneanduseanotherforthemoreadvancedaspectsof the material. Giventhecomplexandabstractnatureofthesubject,thebookiseasytofollow.Thetextiscarefullythoughtthrough andlaidout.Theapproachofdevelopingthematerialbyansweringquestionsandproblemsrelevanttoinorganicchemistry in extensive mathematical detail is unique and makes the book attractive especially for university students, as a study materialsourceforexaminations.Everymathematicalstepinthebookiselaboratedwithcloseattentiontoeverydetail. Thatnecessarymathematicalfoundationisfoundinaseparatesupplement,asanentirelynon-mathematicalapproachwill beoflittlevalueforthepurpose.Thebulletpointapproachofansweringcommonquestionsratherwritinganarrativeand startingeachchapterwiththecircleschemedescribingthesectionstobediscussedareintendedtobeattention-catchingand could attract certainstudents andaid themas they study. Thecontentandthestyleofthebookshouldcapturereadersfrombothtraditionalandmodernschools.Itisusefulasa referenceandtextforspecializedandgraduatecoursesinphysicalinorganicoradvancedorganicchemistry.Thebookis intendedforadvancedundergraduatesandforpostgraduatestakingcoursesinchemistry,studentsstudyingatomicstructure andmoleculeformationinchemicalengineeringandmaterialscience.Itshouldalsobeofvaluetoresearchworkersinother fields,whomightneedanintroductiontoessentialinorganicprinciples.Thisbookisverysuitableforself-study;therange coveredissoextensivethatthisbookcanbestudent’scompanionthroughouthisorheruniversitycareer.Atthesametime, teachers can turnto itfor ideasand inspiration. Thisbookisdividedinto11chapters,andcoversafullrangeoftopicsininorganicchemistry:wave-particleduality, electrons in atoms, chemical bonding, molecular symmetry, theories of bonding, valence bond theory, VSEPR theory, orbital hybridization, molecular orbital theory, crystal field theory, ligand field theory, vibrational, rotational, and elec- tronic spectroscopy, magnetism and finally, a mathematics supplement outlining the necessary methods. Inthebeginningofthisbookwedevelopandprovideanunderstandingofthedualwave-particlenatureofelectrons, photons, andotherparticles ofsmallmass. Schr€odinger’smethodislinkedforexploringthemoderntheoryofatomicstructure,andtoestablishtheformalmath- ematical framework. This framework is employed to set up the final real solution for the full orbital wave function and identify the four quantum numbers n, l, m, and s, also to compute the most probable radius, mean radius of an orbital, andtheboundarysurfacesofs,panddorbitals.Theorbitalwaveequationsareusedasthekeyfeatureinordertoexplain theorbitalandspinangularmomenta,aswelltheelectronicconfigurationsofmany-electronatoms,andspin-orbitalcou- pling.Weexaminehowtoidentifythetermsymbolsofthegroundstateandthedifferenttermsoftheexcitedmicrostatesof polyelectronicatoms,andhowmanysubtermsarisewhenspin-orbitcouplingistakenintoconsideration.Thesplittingof Russell–Saunders terms into microstates in an external magnetic field and their energies are identified. The term wave functions and the corresponding single electron wave functions are described in order to understand the effect of the ligand field. Thenwebeginwithareviewofbasicelectronaccountingproceduresfordifferenttypesofbondformationandproceed toamodelforpredictingthree-dimensionalmolecularstructure.Thebasicconceptsofmetallicstructurethatdescribethe bonding,definetheroleofthefreevalenceelectrons,andrelatethephysicalpropertiesandtheoriesofmetallicbondingare explored.Emphasisisalsoplacedonionicbondingandtherelationshipsamongthelatticeenergy,thermodynamicparam- etersandcovalency.We reviewthegroundsoftheioniccrystal structure,inwhich radiusratios governthegeometrical arrangements,andreviewthefactorsthatinfluencethesolubilities.Thefoundationandbasicsofcoordinationchemistryare laid out: firstly, characterization, formulation, formation and stability including hard and soft acid/base interactions, the chelate and macrocycle effects, cavity size, solvation enthalpy, donor atom basicity, solvent competition, steric effects, metaloxidationstate,andmetalionizationpotential.Anextensivediscussionisgivenofintermolecularforces,exploring theirr^oles,consequencesandsignificances.Considerationsaregiventothestructuralandchemicalnatureofthecovalent networksin giantmolecules such diamond,graphite, fullerenes,graphene, nanotubes andasbestos. In order to deal with molecular structures, where many energy levels of atoms are involved, symmetry concepts are extensivelyinvoked.Thus,itisappropriatetoexplain