Mon.Not.R.Astron.Soc.402,1714–1728(2010) doi:10.1111/j.1365-2966.2009.15986.x Electron–positron energy deposition rate from neutrino pair annihilation in the equatorial plane of rapidly rotating neutron and quark stars (cid:2) (cid:2) (cid:2) Z. Kova´cs, K. S. Cheng and T. Harko DepartmentofPhysicsandCenterforTheoreticalandComputationalPhysics,TheUniversityofHongKong,PokFuLamRoad, HongKong,HongKongSAR,China Accepted2009November5.Received2009November4;inoriginalform2009September16 D o w n lo a ABSTRACT d e d Theneutrino–antineutrinoannihilationintoelectron–positronpairsnearthesurfaceofcompact fro general relativistic stars could play an important role in supernova explosions, neutron star m h collapse, or for close neutron star binaries near their last stable orbit. General relativistic ttp s effectsincreasetheenergydepositionratesduetotheannihilationprocess.Weinvestigatethe ://a depositionofenergyandmomentumduetotheannihilationsofneutrinosandantineutrinosin c a d theequatorialplaneoftherapidlyrotatingneutronandquarkstars,respectively.Weanalyse e m theinfluenceofgeneralrelativisticeffects,andobtainthegeneralrelativisticcorrectionstothe ic .o energyandmomentumdepositionratesforarbitrarystationaryandaxisymmetricspace–times. up .c Weobtain theenergy andmomentum deposition ratesforseveral classesofrapidly rotating o m neutron stars, described by different equations of state of the neutron matter, and for quark /m n stars, described by the Massachusetts Institute of Technology bag model equation of state ra s andinthecolour-flavour-lockedphase,respectively.ComparedtotheNewtoniancalculations, /a rotation and general relativistic effects increase the total annihilation rate measured by an rtic le observeratinfinity.Thedifferencesintheequationsofstateforneutronandquarkmatteralso -a b s have important effects on the spatial distribution of the energy deposition rate by neutrino– tra antineutrinoannihilation. ct/4 0 2 Keywords: densematter–equationofstate–neutrinos–relativity–stars:rotation. /3 /1 7 1 4 1 INTRODUCTION /9 8 9 Since the pioneering works of Cooperstein et al. (1986), Cooperstein, van den Horn & Baron (1987) and Goodman, Arnon & Nussinov 2 3 (1987),theenergydepositionratefromtheν+ν¯ → e++e− neutrinoannihilationreactionhasbeenintensivelystudied.Thisreactionis 3 b y ofconsiderableimportanceforTypeIIsupernovadynamics,neutronstarcollapse,orforcloseneutronstarbinariesneartheirlaststable g u orbit.Neutrino–antineutrinoannihilationintoelectronsandpositronscandepositmorethan1051ergabovetheneutrinosphereofaTypeII e s supernova(Goodmanetal.1987).Thisenergydeposition,togetherwithneutrino–baryoncapture,significantlyincreasestheneutrinoheating t o n intheenvelopeviatheso-calleddelayedshockmechanism(Bethe&Wilson1985;Bethe1990).Forlarger,theenergydepositionrateis 0 2 proportionaltor−8,whereristhedistancefromthecentreoftheneutrinosphere.Theinitialestimationsoftheneutrinoannihilationreaction A p efficiencieswerebasedonaNewtonianapproach,byassumingthat2GM/c2R(cid:3)1,whereMisthegravitationalmassofthestarandRisthe ril 2 distancescale.However,forafullunderstandingoftheeffectsoftheneutrinoannihilationinstronggravitationalfields,generalrelativistic 01 9 effectsmustbetakenintoaccount(Salmonson&Wilson1999).Forastaticneutronstar,byadoptingforthedescriptionofthegravitational