ebook img

Electron–positron energy deposition rate from neutrino pair annihilation in the equatorial plane of PDF

15 Pages·2010·0.67 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electron–positron energy deposition rate from neutrino pair annihilation in the equatorial plane of

Mon.Not.R.Astron.Soc.402,1714–1728(2010) doi:10.1111/j.1365-2966.2009.15986.x Electron–positron energy deposition rate from neutrino pair annihilation in the equatorial plane of rapidly rotating neutron and quark stars (cid:2) (cid:2) (cid:2) Z. Kova´cs, K. S. Cheng and T. Harko DepartmentofPhysicsandCenterforTheoreticalandComputationalPhysics,TheUniversityofHongKong,PokFuLamRoad, HongKong,HongKongSAR,China Accepted2009November5.Received2009November4;inoriginalform2009September16 D o w n lo a ABSTRACT d e d Theneutrino–antineutrinoannihilationintoelectron–positronpairsnearthesurfaceofcompact fro general relativistic stars could play an important role in supernova explosions, neutron star m h collapse, or for close neutron star binaries near their last stable orbit. General relativistic ttp s effectsincreasetheenergydepositionratesduetotheannihilationprocess.Weinvestigatethe ://a depositionofenergyandmomentumduetotheannihilationsofneutrinosandantineutrinosin c a d theequatorialplaneoftherapidlyrotatingneutronandquarkstars,respectively.Weanalyse e m theinfluenceofgeneralrelativisticeffects,andobtainthegeneralrelativisticcorrectionstothe ic .o energyandmomentumdepositionratesforarbitrarystationaryandaxisymmetricspace–times. up .c Weobtain theenergy andmomentum deposition ratesforseveral classesofrapidly rotating o m neutron stars, described by different equations of state of the neutron matter, and for quark /m n stars, described by the Massachusetts Institute of Technology bag model equation of state ra s andinthecolour-flavour-lockedphase,respectively.ComparedtotheNewtoniancalculations, /a rotation and general relativistic effects increase the total annihilation rate measured by an rtic le observeratinfinity.Thedifferencesintheequationsofstateforneutronandquarkmatteralso -a b s have important effects on the spatial distribution of the energy deposition rate by neutrino– tra antineutrinoannihilation. ct/4 0 2 Keywords: densematter–equationofstate–neutrinos–relativity–stars:rotation. /3 /1 7 1 4 1 INTRODUCTION /9 8 9 Since the pioneering works of Cooperstein et al. (1986), Cooperstein, van den Horn & Baron (1987) and Goodman, Arnon & Nussinov 2 3 (1987),theenergydepositionratefromtheν+ν¯ → e++e− neutrinoannihilationreactionhasbeenintensivelystudied.Thisreactionis 3 b y ofconsiderableimportanceforTypeIIsupernovadynamics,neutronstarcollapse,orforcloseneutronstarbinariesneartheirlaststable g u orbit.Neutrino–antineutrinoannihilationintoelectronsandpositronscandepositmorethan1051ergabovetheneutrinosphereofaTypeII e s supernova(Goodmanetal.1987).Thisenergydeposition,togetherwithneutrino–baryoncapture,significantlyincreasestheneutrinoheating t o n intheenvelopeviatheso-calleddelayedshockmechanism(Bethe&Wilson1985;Bethe1990).Forlarger,theenergydepositionrateis 0 2 proportionaltor−8,whereristhedistancefromthecentreoftheneutrinosphere.Theinitialestimationsoftheneutrinoannihilationreaction A p efficiencieswerebasedonaNewtonianapproach,byassumingthat2GM/c2R(cid:3)1,whereMisthegravitationalmassofthestarandRisthe ril 2 distancescale.However,forafullunderstandingoftheeffectsoftheneutrinoannihilationinstronggravitationalfields,generalrelativistic 01 9 effectsmustbetakenintoaccount(Salmonson&Wilson1999).Forastaticneutronstar,byadoptingforthedescriptionofthegravitational fieldtheSchwarzschildmetric,theefficiencyoftheν+ν¯ →e++e−processisenhancedovertheNewtonianvaluesuptoafactorofmore than4intheregimeapplicabletoTypeIIsupernovae,andbyuptoafactorof30forcollapsingneutronstars(Salmonson&Wilson1999). TheneutrinopairannihilationrateintoelectronpairsbetweentwoneutronstarsinabinarysystemwascalculatedbySalmonson&Wilson (2001).Aclosedformulafortheenergydepositionrateatanypointbetweenthestarswasobtained,whereeachneutrinoofapairderives fromeachstar,andthisresultwascomparedwiththatinwhichallneutrinosderivefromasingleneutronstar.Anapproximategeneralization ofthisformulawasalsogiventoincludetherelativisticeffectsofgravity.Theinterstarneutrinoannihilationisasignificantcontributortothe energydepositionbetweenheatedneutronstarbinaries. Theneutrino–antineutrinoannihilationintoelectronsandpositronsisanimportantcandidatetoexplaintheenergysourceofthegamma ray bursts (GRBs; Paczynski 1990; Me´sza´ros & Rees 1992; Ruffert & Janka 1998, 1999; Asano & Iwamoto 2002). The semi-analytical (cid:2)E-mail:[email protected](ZK);[email protected](KSC);[email protected](TH) (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS Electron–positron energydeposition 1715 studyofthegravitationaleffectsonneutrinopairannihilationneartheneutrinosphereandaroundthethinaccretiondiscwereconsideredin Asano&Fukuyama(2000),byassumingthattheaccretiondiscisisothermalandthegravitationalfieldisdominatedbytheSchwarzschild black hole. General relativistic effects were studied only near the rotation axis. The energy deposition rate is enhanced by the effect of orbitalbendingtowardsthecentre.However,theeffectsoftheredshiftandgravitationaltrappingofthedepositedenergyreducetheeffective energyoftheGRB’ssource.Althougheacheffectissubstantial,theeffectspartlycanceloneanother.Asaresult,thegravitationaleffects donotsubstantiallychangetheenergydepositionrateforeitherthesphericallysymmetriccaseorthedisccase(Asano&Fukuyama2000). Usingidealizedmodelsoftheaccretiondisc,Asano&Fukuyama(2001)investigatedtherelativisticeffectsontheenergydepositionrate vianeutrinopairannihilationneartherotationaxisofaKerrblackhole,byassumingthattheneutrinosareemittedfromtheaccretiondisc. Thebendingofneutrinotrajectoriesandtheredshiftduetothediscrotationandgravitationwerealsotakenintoconsideration.TheKerr