howtoestablishapropersystemfor sortingmolecules according totheirstructures.Onepurposeofthissortingistointroducesomeideasandmathematicaltechniquesthatareessentialfor understandingthestructureandpropertiesofmoleculesandcrystals.Matrixrepresentationsofsymmetryoperations,point group,translation,rotationmotions,andatomicorbitalarethoroughlyexamined.Thisleadstopresentationofthecharacter tables,andfinallyshowshowthatthesymmetryrepresentationsfortheatomicorbitalsformbasesforthemolecularwave functions. Thevalencebondtheoryconceptisexplained,thenweinvestigatehowtopredicttheshapesandgeometriesofsimple molecules using the valence shell electron-pair repulsion method. The process of predicting the molecule’s structure is reviewed.Aswell,therelationshipsbetweenthechemicalbondsinmoleculesanditsgeometryusingorbitalhybridization theoryareaddressed.Specialattentionisdevotedtotheanglesbetweenthebondsformedbyagivenatom,alsotomultiple bonding and σ/π hybridization of atomic orbitals. Symmetry-adapted linear combination of atomic wave functions (SALC’s)arecomposedanddetailed,thenusedtocomputethecontributionofeachatomicorbitaltothehybridorbitals. A brief representation of molecular orbital theory is elaborated. Understanding the electronic distribution of some electedsmallmolecules,andapproachestotherelativeenergiesofthemolecularorbitalsarereviewed.Wethenexplain howtheelectrondistributionchangesupongoingtosomelow-lyingexcitedelectronicstates.Thetheoryisemployedto estimateenergychangesinchemicalreactions,tostudystability&reactivity,tofindthedelocalizationenergy,electron density,formalcharge,bondorder,ionizationenergy,equilibriumconstant,andconfigurationinteraction.Theorbital combination introduces the band theory concept that makes it possible to rationalize conductivity, insulation and semiconductivity. Havingnowavailablethevalenceorbital’swavefunctionsofthecentralionintheirrealforms,itispossibletoexplore theimpactofvariousdistributionsofligandatomsaroundthecentralionuponitsvalenceorbitals.Aquantitativebasisof thiseffectinthecaseofapurelyionicmodelofcoordination,andotherdegreesofmixingareaddressed.Inthispart,we indicatewhythereisaneedforbothcrystalfieldtheoryandligandfieldtheory.Theeffectofacubiccrystalfieldond-and f-electronsisintroduced,thentheexpressionsoftheHamiltoniantofindthecrystalfieldpotentialexperiencedbyelectrons inoctahedral,squareplanar,tetragonallydistortedoctahedral,andtetrahedralligandarrangementsarecomputed.Theper- turbationtheoryfordegeneratesystemsisusedtoexplainhowthecrystalfieldpotentialofthesurroundingligandsperturbs thedegeneracyofdorbitalsofthecentralion.Theenergiesoftheperturbedd-orbitalsarecalculatedbysolvingthesecular determinant.Theobtainedenergiesarefedbackintosecularequationsthatarederivedfromtheseculardeterminanttoyield wavefunctionsappropriateforthepresenceofthepotential.Thevariationinthepotentialenergyofeachdelectrondueto the crystal field isdetermined and the splitting of d-orbitals so deduced inoctahedral, tetrahedral, tetragonallydistorted D geometriesintermsofD ,D,andD.Problemsandtherequiredapproximationsarediscussedforthefreeioninweak 4h q t s crystal field. Then, we study the influence of weak field on polyelectronic configuration of free ion terms, and find the splitting in each term and the wave function for each state. In the strong field situation, the first concern was how the strong field differs from the weak field approach; define the determinant, symmetry and the energy of each state. We compute the appropriate Hamiltonian and the diagonal and off-diagonal interelectronic repulsion in terms of the Racah parametersA, B, and C. Wefirstlyexaminehowitispossibletousesymmetryandgrouptheorytofindwhatstateswillbeobtainedwhenanion isplacedintoacrystallineenvironmentofdefinitesymmetry.Secondly,therelativeenergiesofthesestateswillbeinves- tigated.Thirdly,weshowhowtheenergiesofthevariousstatesintowhichthefreeiontermaresplitdependonthestrength of the interaction of the ion with its environment. The relationship between the energy of the excited states and D are q discussed using correlation, Orgel, andTanabe-Sugano diagrams. Thevibrationalspectraofdiatomicmoleculesestablishmostoftheessentialprinciplesthatareusedforcomplicated polyatomicmolecules.Sinceinfraredradiationwillexcitenotonlymolecularvibrationbutalsorotation,thereisaneedto comprehendbothrotationandvibrationofdiatomicmoleculesinordertoanalyzetheirspectra.Molecularvibrationsare explainedbyclassicalmechanicsusingasimpleballandspringmodel,whereasvibrationalenergylevelsandtransitions