fieldtheSchwarzschildmetric,theefficiencyoftheν+ν¯ →e++e−processisenhancedovertheNewtonianvaluesuptoafactorofmore than4intheregimeapplicabletoTypeIIsupernovae,andbyuptoafactorof30forcollapsingneutronstars(Salmonson&Wilson1999). TheneutrinopairannihilationrateintoelectronpairsbetweentwoneutronstarsinabinarysystemwascalculatedbySalmonson&Wilson (2001).Aclosedformulafortheenergydepositionrateatanypointbetweenthestarswasobtained,whereeachneutrinoofapairderives fromeachstar,andthisresultwascomparedwiththatinwhichallneutrinosderivefromasingleneutronstar.Anapproximategeneralization ofthisformulawasalsogiventoincludetherelativisticeffectsofgravity.Theinterstarneutrinoannihilationisasignificantcontributortothe energydepositionbetweenheatedneutronstarbinaries. Theneutrino–antineutrinoannihilationintoelectronsandpositronsisanimportantcandidatetoexplaintheenergysourceofthegamma ray bursts (GRBs; Paczynski 1990; Me´sza´ros & Rees 1992; Ruffert & Janka 1998, 1999; Asano & Iwamoto 2002). The semi-analytical (cid:2)E-mail:[email protected](ZK);[email protected](KSC);[email protected](TH) (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS Electron–positron energydeposition 1715 studyofthegravitationaleffectsonneutrinopairannihilationneartheneutrinosphereandaroundthethinaccretiondiscwereconsideredin Asano&Fukuyama(2000),byassumingthattheaccretiondiscisisothermalandthegravitationalfieldisdominatedbytheSchwarzschild black hole. General relativistic effects were studied only near the rotation axis. The energy deposition rate is enhanced by the effect of orbitalbendingtowardsthecentre.However,theeffectsoftheredshiftandgravitationaltrappingofthedepositedenergyreducetheeffective energyoftheGRB’ssource.Althougheacheffectissubstantial,theeffectspartlycanceloneanother.Asaresult,thegravitationaleffects donotsubstantiallychangetheenergydepositionrateforeitherthesphericallysymmetriccaseorthedisccase(Asano&Fukuyama2000). Usingidealizedmodelsoftheaccretiondisc,Asano&Fukuyama(2001)investigatedtherelativisticeffectsontheenergydepositionrate vianeutrinopairannihilationneartherotationaxisofaKerrblackhole,byassumingthattheneutrinosareemittedfromtheaccretiondisc. Thebendingofneutrinotrajectoriesandtheredshiftduetothediscrotationandgravitationwerealsotakenintoconsideration.TheKerr parameter,a,affectsnotonlybehaviouroftheneutrinos,butalsotheinnerradiusoftheaccretiondisc.Whenthedepositionenergyismainly contributedbytheneutrinoscomingfromthecentralpart,theredshifteffectbecomesdominantasitbecomeslarge,andtheenergydeposition rateisreducedascomparedwiththatneglectingtherelativisticeffects.Ontheotherhand,forasmalla,thebendingeffectbecomesdominant D andmakestheenergyincreasebyafactorof2,comparedwiththatwhichneglectstherelativisticeffects(Asano&Fukuyama2001). ow n Theeffectoftheinclusionoftheslowrotationofthestarinthegeneralrelativistictreatmentoftheneutrino–antineutrinoannihilationinto lo a electronpositronpairswasconsideredinPrasanna&Goswami(2002).Itwasshownthattheinclusionoftherotationresultsinareductionin d e theheatingrate,ascomparedtotheno-rotationcase.Theenergy–momentumdepositionrate(MDR)fromtheν−ν¯collisionsabovearotating d fro blackhole/thinaccretiondiscsystemwascalculatedbyMilleretal.