parameter,a,affectsnotonlybehaviouroftheneutrinos,butalsotheinnerradiusoftheaccretiondisc.Whenthedepositionenergyismainly contributedbytheneutrinoscomingfromthecentralpart,theredshifteffectbecomesdominantasitbecomeslarge,andtheenergydeposition rateisreducedascomparedwiththatneglectingtherelativisticeffects.Ontheotherhand,forasmalla,thebendingeffectbecomesdominant D andmakestheenergyincreasebyafactorof2,comparedwiththatwhichneglectstherelativisticeffects(Asano&Fukuyama2001). ow n Theeffectoftheinclusionoftheslowrotationofthestarinthegeneralrelativistictreatmentoftheneutrino–antineutrinoannihilationinto lo a electronpositronpairswasconsideredinPrasanna&Goswami(2002).Itwasshownthattheinclusionoftherotationresultsinareductionin d e theheatingrate,ascomparedtotheno-rotationcase.Theenergy–momentumdepositionrate(MDR)fromtheν−ν¯collisionsabovearotating d fro blackhole/thinaccretiondiscsystemwascalculatedbyMilleretal.(2003),byimagingtheaccretiondiscataspecifiedobserverusingthefull m h geodesicequationsandcalculatingthecumulativeMDRfromthescatteringofallpairsofneutrinosandantineutrinosarrivingattheobserver. ttp ThedominantcontributiontotheMDRcomesfromnearthesurfaceofthediscwithatiltofapproximatelyπ/4inthedirectionofthedisc’s s://a rotation.TheMDRatlargeradiiisdirectedoutwardsinaconicsectioncentredaroundthesymmetryaxisandislargerbyafactorof10–20 c a thantheon-axisvalues.ThereisalsoalineardependenceoftheMDRontheblackholeangularmomentum.Thedepositionofenergyand de m momentum,duetotheannihilationofneutrinosνandantineutrinosν¯inthevicinityofsteady,axisymmetricaccretiontoriaroundstellarmass ic blackholes,wasinvestigatedinBirkletal.(2007).Theinfluenceofgeneralrelativisticeffectswasanalysedincombinationwithdifferent .ou p neutrinospherepropertiesandspatialdistributionoftheenergydepositionrate.Assumingaxialsymmetry,theannihilationratefour-vector .c o wasnumericallycomputed.Thelocalneutrinodistributionwasconstructedbyray-tracingneutrinotrajectoriesinaKerrspace–time,using m /m nullgeodesics.Differentshapesoftheneutrinospheres,spheres,thindiscsandthickaccretiontoriwerestudied,whosestructurerangesfrom n ra idealizedtoritoequilibriumnon-selfgravitatingmatterdistributions.ComparedtoNewtoniancalculations,generalrelativisticeffectsincrease s /a thetotalannihilationratemeasuredbyanobserveratinfinitybyafactorof2whentheneutrinosphereisathindisc,buttheincreaseisonly rtic 25percentfortoroidalandsphericalneutrinospheres.Thin-discmodelsyieldthehighestenergydepositionratesforneutrino–antineutrino le -a annihilation,andsphericalneutrinospheresthelowestones,independentofwhethergeneralrelativisticeffectsareincluded.Generalrelativity b s androtationcauseimportantdifferencesinthespatialdistributionoftheenergydepositionratebyneutrinoνandantineutrinoν¯-annihilation tra c (Birkletal.2007).Thestudyofthestructureofneutronstardiscsbasedonthetwo-region(i.e.innerandouter)discscenariowasperformed t/4 0 by Zhang & Dai (2009), who calculated the neutrino annihilation luminosity from the disc in various cases. The effects of the viscosity 2 /3 parameterα,energyparameter(cid:5) (measuringtheneutrinocoolingefficiencyoftheinnerdisc)andoutflowstrengthonthestructureofthe /1 7 entiredisc,aswellastheeffectofemissionfromtheneutronstarsurfaceboundaryemissiononthetotalneutrinoannihilationrate,were 14 /9 investigated.Anoutflowfromthediscdecreasesthedensityandpressure,butincreasesthethicknessofthedisc.Moreover,comparedwith 8 9 theblackholedisc,theneutrinoannihilationluminosityabovetheneutronstardiscishigher,andtheneutrinoemissionfromtheboundary 23 3 layercouldincreasetheneutrinoannihilationluminositybyaboutoneorderofmagnitudehigherthanthediscwithoutboundaryemission. b y Theneutronstardiscwiththeadvection-dominatedinnerdisccouldproducethehighestneutrinoluminosity,whilethediscwithanoutflow g u e hasthelowest(Zhang&Dai2009).Adetailedgeneralrelativisticcalculationoftheneutrinopathforageneralmetricdescribingarotating s starwasstudiedinMallick&Majumder(2009).Theneutrinopathwascalculatedalongtheequatorialandpolarplane.Theexpressionforthe t on minimumphotosphereradiuswasobtainedandmatchedwiththeSchwarzschildlimit.Theminimumphotosphereradiuswascalculatedfor 02 A starswithtwodifferentequationsofstate(EOS),eachrotatingwithtwodifferentvelocities.Theresultsshowthattheminimumphotosphere p radiusforthehadronicstarismuchgreaterthanforthequarkstar,andthattheminimumphotosphereradiusincreasesastherotationalvelocity ril 2 0 ofthestardecreases.Theminimumphotosphereradiusalongthepolarplaneislargerthanthatalongtheequatorialplane.Theestimateof 1 9 theenergydepositionrateforneutrinopairannihilationfortheneutrinoscomingfromtheequatorialplaneofarotatingneutronstarwas calculatedalongtherotationaxisinBhattacharyyaetal.(2009),byusingtheCook–Shapiro–Teukolskymetric.Theneutrinotrajectories, andhencetheneutrinoemittedfromthedisc,areaffectedbytheredshiftduetothediscrotationandgravitation.Theenergydepositionrate isverysensitivetothevalueofthetemperature,anditsvariationalongthedisc.Therotationofthestarhasanegativeeffectontheenergy depositionrate,itdecreaseswithincreaseinrotationalvelocity.ThestandardmodelforTypeIIsupernovaeexplosions,confirmedbythe detectionofneutrinosemittedduringthesupernovaexplosion,predictstheformationofacompactobject,usuallyassumedtobeaneutron star(Chanetal.2009).However,thenewlyformedneutronstaratthecentreofSN1987Amayundergoaphasetransitionaftertheneutrino trappingtime-scale(∼10s).Consequently,thecompactremnantofSN1987Amaybeastrangequarkstar,whichhasasofterEOSthanthat ofneutronstarmatter(Chanetal.2009).Suchaphasetransitioncaninducestellarcollapseandresultinlargeamplitudestellaroscillations.A three-dimensionalNewtonianhydrodynamiccodewasusedtostudythetimeevolutionofthetemperatureanddensityattheneutrinosphere. Extremelyintensepulsatingneutrinofluxes,withsubmillisecondperiodandneutrinoenergy(greaterthan30MeV),canbeemittedbecause theoscillationsofthetemperatureanddensityareoutofphase,almost180◦.Thedynamicalevolutionofaphase-transition-inducedcollapse (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728 1716 Z.Kova´cs,K.S.ChengandT.Harko ofaneutronstartoahybridstar,whichconsistsofamixtureofhadronicmatterandstrangequarkmatter,wasstudiedinChengetal.