between them are concepts taken from quantum mechanics. The quantum mechanics of the translation, vibration and rotation motions are explored in detail. As well, the expression for the vibration-rotation energies of diatomic molecule for the harmonic and anharmonic oscillator models is introduced. Then, we identify the Schr€odinger equation for the vibrationsystemofn-atommolecules.Weelucidatehowtoobtain,monitor,andexplainthevibrational–rotationalexci- tations,findthequantummechanicalexpressionforthevibrationalandrotationalenergylevels,predictthefrequencyofthe bands,andcompareharmonicvs.anharmonicoscillatorsandbetweenrigidandnonrigidrotormodelsforthepossibleexci- tations.Lagrange’sequationisusedtoshowthechangeintheamplitudeofdisplacementwithtime.Weexaminealsohow tocalculatetherelativeamplitudesofmotionandthekineticandpotentialenergiesforthevibrationalmotionsofann-atom molecule.CalculationoftheforceconstantsusingtheGF-matrixmethodarediscussed.Thegeneralstepstodeterminethe normalmodesofvibration,andthesymmetryrepresentationofthesemodesareoutlined.Weexaminetherelationshipand thedifferencesamongthecartesian,internal,andnormalcoordinatesusedtocharacterizethestretchingvibrations.Then weshowwhythenormalcoordinatesareusedtocalculatethevibrationalenergyofpolyatomicmolecules.Inthispartwe alsofocusonhowthemoleculesinteractwiththeradiationandthechemicalinformationobtainablebymeasurementofthe infrared and Raman spectra. Only the radiation electric field interacts significantly with molecules and is important in explaininginfraredabsorptionandRamanscattering.Therequirementsandtheselectionrulesfortheallowedvibrational and rotational excitations are explored. We investigate the relationship between the center of symmetry and the mutual exclusion rule, how todistinguish among isomersand ligand bindingmodes,and define the forms ofthe normal modes ofvibrationand which of these modes are infrared and/or Raman active. Wethenfocusonthechemicalinformationobtainedfromelectronicspectrainthevisibleandultravioletregions.We examinetherelationshipbetweenthesoluteconcentrationandlightabsorbance,aswellthecorrelationamongthemolar extinctioncoefficient,integratedintensityanddipolestrength.ThesignificanceoftheBorn-Oppenheimerapproximationis considered,andsymmetryconsiderationsareelaboratedwithrespecttoallowednessofelectronictransitions.Theconse- quences of spin, orbital and vibrational constraints are investigated to explore the basis of the electronic absorption selectionrules.Theelectronicexcitationoffunctionalgroups,donor–acceptorcomplexes,andporphyrinsarespectroscop- icallycharacterized.Thestudyoutlinestheroles ofvibroniccoupling,configurationinteraction,andπ-bonding.Factors that affect the bandwidth, band intensity, and intense colors of certain metal complexes are also identified. The text addresses the effects of Jahn–Teller distortion, temperature, and reduced symmetry, and elaborates the spectrochemical series.Comparativestudiesofoctahedralversustetrahedral,low-spinversushigh-spin,anddnversusd10-nconfiguration areconducted.WeillustratehowtoevaluateD andβ fromthepositionsoftheabsorptionpeaks,anddiscusstheunex- q pectedlyweakabsorbances,simultaneouspairexcitations,andtheabsorptionofunpolarizedlightingeneral.Theroleofthe magneticdipolemomentontheabsorbanceintensityisinvestigated,usingcirculardichroismspectroscopyandtheKuhn anisotropy factor to examine the effects of lower symmetry, absolute configuration, and the energy levels within the molecule Finallyweinvestigatethetypesofmagneticbehaviors,givingkeydefinitionsandconceptsleadingtotherelationships relevanttomagnetochemistry.Theseprovideabridgetounderstandspinandorbitalcontributionstomagneticmoments. Then,thermalspreadingusingtheBoltzmanndistributionisemployedtoinvestigateandestimatethemagneticmoments andsusceptibilities.ThesubsequentsectiondealswiththevanVlecktreatmentandthesecondorderZeemanEffecttolink thespinandorbitalcontributionstothemagneticsusceptibility.Requirementsandconditionsfornonzeroorbitalcontri- butionarediscussed.Thefollowingsectionisdevotedtotheeffectofimpositionofaligandfieldonspin-orbitalcouplingin A,E,andTgroundterms.TheCurielaw,deviations,anddatapresentationmodesareshown.Spin-crossoverandtheeffects ofthermaldistortionarediscussed,followedbythebehaviorofdinuclearsystemswithexchangecoupling.Finally,Gouy’s, Faraday’s,Quincke’s, andNMRmethods for susceptibility are described. Joseph J. Stephanos Anthony W. Addison

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.