(2003),byimagingtheaccretiondiscataspecifiedobserverusingthefull m h geodesicequationsandcalculatingthecumulativeMDRfromthescatteringofallpairsofneutrinosandantineutrinosarrivingattheobserver. ttp ThedominantcontributiontotheMDRcomesfromnearthesurfaceofthediscwithatiltofapproximatelyπ/4inthedirectionofthedisc’s s://a rotation.TheMDRatlargeradiiisdirectedoutwardsinaconicsectioncentredaroundthesymmetryaxisandislargerbyafactorof10–20 c a thantheon-axisvalues.ThereisalsoalineardependenceoftheMDRontheblackholeangularmomentum.Thedepositionofenergyand de m momentum,duetotheannihilationofneutrinosνandantineutrinosν¯inthevicinityofsteady,axisymmetricaccretiontoriaroundstellarmass ic blackholes,wasinvestigatedinBirkletal.(2007).Theinfluenceofgeneralrelativisticeffectswasanalysedincombinationwithdifferent .ou p neutrinospherepropertiesandspatialdistributionoftheenergydepositionrate.Assumingaxialsymmetry,theannihilationratefour-vector .c o wasnumericallycomputed.Thelocalneutrinodistributionwasconstructedbyray-tracingneutrinotrajectoriesinaKerrspace–time,using m /m nullgeodesics.Differentshapesoftheneutrinospheres,spheres,thindiscsandthickaccretiontoriwerestudied,whosestructurerangesfrom n ra idealizedtoritoequilibriumnon-selfgravitatingmatterdistributions.ComparedtoNewtoniancalculations,generalrelativisticeffectsincrease s /a thetotalannihilationratemeasuredbyanobserveratinfinitybyafactorof2whentheneutrinosphereisathindisc,buttheincreaseisonly rtic 25percentfortoroidalandsphericalneutrinospheres.Thin-discmodelsyieldthehighestenergydepositionratesforneutrino–antineutrino le -a annihilation,andsphericalneutrinospheresthelowestones,independentofwhethergeneralrelativisticeffectsareincluded.Generalrelativity b s androtationcauseimportantdifferencesinthespatialdistributionoftheenergydepositionratebyneutrinoνandantineutrinoν¯-annihilation tra c (Birkletal.2007).Thestudyofthestructureofneutronstardiscsbasedonthetwo-region(i.e.innerandouter)discscenariowasperformed t/4 0 by Zhang & Dai (2009), who calculated the neutrino annihilation luminosity from the disc in various cases. The effects of the viscosity 2 /3 parameterα,energyparameter(cid:5) (measuringtheneutrinocoolingefficiencyoftheinnerdisc)andoutflowstrengthonthestructureofthe /1 7 entiredisc,aswellastheeffectofemissionfromtheneutronstarsurfaceboundaryemissiononthetotalneutrinoannihilationrate,were 14 /9 investigated.Anoutflowfromthediscdecreasesthedensityandpressure,butincreasesthethicknessofthedisc.Moreover,comparedwith 8 9 theblackholedisc,theneutrinoannihilationluminosityabovetheneutronstardiscishigher,andtheneutrinoemissionfromtheboundary 23 3 layercouldincreasetheneutrinoannihilationluminositybyaboutoneorderofmagnitudehigherthanthediscwithoutboundaryemission. b y Theneutronstardiscwiththeadvection-dominatedinnerdisccouldproducethehighestneutrinoluminosity,whilethediscwithanoutflow g u e hasthelowest(Zhang&Dai2009).Adetailedgeneralrelativisticcalculationoftheneutrinopathforageneralmetricdescribingarotating s starwasstudiedinMallick&Majumder(2009).Theneutrinopathwascalculatedalongtheequatorialandpolarplane.Theexpressionforthe t on minimumphotosphereradiuswasobtainedandmatchedwiththeSchwarzschildlimit.Theminimumphotosphereradiuswascalculatedfor 02 A starswithtwodifferentequationsofstate(EOS),eachrotatingwithtwodifferentvelocities.Theresultsshowthattheminimumphotosphere p radiusforthehadronicstarismuchgreaterthanforthequarkstar,andthattheminimumphotosphereradiusincreasesastherotationalvelocity ril 2 0 ofthestardecreases.Theminimumphotosphereradiusalongthepolarplaneislargerthanthatalongtheequatorialplane.Theestimateof 1 9 theenergydepositionrateforneutrinopairannihilationfortheneutrinoscomingfromtheequatorialplaneofarotatingneutronstarwas calculatedalongtherotationaxisinBhattacharyyaetal.