(2009). Itwasfoundthatboththetemperatureandthedensityattheneutrinosphereareoscillatingwithacousticfrequency.Consequently,extremely intense, pulsating neutrino/antineutrino fluxes will be emitted periodically. Since the energy and density of neutrinos at the peaks of the pulsatingfluxesaremuchhigherthanthenon-oscillatingcase,theelectron/positronpaircreationratecanbeenhanceddramatically.Some masslayersonthestellarsurfacecanbeejected,byabsorbingenergyofneutrinosandpairs.Thesemassejectacanbefurtheracceleratedto relativisticspeedsbyabsorbingelectron/positronpairs,createdbytheneutrinoandantineutrinoannihilationoutsidethestellarsurface. Itisthepurposeofthispapertoconsideracomparativesystematicstudyoftheneutrino–antineutrinoannihilationprocessaroundrapidly rotatingneutronandstrangestars,respectively,andtoobtainthebasicphysicalparameterscharacterizingthisprocess(theelectron–positron energydepositionrateperunitvolumeandperunittimeandthetotalemittedpower,respectively),bytakingintoaccountthefullgeneral relativistic corrections. In order to obtain the electron–positron energy deposition rate for various types of neutron and quark stars, we generalizetherelativisticdescriptionoftheneutrino–antineutrinoannihilationprocesstothecaseofarbitrarystationaryandaxisymmetric geometries. To compute the electron–positron energy deposition rate, the metric outside the rotating general relativistic stars must be D determined.Inthisstudy,westudytheequilibriumconfigurationsoftherotatingneutronandquarkstarsbyusingtheRotatingNeutronStar ow n (RNS)code,asintroducedinStergioulas&Friedman(1995)anddiscussedindetailinStergioulas(2003).Thiscodewasusedforthestudyof lo a differentmodelsofrotatingneutronstarsinNozawaetal.(1998)andforthestudyoftherapidlyrotatingstrangestars(Stergioulas,Kluzniak d e d &Bulik1999).Thesoftwareprovidesthemetricpotentialsforvarioustypesofcompactrotatinggeneralrelativisticobjects,whichcanbe fro usedtoobtaintheelectron–positronenergydepositionrateintheequatorialplaneofrapidlyrotatingneutronandquarkstars. m h This paper is organized as follows. In Section 2, we present the basic formalism for the calculation of the electron–positron energy ttp depositionratefromneutrino–antineutrinoannihilation.ThegeneralrelativisticcorrectionstothisprocessareobtainedinSection3.The s://a EOSofdenseneutronandquarkmatterusedinthepresentstudyarepresentedinSection4.InSection5,weobtaintheelectron–positron c a energydepositionratesintheequatorialplaneoftheconsideredclassesofneutronandquarkstars.Wediscussandconcludeourresultsin de m Section6. ic .o u p 2 NEUTRINO PAIR ANNIHILATION .co m A considerable amount of energy can be released by the neutrino pair annihilation process in the regions close to the so-called neutrino /m n sphere,withradiusRν,atwhichthemeanfreepathoftheneutrinoisequaltotheradiusitself(Bethe&Wilson1985). ras Theenergydepositionrateperunitvolumeisgivenby /a q˙(r)=(cid:2)(cid:2) fν(pν,r)fν¯(pν¯,r){σ|vν−vν¯|ενεν¯}ενεν+εν¯εν¯d3pνd3pν¯ (1) rticle-ab s foranypointr> Rν,wherefν andfν¯ arethenumberdensitiesinthemomentumspaceswiththemomenta pν and pν¯ andvν ,εν,vν¯ andεν¯ trac arethethree-velocitiesandtheenergyofthecollidingneutrino–antineutrinopairs,respectivelyGoodmanetal.(1987).Thecross-sectionof t/4 thecollisionisdenotedbyσ. 02 Byapplyingthedecompositions pν =εν(cid:2)ν andd3pν =ε2νdενd(cid:2)ν,withthesolidanglevector(cid:2)ν pointinginthedirectionof pν,and /3/17 withtheassumptionthattheneutrinosphereemitsparticlesisotropically,theintegralinequation(1)canbeseparatedintoanenergyintegral 1 4 andanangularpart.Afterevaluatingtheenergyintegralforfermions,forasphericallysymmetricgeometrytheenergydepositionrateper /9 8 9 unitvolumecanberepresentedas 2 3 3 q˙(r)= 7DG2Fπ3ζ(5)(kT)9(cid:9)(r)∝T9(r)(cid:9)(r), (2) by 2c5h6 g u w10h−e4r4ecTm(cid:2)2is(cid:2)MtheeVn−e2u,trreisnpoectetimvepleyr,aatunrde,wζithisththeeaRngieumlaarnpnarftuonfcttihoene,nDer=gy1de±po4sistiino2nθraWte+(cid:9)8(rs)igni4vθenW,bywithsin2 θW =0.23,andG2F =5.29× est on 0 2 (cid:9)(r)= (1−(cid:2)ν·(cid:2)ν¯)2d(cid:2)νd(cid:2)ν¯. (3) Ap Theradialmomentumdensityp˙ transportedintothee+e−plasmafromthecollidingνν¯ pairscanbewrittenas(Salmonson&Wilson1999) ril 2 0 p˙ = q˙(cid:11) (r)(cid:9)(r), (4) 19 c p where (cid:2)(cid:2) 1 (cid:11) (r)= (1−(cid:2) ·(cid:2) )2[r·((cid:2) +(cid:2) )]d(cid:2) d(cid:2) , (5) p 2 ν ν¯ ν ν¯ ν ν¯ withtheunitvectorrnormaltothestellarsurface. Sincetheintegralsinequations(3)and(5)dependonlyontheradialcoordinater,byvirtueofthesymmetry,theangularpart(cid:9)(r)and thefunction(cid:11) (r)canbegivenbytheanalyticformulae p 2π2 (cid:9)(r)= (1−x)4(x2+4x+5) (6) 3 and π2 (cid:11) (r)= (1−x)4(8+17x+12x2+3x3), (7) p 6 (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728 Electron–positron energydeposition 1717 wherex=cosθ andθ isthemaximalanglebetweenrand p (Goodmanetal.1987;Salmonson&Wilson1999).Inordertodetermine max max ν thequantityx,oneneedtousetheequationsofmotionoftheneutrinosradiatedbythestellarmatter,andpropagatingoutsidetheneutrino sphere. The equations of motion in the Newtonian case, or the geodesic equations in the general relativistic case, fully determine x as a functionoftheradialcoordinate.Therefore,thepropertiesofthegravitationalpotentialproduceanimprintontheenergydepositionrate calculatedintheregionclosetotheneutrinosphere.Salmonson&Wilson(1999)extendedthecalculationsofGoodmanetal.