(2009),byusingtheCook–Shapiro–Teukolskymetric.Theneutrinotrajectories, andhencetheneutrinoemittedfromthedisc,areaffectedbytheredshiftduetothediscrotationandgravitation.Theenergydepositionrate isverysensitivetothevalueofthetemperature,anditsvariationalongthedisc.Therotationofthestarhasanegativeeffectontheenergy depositionrate,itdecreaseswithincreaseinrotationalvelocity.ThestandardmodelforTypeIIsupernovaeexplosions,confirmedbythe detectionofneutrinosemittedduringthesupernovaexplosion,predictstheformationofacompactobject,usuallyassumedtobeaneutron star(Chanetal.2009).However,thenewlyformedneutronstaratthecentreofSN1987Amayundergoaphasetransitionaftertheneutrino trappingtime-scale(∼10s).Consequently,thecompactremnantofSN1987Amaybeastrangequarkstar,whichhasasofterEOSthanthat ofneutronstarmatter(Chanetal.2009).Suchaphasetransitioncaninducestellarcollapseandresultinlargeamplitudestellaroscillations.A three-dimensionalNewtonianhydrodynamiccodewasusedtostudythetimeevolutionofthetemperatureanddensityattheneutrinosphere. Extremelyintensepulsatingneutrinofluxes,withsubmillisecondperiodandneutrinoenergy(greaterthan30MeV),canbeemittedbecause theoscillationsofthetemperatureanddensityareoutofphase,almost180◦.Thedynamicalevolutionofaphase-transition-inducedcollapse (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728 1716 Z.Kova´cs,K.S.ChengandT.Harko ofaneutronstartoahybridstar,whichconsistsofamixtureofhadronicmatterandstrangequarkmatter,wasstudiedinChengetal.(2009). Itwasfoundthatboththetemperatureandthedensityattheneutrinosphereareoscillatingwithacousticfrequency.Consequently,extremely intense, pulsating neutrino/antineutrino fluxes will be emitted periodically. Since the energy and density of neutrinos at the peaks of the pulsatingfluxesaremuchhigherthanthenon-oscillatingcase,theelectron/positronpaircreationratecanbeenhanceddramatically.Some masslayersonthestellarsurfacecanbeejected,byabsorbingenergyofneutrinosandpairs.Thesemassejectacanbefurtheracceleratedto relativisticspeedsbyabsorbingelectron/positronpairs,createdbytheneutrinoandantineutrinoannihilationoutsidethestellarsurface. Itisthepurposeofthispapertoconsideracomparativesystematicstudyoftheneutrino–antineutrinoannihilationprocessaroundrapidly rotatingneutronandstrangestars,respectively,andtoobtainthebasicphysicalparameterscharacterizingthisprocess(theelectron–positron energydepositionrateperunitvolumeandperunittimeandthetotalemittedpower,respectively),bytakingintoaccountthefullgeneral relativistic corrections. In order to obtain the electron–positron energy deposition rate for various types of neutron and quark stars, we generalizetherelativisticdescriptionoftheneutrino–antineutrinoannihilationprocesstothecaseofarbitrarystationaryandaxisymmetric geometries. To compute the electron–positron energy deposition rate, the metric outside the rotating general relativistic stars must be D determined.Inthisstudy,westudytheequilibriumconfigurationsoftherotatingneutronandquarkstarsbyusingtheRotatingNeutronStar ow n (RNS)code,asintroducedinStergioulas&Friedman(1995)anddiscussedindetailinStergioulas(2003).Thiscodewasusedforthestudyof lo a differentmodelsofrotatingneutronstarsinNozawaetal.