(1987)tothe caseoftheSchwarzschildgeometry,andcomparedtheirresultstothoseoftheNewtoniancase. Althoughrotatingconfigurationsofneutronstarsbreakthesphericalsymmetryofthespace–time,onecanstillcarryoutananalysis similartothestaticcaseifthestudyisrestrictedtotheinvestigationoftheannihilationofneutrinoandantineutrinopairspropagatingin theequatorialplaneoftherotatingstar.Byeliminatingtheangulardependencefromtheequations,aformalismsimilartothespherically symmetric case can be used to calculate the energy deposition rate in the equatorial plane. The obtained result is not equal to the total depositionrateofthehigh-energyelectronpositronpairscreatedintheannihilationprocess.However,thisquantitycanstillbeappliedinthe comparisonoftheneutrinoandantineutrinoannihilationenergydepositionratefordifferentmodelsofrotatingneutronandquarkstars,orin D studyingthegeneraleffectsoftherotationofthestellarobjectonthisprocess. ow n lo a d 3 GENERAL RELATIVISTIC EFFECTS ON THE ELECTRON–POSITRON ENERGY e d DEPOSITION RATE fro m Themetricofastationaryandaxisymmetricgeometryisgiveninthegeneralformby h ds2=g dt2+2g dtdφ+g dr2+g dθ2+g dφ2. (8) ttps Forthistmt etric,thetφnull-geodesrircsequatiθoθnsintheφeφquatorialplaneθ =π/2are ://ac a g E+g L de t˙= φφ tφ , (9) m gφ2t −gttgφφ ic.o u φ˙ =−ggφ2tE−+gggttL, (10) p.com tφ tt φφ /m wgrhrre˙r2e=EigsφtφhEe2egn+et2φr2g−gyt,φgaEtntgLdφLφ+isgtthtLe2a,ngularmomentumoftheparticlespropagatingalongthenull-geodesics.Then,theparametricequation(1fo1r) nras/article dr/dφcanbewrittenas -a (cid:3) (cid:4) bs g dr 2=(cid:5)g2 −g g (cid:6)gφφ+2gtφb+gttb2, (12) trac rr dφ tφ tt φφ (gtφ+gttb)2 t/4 0 wheretheimpactparameterisdefinedasb=L/E. 2/3 Forthemetricgivenbyequation(8),thelocallynon-rotatingframe(LNRF)(inwhichthewordlinesofthefreelyfallingobserversare /1 7 r=constant,θ=constantandφ−ωt=constant,respectively,withω=−gtφ/gφφ)hasthebasisofone-forms(Bardeen,Press&Teukolsky 14/9 1972), 8 (cid:7) 9 2 eμ(t) = g√t2φ−−ggttttgφφ(−1,0,0,0), 33 by gu e(r) =(0, g ,0,0), e eμ(θ) =(0,0,√rrg ,0), st on eμμ(φ) =√gφφ(gtφθ/θgφφ,0,0,1). 02 Ap SincethevelocitymeasuredintheLNRFisgivenbyv(a)=e(a)vμ,theangleθ betweentheparticletrajectoryandthetangentvectorto ril 2 μ r 0 thecircularorbitwiththeradialcoordinate√rcanbewrittenas 19 v(r) e(r)vr g dr tanθ = = r = √ rr . r v(φ) eφ(φ)vφ+et(φ) gφφ[1+gtφ/(gφφvφ)]dφ Fromthisexpression,weobtainfordr/dφtheequation (cid:8) (cid:3) (cid:4) dr g g = φφ 1+ tφ tanθ . (13) dφ g g vφ r rr φφ Byinsertingequations(9)and(10)intothedefinitionofvφ,weobtainforvφ theexpression uφ φ˙ g E+g L vφ = = =− tφ tt , ut t˙ g E+g L φφ tφ whichcanbesubstitutedintoequation(13)togive (cid:8) (cid:3) (cid:4) dr g g g E+g L = φφ 1− tφ φφ tφ tanθ . dφ g g g E+g L r rr φφ tφ tt (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728 1718 Z.Kova´cs,K.S.ChengandT.Harko Then,thederivativedr/dφcanbeeliminatedfromtheparametricequation(12)andweobtain (cid:3) (cid:4) g g +g b 2 (cid:5) (cid:6)g +2g b+g b2 g 1− tφ φφ tφ tan2θ = g2 −g g φφ tφ tt . φφ g g +g b r tφ tt φφ (g +g b)2 φφ tφ tt φt tt Thisresultgivesasecond-orderalgebraicequationforb, [(g g −g2 )sec2θ +g2 ]b2+2g g b+g2 =0, (14) tt φφ tφ r tφ tφ φφ φφ whichcanbesolvedtogivetheimpactparameterbas −g b±= (cid:9) φφ . (15) g ± g2 −g g secθ tφ tφ tt φφ r A particular system of coordinates that is used in the study of the general-relativistic rotating configurations is the quasi-isotropic coordinatesystem(t,r¯,θ,φ),inwhichthelineelementcanberepresentedas(Stergioulas&Friedman1995;Stergioulas2003) D (cid:5) (cid:6) o ds2=−eγ¯+ρ¯dt2+e2α¯ dr¯2+r¯2dθ2 +eγ¯−ρ¯r¯2sin2θ(dφ−ω¯dt)2, (16) w n lo whereγ¯,ρ¯,α¯ andtheangularvelocityofthestellarfluidrelativetothelocalinertialframeω¯ areallfunctionsofthequasi-isotropicradial ad e coordinater¯andofthepolarangleθ. d Ifforneutronstarsthemetric(8)isgiveninanisotropiccoordinatesystemintheform(16),thenthesecond-orderalgebraicequation(14) fro m forbcanbewrittenintermsofthemetricfunctionsρ¯ andω¯ as h (cid:5) (cid:6) ttp sec2θr+e−2ρω¯2r¯2sin2θ b2−2e−2ρ¯ω¯r¯2sin2θb+e−2ρ¯r¯2sin2θ =0. s://a Fortheimpactparameter,correspondingtoθr=0,weobtain(Cadeu,Morsink&Leahy2007) cad −e−ρ¯r¯sinθ e−ρ¯r¯sinθ em b±= −e−ρ¯ω¯r¯sinθ±secθr =±secθr±e−ρ¯ω¯r¯sinθ. ic.ou Fr(cid:2)omtheparamet√ricequationequation(12),weobtainthedeflectionangleoftheparticletrajectoryforagivenbas p.c (cid:16)φ= robs (cid:9) grr(gtφ+gttb)dr . (17) om/m rem (gt2φ−gttgφφ)(gφφ+2gtφb+gttb2) nra s Inthisequation(cid:16)φmeasuresthechangeintheanglebetweenthesourceandtheobserver,foraphotonemittedattheradialcoordinate /a r ,andobservedattheradialcoordinater .Thisequationcanalsobegivenintheequatorialplaneintermsofthemetricfunctionsρ¯ and rtic em obs le ω¯,respectively,appearinginthelineelementequation(16)(Cadeu,Leahy&Morsink2005) -a (cid:2) bs (cid:16)φ=− r¯obseα¯−(γ¯+ρ¯)/2(cid:10)ω¯(1−ω¯b)+be2ρ¯/r¯2 dr¯. trac r¯em (1−ω¯b)2−b2e2ρ¯/r¯2 t/40 Intheequatorialplaneofblackholes,thephotonradiusisdefinedastheinnermostboundaryofcircularorbitsbelowwhichmassless 2/3 particleswithθ =0aregravitationallybound(Bardeenetal.1972).Forstaticblackholes,thephotonradiusis3M,andforrotatingblack /1 r 7 holesitreducestoM,asthespinparametera∗ =J/M2 oftheblackholeapproachesunity.Thisorbitmayexistforultracompactstarsas 14/9 well.Forstaticstarswithastellarradiuslessthan3M,thereisalwayssucha‘photonsphere’,whereas,dependingonthegeometryofthe 8 9 2 space–time,therotatingstarscanalsohaveaphotonradiusatbothlowerandhigherradii(Mallick&Majumder2009).Ontheotherhand, 3 3 verymassiverotatingquarkstarsinthecolour-flavour-locked(CFL)phasecanreachmasseshigherthantheequilibriumlimitforstaticstars b y (≈3M(cid:11)),ofthesameorderasthestellarmassblackholes(Kova´cs,Cheng&Harko2009),andthustheycanalsohaveaphotonradius. g u e Iftheintegralinequation(17)divergestoinfinity(ordr/dφtendstozero),thenullparticlesarerotatingaroundthecentralobjectsin s circularorbits.Inthiscase,θr=0,andthealgebraicequationequation(14)forbreducestogφφ +2gtφb+gttb2=0,withthesolution t on 0 b±= gtφ±(cid:9)−ggt2φφφ−gttgφφ =±1±e−eρ−¯rρ¯¯ω¯r¯. (18) 2 April 2 0 Foranyvalueofbsatisfyingequation(18),theintegral(17)isdivergent,andthenullparticleshavecircularorbits.Inequation(18),the 19 