(1998)andforthestudyoftherapidlyrotatingstrangestars(Stergioulas,Kluzniak d e d &Bulik1999).Thesoftwareprovidesthemetricpotentialsforvarioustypesofcompactrotatinggeneralrelativisticobjects,whichcanbe fro usedtoobtaintheelectron–positronenergydepositionrateintheequatorialplaneofrapidlyrotatingneutronandquarkstars. m h This paper is organized as follows. In Section 2, we present the basic formalism for the calculation of the electron–positron energy ttp depositionratefromneutrino–antineutrinoannihilation.ThegeneralrelativisticcorrectionstothisprocessareobtainedinSection3.The s://a EOSofdenseneutronandquarkmatterusedinthepresentstudyarepresentedinSection4.InSection5,weobtaintheelectron–positron c a energydepositionratesintheequatorialplaneoftheconsideredclassesofneutronandquarkstars.Wediscussandconcludeourresultsin de m Section6. ic .o u p 2 NEUTRINO PAIR ANNIHILATION .co m A considerable amount of energy can be released by the neutrino pair annihilation process in the regions close to the so-called neutrino /m n sphere,withradiusRν,atwhichthemeanfreepathoftheneutrinoisequaltotheradiusitself(Bethe&Wilson1985). ras Theenergydepositionrateperunitvolumeisgivenby /a q˙(r)=(cid:2)(cid:2) fν(pν,r)fν¯(pν¯,r){σ|vν−vν¯|ενεν¯}ενεν+εν¯εν¯d3pνd3pν¯ (1) rticle-ab s foranypointr> Rν,wherefν andfν¯ arethenumberdensitiesinthemomentumspaceswiththemomenta pν and pν¯ andvν ,εν,vν¯ andεν¯ trac arethethree-velocitiesandtheenergyofthecollidingneutrino–antineutrinopairs,respectivelyGoodmanetal.(1987).Thecross-sectionof t/4 thecollisionisdenotedbyσ. 02 Byapplyingthedecompositions pν =εν(cid:2)ν andd3pν =ε2νdενd(cid:2)ν,withthesolidanglevector(cid:2)ν pointinginthedirectionof pν,and /3/17 withtheassumptionthattheneutrinosphereemitsparticlesisotropically,theintegralinequation(1)canbeseparatedintoanenergyintegral 1 4 andanangularpart.Afterevaluatingtheenergyintegralforfermions,forasphericallysymmetricgeometrytheenergydepositionrateper /9 8 9 unitvolumecanberepresentedas 2 3 3 q˙(r)= 7DG2Fπ3ζ(5)(kT)9(cid:9)(r)∝T9(r)(cid:9)(r), (2) by 2c5h6 g u w10h−e4r4ecTm(cid:2)2is(cid:2)MtheeVn−e2u,trreisnpoectetimvepleyr,aatunrde,wζithisththeeaRngieumlaarnpnarftuonfcttihoene,nDer=gy1de±po4sistiino2nθraWte+(cid:9)8(rs)igni4vθenW,bywithsin2 θW =0.23,andG2F =5.29× est on 0 2 (cid:9)(r)= (1−(cid:2)ν·(cid:2)ν¯)2d(cid:2)νd(cid:2)ν¯. (3) Ap Theradialmomentumdensityp˙ transportedintothee+e−plasmafromthecollidingνν¯ pairscanbewrittenas(Salmonson&Wilson1999) ril 2 0 p˙ = q˙(cid:11) (r)(cid:9)(r), (4) 19 c p where (cid:2)(cid:2) 1 (cid:11) (r)= (1−(cid:2) ·(cid:2) )2[r·((cid:2) +(cid:2) )]d(cid:2) d(cid:2) , (5) p 2 ν ν¯ ν ν¯ ν ν¯ withtheunitvectorrnormaltothestellarsurface. Sincetheintegralsinequations(3)and(5)dependonlyontheradialcoordinater,byvirtueofthesymmetry,theangularpart(cid:9)(r)and thefunction(cid:11) (r)canbegivenbytheanalyticformulae p 2π2 (cid:9)(r)= (1−x)4(x2+4x+5) (6) 3 and π2 (cid:11) (r)= (1−x)4(8+17x+12x2+3x3), (7) p 6 (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728 Electron–positron