impactparameterintheequatorialplaneisgivenasafunctionoftheradialcoordinateonly. InthecaseoftheultracompactstaticstarswithradiiR lessthan3M,the(local)maximumofthefunctionb(r)islocatedatr =3M, e providingthephotonradius.IfR >3Mthenbisamonotonicallydecreasingfunction,withoutalocalmaximum.Forrotatingcompactstars, e thefunctionb(r)providesthesamecriterionfortheexistenceofthepotentialbarrier:formasslessparticles,theequatorialorbitwhereb(r) attainsitslocalmaximumdefinestheinnermostboundaryofcircularorbits.EvenifthisvalueislessthantheequatorialradiusR ,neutrinos e arestillfreetopropagatealongorbitslyingonthephotonradius. Byassumingthatthemeanfreepathoftheneutrinosisequaltoorlessthanthephotonradius,Salmonson&Wilson(1999)identified thephotonandtheneutrinosphereswitheachother.Accordingly,wewillalsoconsidertheorbitatthephotonradiusastheminimalradius wheretheannihilationprocessshouldstillbetakenintoaccount,provideditisoutsidethestar.Thecontributionoftheelectron–positron pairsformedinsidethestartothedepositionrateisneglected,becauseoftheircomplicatedinteractionswiththeneutronandquarkmatter. Sincetheimpactparametermeasuredatinfinityisconstantalongthetrajectoryofanynullparticle,theneutrinospropagatingfroma pointatthephotonsphereradiusR(orthestellarsurfaceR )withtheangleθ =tan−1v(r)(R)/v(φ)(R),willreachanotherpointwitharadial e R (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728 Electron–positron energydeposition 1719 coordinaterandtheangle (cid:9) g (R) g2 (r)−g (r)g (r) cosθ = (cid:11) (cid:9)φφ tφ tt φφ (cid:12) . (19) r g (r) g (R)+ g2 (R)−g (R)g (R)secθ −g (R)g (r) φφ tφ tφ tt φφ R φφ tφ Equation(19)allowsonetoexpressxintheanalyticexpressionoftheangularpart(cid:9)(r)oftheenergy,givenbyequation(6),as (cid:13) (cid:14) g2 (R) g2 (r)−g (r)g (r) x2(r)=1− (cid:15) (cid:11) φ(cid:9)φ tφ tt φφ (cid:12) (cid:16) . (20) 2 g (r) g (R)+ g2 (R)−g (R)g (R) −g (R)g (r) φφ tφ tφ tt φφ φφ tφ Forthelineelementgivenbyequation(16),equation(20)hastheform (cid:17) (cid:18) R¯ eγ¯(r¯)−γ¯(R¯) 2 x2(r¯)=1− . (21) r¯ 1+[ω¯(r¯)−ω¯(R¯)]R¯eγ¯(R¯) D o w Thus,thefunction(cid:9)(r)canberepresentedinthegeneralform n ⎡ ⎤ lo (cid:22)(cid:23) (cid:13) (cid:14) 4 ade (cid:9)(r)= 2π32 ⎢⎢⎣1−(cid:23)(cid:23)(cid:24)1− (cid:15)gφφ(r)(cid:11)gtφ(R)+gφ2(cid:9)φ(Rgt2)φ(gRt2φ)(−r)g−tt(gRtt)(grφ)φg(φRφ()r(cid:12))−gφφ(R)gtφ(r)(cid:16)2⎥⎥⎦ d from h ⎡ ttp (cid:13) (cid:14) s ×⎢⎣−(cid:15) (cid:11) gφ2(cid:9)φ(R) gt2φ(r)−gtt(r)gφφ(r(cid:12)) (cid:16) ://ac gφφ(r) gtφ(R)+ gt2φ(R)−gtt(R)gφφ(R) −gφφ(R)gtφ(r) 2 ⎤ adem (cid:22) ic +4(cid:23)(cid:23)(cid:23)(cid:24)1− (cid:15) (cid:11) gφ2(cid:9)φ(R)(cid:13)gt2φ(r)−gtt(r)gφφ(r(cid:12))(cid:14) (cid:16) +6⎥⎥⎦. (22) .oup.c 2 o g (r) g (R)+ g2 (R)−g (R)g (R) −g (R)g (r) m φφ tφ tφ tt φφ φφ tφ /m n Inquasi-isotropiccoordinates,wehave ra ⎡ (cid:22) ⎤ s (cid:23) (cid:17) (cid:18) 4 /a (cid:9)(r¯)= 2π2 ⎢⎣1−(cid:23)(cid:24)1− R¯ (cid:13) eγ¯(r¯)−γ¯(R¯) (cid:14) 2⎥⎦ rticle 3 r¯ 1+ ω¯(r¯)−ω¯(R¯)) R¯eγ¯(R¯) -a b ⎡(cid:17) (cid:18) (cid:22)(cid:23) (cid:17) (cid:18) ⎤ stra ×⎢⎣ R¯ (cid:13) eγ¯(r¯)−γ¯(R¯)(cid:14) 2+4(cid:23)(cid:24)1− R¯ (cid:13) eγ¯(r¯)−γ¯(R¯) (cid:14) 2+6⎥⎦. (23) ct/40 r¯ 1+ ω¯(r¯)−ω¯(R¯) R¯eγ¯(R¯) r¯ 1+ ω¯(r¯)−ω¯(R¯)) R¯eγ¯(R¯) 2 /3 /1 7 Theneutrinotemperatureattheradiusrcanbeexpressedintermsofthetemperatureoftheneutrinostreamattheneutrino-sphereradius 1 4 R,bytakingintoaccountthegravitationalredshift.TheredshiftformulaforTisthesameasforthephotonenergy, /9 8 (cid:17) (cid:13) (cid:14)(cid:18) 9 g (r) g2 (R)−g (R)g (R) 1/2 23 T(r)= gφφφφ(R)(cid:13)tgφt2φ(r)−gtttt(r)gφφφφ(r)(cid:14) T(R). (24) 3 by g u FLo∞rt=hegobs(eRrvg)eφ(cid:13)dφg(2lru(m→ri→n∞os∞i)t(cid:13)y)gL−t2φ∞(gRo)f(r−th→getnt(∞eRu))trggiφnφo((Rran)→n(cid:14)ih∞ila)t(cid:14)ioLn(Rth)e=red(cid:28)sghgit2fφt((RrRe)l)a−tiogntti(sRg)i(cid:29)veLn(bRy), (25) est on 02 φφ tφ tt φφ φφ A p sinceforisolatedgravitatingsystems,suchasrotatingstars,thespace–timeisasymptoticallyflat.Here,theneutrinoluminosityattheneutrino ril 2 sphereis 0 1 9 7 L(R)=L +L =(4πR2) acT4(R), (26) ν ν¯ 16 whereaistheradiationconstant.Inthisformula,thecurvatureradiusRisusedtoobtainthetotalareaofthesphericalsurfacethroughwhich theneutrinoradiationisemitted.Ifweinsertequation(20),describingthepathbendingoftheneutrinos,andtheredshiftformulae(equations 24–26)intothedecomposedexpressionequation(2)ofq˙,wecancalculatetheeffectsofthegravitationalpotentialonthedepositionratein theequatorialplane: ⎧ (cid:9) ⎫ 9/2 ⎨ g (r) g2 (R)−g (R)g (R) ⎬ q˙(r)∝L9/4(cid:9)(r) (cid:10)φφ (cid:13)tφ tt φφ (cid:14) R−9/4. (27) ∞ ⎩ g (R) g2 (r)−g (r)g (r) ⎭ φφ tφ tt φφ Theproportionalityfactor,omittedfromequation(27),isthesameastheoneintheNewtoniancase,whichwillbeusedinthefollowing tonormalizethedepositionrateforthegeneralrelativisticcase.Equation(27)describestheenergydepositionrateine+e− pairsfromthe neutrino–antineutrinoannihilationprocessatradiusr intheequatorialplaneabovetheneutronorquarkstarphotonsphereradiusR,and (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728 1720 Z.Kova´cs,K.S.ChengandT.Harko withtheneutrinoluminosityobservedatinfinityL∞.Thisrelationcanbealsogiveninthequasi-isotropiccoordinatesystemintermsofthe metricfunctionsofthelineelement(equation16), q˙(r¯)∝L9/4(cid:9)(r¯)e9[γ¯(R¯)+ρ¯(R¯)]/4−9[γ¯(r¯)+ρ¯(r¯)]/2R−9/4(R¯). (28) ∞ 4 EQUATIONS OF STATE AND STELLAR MODELS Inordertoobtainaconsistentandrealisticphysicaldescriptionoftherotatinggeneralrelativisticneutronandquarkstars,asafirststepwe havetoadopttheEOSforthedenseneutronandquarkmatter,respectively.Inthisstudy,weconsiderthefollowingEOSforneutronand quarkmatter: (1) Akmal–Pandharipande–Ravenhall(APR)EOS(Akmal,Pandharipande&Ravenhall1998).EOSAPRhasbeenobtainedbyusingthe D variationalchainsummationmethodsandtheArgonnev18two-nucleoninteraction.Boostcorrectionstothetwo-nucleoninteraction,which ow n givetheleadingrelativisticeffectoforder(v/c)2,aswellasthree-nucleoninteractions,arealsoincludedinthenuclearHamiltonian.The lo a densityrangeisfrom2×1014gcm−3 to2.6×1015gcm−3.ThemaximummasslimitinthestaticcaseforthisEOSis2.20M(cid:11).Wejoin d e PtheitshEicOkS&toStuhtehecrolamnpdo1si9t7e1BbB)P-F((cid:5)M/Tc2(>(cid:5)/4c.23<×110041g1gcmcm−3−)3()F(eByanymma,nB,eMtheetr&opPoelitshi&ckT1e9ll7e1ra1)9-4B9)PESO(1S0,4rgescpmec−t3iv<ely4..3×1011gcm−3)(Baym, d from (2) Douchin–Haensel(DH)EOS(Douchin&Haensel2001).EOSDHisanEOSoftheneutronstarmatter,describingboththeneutron http sthtaeracprpulsitcaatniodnthtoe ltihqeuicdalccourlea.tioItnisofbathseedproonpethrteieesffoefctviveerynnueculetarorninrtiecrhacmtioatnteSr.LTyhoefstthruecStukryermofetthyepec,ruwsth,icahndisitpsaErtOicSu,lairslycasluciutalabtleedfoinr s://ac a thezero-temperatureapproximation,andundertheassumptionoftheground-statecomposition.TheEOSoftheliquidcoreiscalculated de assuming(minimal)npeμcomposition.Thedensityrangeisfrom3.49×1011to4.04×1015gcm−3.Theminimumandmaximummasses mic ofthestaticneutronstarsforthisEOSare0.094and2.05M(cid:11),respectively. .ou p (3) Shen–Toki–Oyamatsu–Sumiyoshi (STOS) EOS (Shen et al. 1998). The STOS EOS of nuclear matter is obtained by using the .c o relativisticmean-fieldtheorywithnon-linearσ andωtermsinawidedensityandtemperaturerange,withvariousprotonfractions.TheEOS m /m wasspecificallydesignedfortheuseofsupernovasimulationandfortheneutronstarcalculations.TheThomas-Fermiapproximationisused n ra todescribeinhomogeneousmatter,whereheavynucleiareformedtogetherwithfreenucleongas.WeconsidertheSTOSEOSforseveral s temperatures,namelyT =0,0.5and1.0MeV,respectively.ThetemperatureismentionedforeachSTOSEOS,sothat,forexample,STOS /artic 0representstheSTOSEOSforT =0.Fortheprotonfraction,wechosethevalueY =10−2inordertoavoidthenegativepressureregime le p -a forlowbaryonmassdensities. b s (4) Relativistic mean field (RMF) EOS with isovector scalar mean field corresponding to the δ-meson–RMF soft and RMF stiff EOS tra c (Kubis&Kutschera1997).Whiletheδ-mesonmeanfieldvanishesinsymmetricnuclearmatter,itcaninfluencepropertiesofasymmetric t/4 0 nuclear matter in neutron stars. The RMF contribution due to the δ-field to the nuclear symmetry energy is negative. The energy per 2 /3 particle of neutron matter is then larger at high densities than the one with no δ-field included. Also, the proton fraction of β-stable /1 7 matterincreases.Splittingofprotonandneutroneffectivemassesduetotheδ-fieldcanaffecttransportpropertiesofneutronstarmatter. 14 The EOS can be parametrized by the coupling parameters Cσ2 = gσ2/m2σ,Cω2 = gω2/m2ω,b¯ = b/gσ3 and c¯ = c/gσ4, where mσ and mω /989 are the masses of the respective mesons and b and c are the coefficients in the potential energy U(σ) of the σ-field. The soft RMF 23 3 EOS is parametrized by C2 = 1.582 fm2,C2 = 1.019 fm2,b¯ = −0.7188 and c¯ = 6.563, while the stiff RMF EOS is parametrized by b σ ω y C2 =11.25fm2,C2 =6.483fm2,b¯ =0.003825andc¯ =3.5×10−6,respectively. g σ ω u (5) Baldo–Bombaci–Burgio (BBB) EOS (Baldo, Bombaci & Burgio 1997). The BBB EOS is an EOS for asymmetric nuclear matter, es derivedfromtheBrueckner–Bethe–Goldstonemany-bodytheorywithexplicitthree-bodyforces.TwoEOSareobtained,onecorresponding t on totheArgonneAV14(BBBAV14)andtheothertotheParistwo-bodynuclearforce(BBBParis),implementedbytheUrbanamodelforthe 02 trhesrepee-cbtoivdeylyf.oTrchee.oTnhseetmoafxdimireucmtUstractaicpmroacsesssceosnfiocgcuurarstioatnsdeanresitMiesmanx =≥01..685afnmd−13.9fo4rMth(cid:11)eAwVhe1n4tphoeteAnVti1al4aannddnPa≥ris0.i5n4tefrmac−t3iofnosrathreeuPsaerdis, April 2 potential.ThecomparisonwithothermicroscopicmodelsfortheEOSshowsnotabledifferences.Thedensityrangeisfrom1.35×1014to 01 9 3.507×1015gcm−3. (6) BagmodelEOSforquarkmatter(Q)EOS(Itoh1970;Bodmer1971;Witten1984;Cheng,Dai&Lu1998).Forthedescriptionofthe quarkmatter,weadoptfirstasimplephenomenologicaldescription,basedontheMITbagmodelEOS,inwhichthepressurepisrelatedto theenergydensityρby 1 p= (ρ−4B)c2, (29) 3 whereBisthedifferencebetweentheenergydensityoftheperturbativeandnon-perturbativeQCDvacuum(thebagconstant),withthevalue 4B=4.2×1014gcm−3. (7) ItisgenerallyagreedtodaythattheCFLstateislikelytobethegroundstateofmatter,atleastforasymptoticdensities,andevenifthe quarkmassesareunequal(Alford,Rajagopal&Wilczek1999;Rappetal.2000;Horvath&Lugones2004;Alfordetal.2008).Moreover, theequalnumberofflavoursisenforcedbysymmetry,andelectronsareabsent,sincethemixtureisautomaticallyneutral.Byassumingthat themassm ofthe‘s’quarkisnotlargeascomparedtothechemicalpotentialμ,thethermodynamicalpotentialofthequarkmatterinCFL s (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728 Electron–positron energydeposition 1721 1036 DH -2m] 1035 RRMMFF sstoiffft c STOS 0 es STOS 0.5 yn STOS 1.0 P [d 1034 BBBBBBAPVar1i4s APR Q CFL 150 CFL 300 1033 1014 1015 1016 D ρ [g cm-3] o w n Figure1. Pressureasafunctionofdensity(inalogarithmicscale)fortheEOSDH,RMFsoft,RMFstiff,STOS0.STOS0.5,STOS1,BBBAV14,BBBParis, loa d APR,Q,CFL150andCFL300,respectively. e d phasecanbeapproximatedas(Lugones&Horvath2002) from w(cid:19)hCeFLre=(cid:16)−is34tμπhe24g+ap34emπn22ser−gy.1W−it1h2t3hl2neπ(um2ses/o2fμth)mis4sex−prπe3s2s(cid:16)io2nμ,2th+epBr,essurePofthequarkmatterintheCFLphasecanbeobtainedasanexp(l3ic0i)t https://a c a functionoftheenergydensityεintheform(Lugones&Horvath2002) d e m P = 13(ε−4B)+ 2(cid:16)π22δ2 − m2π2sδ22, (31) ic.ou p where (cid:8) .c o 4 m δ2=−α+ α2+ π2(ε−B), (32) /m 9 n andα=−m2/6+2(cid:16)2/3.Inthefollowing,thevalueofthegapenergy(cid:16)consideredineachcasewillbealsomentionedfortheCFLEOS, ras sothat,forexsample,CFL200representstheCFLEOSwith(cid:16)=200.ForthebagconstantB,weadoptthevalue4B =4.2×1014gcm−3, /artic whileforthemassofthestrangequarkwetakethevaluem =150MeV. le s -a b Thepressure–densityrelationispresentedfortheconsideredEOSinFig.1. s tra introdTuocceadlcinulSatteertghieoueqlausil&ibrFiurimedcmonanfig(u1r9a9t5io)n,sanodftdhiescruostasetidnginneduettraoilnsainndSqteuragrikousltaasrs(w20it0h3t)h.eTEhiOsScopdreeswenatsedusheedref,owrtehuessetuthdeyRoNfSdcioffdeer,eanst ct/40 2 modelsofrotatingneutronstars(Nozawaetal.1998),andforthestudyoftherapidlyrotatingstrangestars(Stergioulasetal.1999).The /3 RNScodeproducesthemetricfunctionsinaquasi-spheroidalcoordinatesystem,asfunctionsoftheparameters =r¯/(r¯+r¯e),wherer¯eisthe /171 equatorialradiusofthestar,whichwehaveconvertedintoSchwarzschild-typecoordinatesraccordingtotheequationr =r¯exp[(γ¯−ρ¯)/2]. 