energydeposition 1717 wherex=cosθ andθ isthemaximalanglebetweenrand p (Goodmanetal.1987;Salmonson&Wilson1999).Inordertodetermine max max ν thequantityx,oneneedtousetheequationsofmotionoftheneutrinosradiatedbythestellarmatter,andpropagatingoutsidetheneutrino sphere. The equations of motion in the Newtonian case, or the geodesic equations in the general relativistic case, fully determine x as a functionoftheradialcoordinate.Therefore,thepropertiesofthegravitationalpotentialproduceanimprintontheenergydepositionrate calculatedintheregionclosetotheneutrinosphere.Salmonson&Wilson(1999)extendedthecalculationsofGoodmanetal.(1987)tothe caseoftheSchwarzschildgeometry,andcomparedtheirresultstothoseoftheNewtoniancase. Althoughrotatingconfigurationsofneutronstarsbreakthesphericalsymmetryofthespace–time,onecanstillcarryoutananalysis similartothestaticcaseifthestudyisrestrictedtotheinvestigationoftheannihilationofneutrinoandantineutrinopairspropagatingin theequatorialplaneoftherotatingstar.Byeliminatingtheangulardependencefromtheequations,aformalismsimilartothespherically symmetric case can be used to calculate the energy deposition rate in the equatorial plane. The obtained result is not equal to the total depositionrateofthehigh-energyelectronpositronpairscreatedintheannihilationprocess.However,thisquantitycanstillbeappliedinthe comparisonoftheneutrinoandantineutrinoannihilationenergydepositionratefordifferentmodelsofrotatingneutronandquarkstars,orin D studyingthegeneraleffectsoftherotationofthestellarobjectonthisprocess. ow n lo a d 3 GENERAL RELATIVISTIC EFFECTS ON THE ELECTRON–POSITRON ENERGY e d DEPOSITION RATE fro m Themetricofastationaryandaxisymmetricgeometryisgiveninthegeneralformby h ds2=g dt2+2g dtdφ+g dr2+g dθ2+g dφ2. (8) ttps Forthistmt etric,thetφnull-geodesrircsequatiθoθnsintheφeφquatorialplaneθ =π/2are ://ac a g E+g L de t˙= φφ tφ , (9) m gφ2t −gttgφφ ic.o u φ˙ =−ggφ2tE−+gggttL, (10) p.com tφ tt φφ /m wgrhrre˙r2e=EigsφtφhEe2egn+et2φr2g−gyt,φgaEtntgLdφLφ+isgtthtLe2a,ngularmomentumoftheparticlespropagatingalongthenull-geodesics.Then,theparametricequation(1fo1r) nras/article dr/dφcanbewrittenas -a (cid:3) (cid:4) bs g dr 2=(cid:5)g2 −g g (cid:6)gφφ+2gtφb+gttb2, (12) trac rr dφ tφ tt φφ (gtφ+gttb)2 t/4 0 wheretheimpactparameterisdefinedasb=L/E. 2/3 Forthemetricgivenbyequation(8),thelocallynon-rotatingframe(LNRF)(inwhichthewordlinesofthefreelyfallingobserversare /1 7 r=constant,θ=constantandφ−ωt=constant,respectively,withω=−gtφ/gφφ)hasthebasisofone-forms(Bardeen,Press&Teukolsky 14/9 1972), 8 (cid:7) 9 2 eμ(t) = g√t2φ−−ggttttgφφ(−1,0,0,0), 33 by gu e(r) =(0, g ,0,0), e eμ(θ) =(0,0,√rrg ,0), st on eμμ(φ) =√gφφ(gtφθ/θgφφ,0,0,1). 02 Ap SincethevelocitymeasuredintheLNRFisgivenbyv(a)=e(a)vμ,theangleθ betweentheparticletrajectoryandthetangentvectorto ril 2 μ r 0 thecircularorbitwiththeradialcoordinate√rcanbewrittenas 19 v(r) e(r)vr g dr tanθ = = r = √ rr . r v(φ) eφ(φ)vφ+et(φ) gφφ[1+gtφ/(gφφvφ)]dφ Fromthisexpression,weobtainfordr/dφtheequation (cid:8) (cid:3) (cid:4) dr g g = φφ 1+ tφ tanθ . (13) dφ g g vφ r rr φφ Byinsertingequations(9)and(10)intothedefinitionofvφ,weobtainforvφ theexpression uφ φ˙ g E+g L vφ = = =− tφ tt , ut t˙ g E+g L φφ tφ whichcanbesubstitutedintoequation(13)togive (cid:8) (cid:3) (cid:4) dr g g g E+g L = φφ 1− tφ φφ tφ tanθ . dφ g g g E+g L r rr φφ tφ tt (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728 1718 Z.Kova´cs,K.S.ChengandT.Harko Then,thederivativedr/dφcanbeeliminatedfromtheparametricequation(12)andweobtain (cid:3) (cid:4) g g +g b 2 (cid:5) (cid:6)g +2g b+g b2 g 1− tφ φφ tφ tan2θ = g2 −g g φφ tφ tt . φφ g g +g b r tφ tt φφ (g +g b)2 φφ tφ tt φt tt Thisresultgivesasecond-orderalgebraicequationforb, [(g g −g2 )sec2θ +g2 ]b2+2g g b+g2 =0, (14) tt φφ tφ r tφ tφ φφ φφ whichcanbesolvedtogivetheimpactparameterbas −g b±= (cid:9) φφ . (15) g ± g2 −g g secθ tφ tφ tt φφ r A particular system of coordinates that is used in the study of the general-relativistic rotating configurations is the quasi-isotropic coordinatesystem(t,r¯,θ,φ),inwhichthelineelementcanberepresentedas(Stergioulas&Friedman1995;Stergioulas2003) D (cid:5) (cid:6) o ds2=−eγ¯+ρ¯dt2+e2α¯ dr¯2+r¯2dθ2 +eγ¯−ρ¯r¯2sin2θ(dφ−ω¯dt)2, (16) w n lo whereγ¯,ρ¯,α¯ andtheangularvelocityofthestellarfluidrelativetothelocalinertialframeω¯ areallfunctionsofthequasi-isotropicradial ad e coordinater¯andofthepolarangleθ. d Ifforneutronstarsthemetric(8)isgiveninanisotropiccoordinatesystemintheform(16),thenthesecond-orderalgebraicequation(14) fro m forbcanbewrittenintermsofthemetricfunctionsρ¯ andω¯ as h (cid:5) (cid:6) ttp sec2θr+e−2ρω¯2r¯2sin2θ b2−2e−2ρ¯ω¯r¯2sin2θb+e−2ρ¯r¯2sin2θ =0. s://a Fortheimpactparameter,correspondingtoθr=0,weobtain(Cadeu,Morsink&Leahy2007) cad −e−ρ¯r¯sinθ e−ρ¯r¯sinθ em b±= −e−ρ¯ω¯r¯sinθ±secθr =±secθr±e−ρ¯ω¯r¯sinθ. ic.ou Fr(cid:2)omtheparamet√ricequationequation(12),weobtainthedeflectionangleoftheparticletrajectoryforagivenbas p.c (cid:16)φ= robs (cid:9) grr(gtφ+gttb)dr . (17) om/m rem (gt2φ−gttgφφ)(gφφ+2gtφb+gttb2) nra s Inthisequation(cid:16)φmeasuresthechangeintheanglebetweenthesourceandtheobserver,foraphotonemittedattheradialcoordinate /a r ,andobservedattheradialcoordinater .Thisequationcanalsobegivenintheequatorialplaneintermsofthemetricfunctionsρ¯ and rtic em obs le ω¯,respectively,appearinginthelineelementequation(16)(Cadeu,Leahy&Morsink2005) -a (cid:2) bs (cid:16)φ=− r¯obseα¯−(γ¯+ρ¯)/2(cid:10)ω¯(1−ω¯b)+be2ρ¯/r¯2 dr¯. trac r¯em (1−ω¯b)2−b2e2ρ¯/r¯2 t/40 Intheequatorialplaneofblackholes,thephotonradiusisdefinedastheinnermostboundaryofcircularorbitsbelowwhichmassless 2/3 particleswithθ =0aregravitationallybound(Bardeenetal.1972).Forstaticblackholes,thephotonradiusis3M,andforrotatingblack /1 r 7 holesitreducestoM,asthespinparametera∗ =J/M2 oftheblackholeapproachesunity.Thisorbitmayexistforultracompactstarsas 14/9 well.Forstaticstarswithastellarradiuslessthan3M,thereisalwayssucha‘photonsphere’,whereas,dependingonthegeometryofthe 8 9 2 space–time,therotatingstarscanalsohaveaphotonradiusatbothlowerandhigherradii(Mallick&Majumder2009).Ontheotherhand, 3 3 verymassiverotatingquarkstarsinthecolour-flavour-locked(CFL)phasecanreachmasseshigherthantheequilibriumlimitforstaticstars b y (≈3M(cid:11)),ofthesameorderasthestellarmassblackholes(Kova´cs,Cheng&Harko2009),andthustheycanalsohaveaphotonradius. g u e Iftheintegralinequation(17)divergestoinfinity(ordr/dφtendstozero),thenullparticlesarerotatingaroundthecentralobjectsin s circularorbits.Inthiscase,θr=0,andthealgebraicequationequation(14)forbreducestogφφ +2gtφb+gttb2=0,withthesolution t on 0 b±= gtφ±(cid:9)−ggt2φφφ−gttgφφ =±1±e−eρ−¯rρ¯¯ω¯r¯. (18) 