4/9 8 9 2 3 5 ELECTRON–POSITRON ENERGY DEPOSITION RATE IN THE EQUATORIAL PLANE 3 b OF RAPIDLY ROTATING NEUTRON AND QUARK STARS y g u Todemonstratetheexistenceandthelocationofthephotonradiusforneutronandquarkstarsinthestaticandtherotatingcases,respectively, es inFig.2wepresentb(r)/M asafunctionoftheSchwarzschildcoordinateradius(normalizedtothemassofthestar).Forthestaticneutron t o n star(modelled,forexample,bytheSTOS0.5EOS),theexteriorgeometryisalwaystheSchwarzschildone,andthecurveb(r)connectsto 02 thecurveofthestaticblackholeataradiussomewhatlowerthan3M.Then,thecurvehasalocalminimumat3M,similarlytothecaseofthe Ap functionb(r),correspondingtotheSchwarzschildcase(Landau&Lifshitz1998).Therefore,thestarhasaphotonradiusat3M.Thisisnot ril 2 0 thecaseforthestaticquarkstar(withanEOSoftheCFL300type),whichisnotsocompact,anditscurveb(r)reachestheSchwarzschild 1 9 blackholecurveatasomewhathigherradiusthan3M.Theradialdependenceofb(r)forrotatingstarshasalsothesetwofeatures:themetric potentialsoftheneutronstarwithRMFstifftypeEOSandtheQ-andCFL-typequarkstarsgivelocalminimaforb(r),whereastheneutron starwithSTOS0.5typeEOSisnotcompactenoughtohaveaphotonradius(seeTable3).Wenotethatthephotonradiioftherotatingstellar objectsarelocatedathigherradiithan3M,whichisoppositetothebehaviouroftherotatingblackholes,wherethephotonradiiapproach Mastheblackholespinsup. Thedepositionrateofthetotalenergyofthee+e− pairsgeneratedintheneutrinoannihilationisusuallycharacterizedbytheintegral ofq˙ overthespatialpropervolumeoftheneutrinostream.Theintegralofq˙ intheradialdirection,measuringthetotalamountofenergy convertedformneutrinostoelectron–positronpairsatallradiiR,isthengivenby (cid:2) (cid:2) (cid:2) 2π π/2 ∞ √ Q˙(R)=2 q˙(r,R,θ) g g g drdθdφ. (33) rr θθ φφ 0 0 R Forasphericallysymmetricgeometry,theintegrationovertheangularcoordinatesφ andθ isastraightforwardcomputation.Thisis notthecaseintheaxiallysymmetriccase,wheretheθ-dependenceofthemetricaswellasthenatureofthenulltrajectoriesaremuchmore (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728 1722 Z.Kova´cs,K.S.ChengandT.Harko 10 8 M 6 b(r) / 4 ssttaattiicc BNHS static QS RMF stiff 2 STOS 0.5 Q CFL 300 0 0 1 2 3 4 5 6 7 8 9 10 D o r/M w n lo a Figure2. Theimpactparameterb/MasafunctionoftheSchwarzschildcoordinater/Mforstaticblackholes,andstaticandrotatingneutronandquarkstars, d e respectively. d fro m 5.0 stDatHic http s θ) 4.5 RMSTFO sSt i0ff ://ac d STOS 0.5 a .Q /N 4.0 BSBTBOASV 11.40 dem θ ) / (d 3.5 BBBPAaPrRis ic.ou .(dQ/d 3.0 CFL 15Q0 p.com /m 2.5 n ra s /a 2.0 5 6 7 8 9 10 rtic le R/M -a b s Figure3. Theelectron–positronenergydepositionrate(dQ˙/dθ)/(dQ˙N/dθ)|θ=π/2intheequatorialplanearoundrotatingneutronandquarkstars,withthe tra sametotalmassM=1.8M(cid:11),andsamerotationalvelocity(cid:19)=5×103s−1. ct/4 0 2 complicated.Inordertoavoidthisproblem,werestrictthestudyoftheelectron–positronenergydepositionratetoneutrinopairsmovingin /3 theequatorialplaneonly.InsteadofthequantityQ˙ definedbyequation(33),weconsideritsderivativewithrespecttoθ intheequatorial /17 1 4 plane$, (cid:2) (cid:2) $ /98 ddQθ˙ $$$θ=π/2 == 24π0(cid:2)2π∞q˙R(∞r,q˙R(r,,θR)√,θg)r√rggθrθrggφθφθdgrφφ$$$$drdφ.$$$θ=π/2 (34) 9233 by gue R θ=π/2 st o Q˙,andthereforeitsθ-derivative,isneitheranobservable,noraLorentz-invariantquantity(Salmonson&Wilson1999),butQ˙ canbe n 0 2 used to measure the total amount of local energy deposited via the neutrino pair annihilation outside the neutrino sphere. The derivative A tdhQe˙/Ndeθw,teovnailaunatceadseatcaθn=beπa/p2p,liaeldlotwoscoonmeptaoredtehsecreibneertghyedeenpeorgsiytiodneproasteitsioinnrdaitfefeorennlytginravthiteateiqounaatloproiatlenptliaanlse.,Sbiuntcietsthvealquueanntoirtymagliivzeendbtyo pril 20 1 equation(34)hasasimpleformintheNewtoniancase,theratioofthegeneralrelativisticcasetotheNewtonianmodelisgivenby 9 ddQ˙Q˙//ddθθ$$$$ = %R∞q˙(r,R,θ)(cid:10)g%r∞r(rq˙,θ()rg,θRθ()rr,2θd)rgφφ(r,θ)dr$$θ=π/2. (35) N θ=π/2 R N Here,q˙(r,R,θ)isthedepositionratecalculatedbytakingintoaccountthegeneralrelativisticeffects,whereasq˙ (r,R)isthedeposition N rateforthesimpleNewtoniancase,withouttakingintoaccountthebendingoftheneutrinopathandtheredshiftintheneutrinotemperature. Wewillusetheratiogivenbyequation(35)tocomparetheelectron–positronenergydepositionratesinthespace–timesofneutronandquark stars,withdifferentEOS. InFig.3,wepresenttheratiogivenbyequation(35)asafunctionoftheneutrino-sphereradius,measuredincurvaturecoordinates,for eachneutronandquarkstarmodelpreviouslydescribed.ThetotalmassMofthecentralobjectsissetto1.8M(cid:11),andtherotationalfrequency (cid:19)ofthestarsisabout5×103s−1.Forthisconfiguration,thephysicalparametersofthestarsareshowninTable1. Fromtheanalysisofthecompactnessofthesestars,i.e.oftheratioofthetotalmasstotheequatorialradius,weseethatthe1.8M(cid:11) massstarsarenotcompactenoughtohaveaphotonoraneutrinosphere.Inotherwords,theimpactparameterbgivenbyequation(18) (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728 Electron–positron energydeposition 1723 Table1. PhysicalparametersofthecompactstarswithtotalmassM≈1.8M(cid:11)androtationalfrequency(cid:19)≈5×103s−1. EOS DH RMFstiff STOS0 STOS0.5 STOS1 BBBAV14 BBBParis APR Q CFL150 ρc(1015g/cm3) 1.29 0.57 0.369 0.383 0.40 2.15 1.70 1.225 0.931 0.71 M(M(cid:11)) 1.81 1.80 1.85 1.80 1.79 1.80 1.80 1.80 1.79 1.80 M0(M(cid:11)) 2.05 2.00 2.01 1.95 1.93 2.08 2.07 2.11 2.09 2.09 Re(km) 12.01 15.79 21.03 22.84 22.72 10.57 10.98 10.99 11.79 12.36 (cid:19)(103s−1) 4.99 5.00 4.90 4.71 4.45 5.01 5.00 5.00 4.79 5.00 (cid:19)p(103s−1) 11.16 7.97 5.37 4.56 4.54 13.96 13.19 13.23 11.97 11.28 T/W(10−2) 3.43 8.93 14.91 12.25 9.83 2.35 2.66 3.41 4.45 5.64 cJ/GM2(cid:11) 1.15 2.00 2.95 2.49 2.15 0.95 1.00 1.12 1.28 1.50 I(1045gcm2) 2.03 3.52 5.30 4.65 4.25 1.66 1.76 1.98 2.35 2.63 (cid:11)2(1043gcm2) 8.54 43.82 106.53 80.44 61.22 4.42 5.43 7.87 1.30 1.91 D h+(km) 6.85 0.00 0.00 0.00 0.00 3.19 2.69 0.00 0.00 0.00 o w h−(km) 7.48 −3.40 7.91 3.87 2.27 8.14 7.90 -2.11 0.00 0.00 n ωc/(cid:19)(10−1) 5.85 4.52 4.10 4.07 4.08 6.67 6.34 5.86 5.27 5.00 loa d re(km) 9.10 12.85 18.00 19.97 19.91 7.64 8.06 8.05 8.86 9.40 ed rp/re 0.88 0.72 0.54 0.53 0.58 0.92 0.91 0.90 0.87 0.84 fro m Note.Here,ρcisthecentraldensity,Misthegravitationalmass,M0istherestmass,Reisthecircumferentialradiusattheequator,(cid:19)istheangularvelocity, h (cid:19)pistheangularvelocityofaparticleincircularorbitattheequator,T/Wistherotational-gravitationalenergyratio,cJ/GM2(cid:11)istheangularmomentum, ttp Iisthemomentofinertia,(cid:11)2givesthemassquadrupolemomentM2sothatM2=c4(cid:11)2/(G2M3M3(cid:11)),h+istheheightfromthesurfaceofthelaststable s://a co-rotatingcircularorbitintheequatorialplane,h−istheheightfromsurfaceofthelaststablecounter-rotatingcircularorbitintheequatorialplane,ωc/(cid:19)is ca theratioofthecentralvalueofthepotentialωto(cid:19),reisthecoordinateequatorialradiusandrp/reistheaxesratio(polartoequatorial),respectively. de m ic .o isamonotonicfunctionoftheradialcoordinate,withoutanyminimum.Forcomparison,wealsoplottedthestaticcasewiththesametotal u p mass,whichisessentiallythesameforanytypeoftheEOSdescribingthepropertiesofthedensestarmatter,sincetheexteriormetricof .c o thestaticstarsisdescribedbytheSchwarzschildmetric.TheenergydepositionrateforthiscasecoincideswiththeQ˙/Q˙ versusr/Mplot m √ N /m givenbySalmonson&Wilson(1999),sincethemultiplicativefactorcomingfromtheintegrationofq˙ g g g overθ isunityforthe n rr θθ φφ ra Schwarzschildspace–time.FromFig.3,itcanbeimmediatelyseenhowtheenergydepositionrateoftheelectron–positronpairsisenhanced s /a bytherotationofthecentralobject.ItisalsoclearthatthemeasureofenhancementdependsonthetypeoftheEOSusedtodescribethedense rtic neutronandquarkstars.Intherotatingcase,theincreaseintheratiooftheenergydepositionrates,givenbyequation(35),isthesmallest, le -a ascomparedtothestaticcase,fortheBBBAV14-andBBBParis-typeEOS.TheneutronstarswithDH-andAPR-typeEOSproduceroughly bs thesameratios,whicharesomewhatgreaterthantheBBB-typeneutronstarpairproductionrates.Forthequarkstars,describedbytheQ tra c andtheCFL-typeEOS,weobtainevenhigherdepositionrates.Althoughnoneofthesetypesofcentralobjectspossessesneutrinospheres, t/4 0 theyarestillcompactenoughtohaveequatorialradiilessthan5M.TheequatorialradiioftheneutronstarswiththeRMF-andSTOS-type 2/3 EOSaremuchlargerthanthoseofthepreviousgroup:6MfortheRMF-typeEOS,and8MorevenmorefortheSTOS-typestars,depending /1 7 onthetemperatureofthesestellarconfigurations.Thismeansthatalthoughtheygivethehighestdepositionrates,withtheSTOST =1Mev 14 /9 typestarhavingthemaximalvalue,theenergyreleasedbytheneutrinopairannihilationoutsidethestarintheequatorialplaneissmaller 8 9 2 thaninthecaseofthefirstgroup.Thisresultmightbenottrueintheregionsclosetothepolesofthestar,iftheaxisratiosr¯p/r¯ewouldbe 33 considerablysmallerforthesecondgroupascomparedtotheaxisratiosofthefirstgroup.InthecaseoftheSTOS-typeEOSr¯ /r¯ isbetween b p e y 0.5and0.6,whichisindeedmuchsmallerthan0.85–0.9,theaveragevaluesoftheaxisratiosforthefirstgroup.Thismeansthedifference g u e betweenthepolarradiir¯ ofthefistgroup,andtheSTOS-typeneutronstar,issmallerthanthedifferencebetweentheirequatorialradii,and s p t o thelowerboundaryoftheintegralofq˙ overtheradialcoordinateisclosertoeachother.Inthiscase,theintegrateddepositionratecanbe n 0 higherfortheneutronstarwithSTOS-typeEOSthantheonewiththeothertypesofEOSforneutronstarsandquarkstars. 2 A However,inthisframeworkoneshouldbeverycautiouswithanystatementonthephysicalprocesseslocatedfarfromtheequatorial p plane,sincetheneutrinosreachingtheregionclosetothepoleoftherotatingstarshaveimpactparametersratherdifferentfromtheneutrinos ril 2 0 moving in the equatorial plane, and the formalism applied for the latter cannot be extended straightforwardly to the motion outside the 19 equatorialplane. Next,weconsidertheelectron–positronenergydepositionrateforamoremassivegroupofstars,withthetotalmassMsetto2.8M(cid:11). Althoughthisvalueofthemassissmallerthanthetheoreticalstabilitymasslimitof3solarmassesforultracompactobjects,notalltypes oftheEOSconsideredheredohaveconfigurationsofsuchhighmasses,evenintherapidlyrotatingcase.Wehaveobtainedsolutionstothe fieldequationsforthismassregimeonlyforthequarkstars,fortheRMF,andfortheSTOS-typeneutronstarEOS,respectively.Forthe otherEOS,wedidnotevenfindacompatiblerotationfrequencyinthehigh-massregime.Forthestablemassiveconfigurations,theangular velocityvariedupto6×103s−1fortheSTOS-typeneutronstarmodelsandtheCFL-typequarkstars,whereas(cid:19)reachedvaluesofaround 9×103−104s−1fortheneutronstarswiththeRMF-typeEOS,andforQ-typequarkstars.Themodelsweconsideredforthestudyofthe electron–positronenergydepositionratehavearotationalfrequencyof6×103s−1,forthefirsttwomodels,andafrequencyof104s−1for thesecondones,asshowninTable2.Theseconfigurations,exceptthemodelwiththeRMF-typeEOS,arealreadycompactenoughtohave photonorneutrinoradiiintheequatorialplane.Thevaluesoftheneutrinoradiitogetherwiththeequatorialradiiofthestarsaregivenin Table3.Theradialprofileoftheratioinequation(35)fortheseconfigurations,andofthestaticcase,ispresentedinFig.4. (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728

Description:
are the three-velocities and the energy of the colliding neutrino–antineutrino pairs, respectively Goodman et al. (1987). The cross-section of.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.