2 April 2 0 Foranyvalueofbsatisfyingequation(18),theintegral(17)isdivergent,andthenullparticleshavecircularorbits.Inequation(18),the 19 impactparameterintheequatorialplaneisgivenasafunctionoftheradialcoordinateonly. InthecaseoftheultracompactstaticstarswithradiiR lessthan3M,the(local)maximumofthefunctionb(r)islocatedatr =3M, e providingthephotonradius.IfR >3Mthenbisamonotonicallydecreasingfunction,withoutalocalmaximum.Forrotatingcompactstars, e thefunctionb(r)providesthesamecriterionfortheexistenceofthepotentialbarrier:formasslessparticles,theequatorialorbitwhereb(r) attainsitslocalmaximumdefinestheinnermostboundaryofcircularorbits.EvenifthisvalueislessthantheequatorialradiusR ,neutrinos e arestillfreetopropagatealongorbitslyingonthephotonradius. Byassumingthatthemeanfreepathoftheneutrinosisequaltoorlessthanthephotonradius,Salmonson&Wilson(1999)identified thephotonandtheneutrinosphereswitheachother.Accordingly,wewillalsoconsidertheorbitatthephotonradiusastheminimalradius wheretheannihilationprocessshouldstillbetakenintoaccount,provideditisoutsidethestar.Thecontributionoftheelectron–positron pairsformedinsidethestartothedepositionrateisneglected,becauseoftheircomplicatedinteractionswiththeneutronandquarkmatter. Sincetheimpactparametermeasuredatinfinityisconstantalongthetrajectoryofanynullparticle,theneutrinospropagatingfroma pointatthephotonsphereradiusR(orthestellarsurfaceR )withtheangleθ =tan−1v(r)(R)/v(φ)(R),willreachanotherpointwitharadial e R (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728 Electron–positron energydeposition 1719 coordinaterandtheangle (cid:9) g (R) g2 (r)−g (r)g (r) cosθ = (cid:11) (cid:9)φφ tφ tt φφ (cid:12) . (19) r g (r) g (R)+ g2 (R)−g (R)g (R)secθ −g (R)g (r) φφ tφ tφ tt φφ R φφ tφ Equation(19)allowsonetoexpressxintheanalyticexpressionoftheangularpart(cid:9)(r)oftheenergy,givenbyequation(6),as (cid:13) (cid:14) g2 (R) g2 (r)−g (r)g (r) x2(r)=1− (cid:15) (cid:11) φ(cid:9)φ tφ tt φφ (cid:12) (cid:16) . (20) 2 g (r) g (R)+ g2 (R)−g (R)g (R) −g (R)g (r) φφ tφ tφ tt φφ φφ tφ Forthelineelementgivenbyequation(16),equation(20)hastheform (cid:17) (cid:18) R¯ eγ¯(r¯)−γ¯(R¯) 2 x2(r¯)=1− . (21) r¯ 1+[ω¯(r¯)−ω¯(R¯)]R¯eγ¯(R¯) D o w Thus,thefunction(cid:9)(r)canberepresentedinthegeneralform n ⎡ ⎤ lo (cid:22)(cid:23) (cid:13) (cid:14) 4 ade (cid:9)(r)= 2π32 ⎢⎢⎣1−(cid:23)(cid:23)(cid:24)1− (cid:15)gφφ(r)(cid:11)gtφ(R)+gφ2(cid:9)φ(Rgt2)φ(gRt2φ)(−r)g−tt(gRtt)(grφ)φg(φRφ()r(cid:12))−gφφ(R)gtφ(r)(cid:16)2⎥⎥⎦ d from h ⎡ ttp (cid:13) (cid:14) s ×⎢⎣−(cid:15) (cid:11) gφ2(cid:9)φ(R) gt2φ(r)−gtt(r)gφφ(r(cid:12)) (cid:16) ://ac gφφ(r) gtφ(R)+ gt2φ(R)−gtt(R)gφφ(R) −gφφ(R)gtφ(r) 2 ⎤ adem (cid:22) ic +4(cid:23)(cid:23)(cid:23)(cid:24)1− (cid:15) (cid:11) gφ2(cid:9)φ(R)(cid:13)gt2φ(r)−gtt(r)gφφ(r(cid:12))(cid:14) (cid:16) +6⎥⎥⎦. (22) .oup.c 2 o g (r) g (R)+ g2 (R)−g (R)g (R) −g (R)g (r) m φφ tφ tφ tt φφ φφ tφ /m n Inquasi-isotropiccoordinates,wehave ra ⎡ (cid:22) ⎤ s (cid:23) (cid:17) (cid:18) 4 /a (cid:9)(r¯)= 2π2 ⎢⎣1−(cid:23)(cid:24)1− R¯ (cid:13) eγ¯(r¯)−γ¯(R¯) (cid:14) 2⎥⎦ rticle 3 r¯ 1+ ω¯(r¯)−ω¯(R¯)) R¯eγ¯(R¯) -a b ⎡(cid:17) (cid:18) (cid:22)(cid:23) (cid:17) (cid:18) ⎤ stra ×⎢⎣ R¯ (cid:13) eγ¯(r¯)−γ¯(R¯)(cid:14) 2+4(cid:23)(cid:24)1− R¯ (cid:13) eγ¯(r¯)−γ¯(R¯) (cid:14) 2+6⎥⎦. (23) ct/40 r¯ 1+ ω¯(r¯)−ω¯(R¯) R¯eγ¯(R¯) r¯ 1+ ω¯(r¯)−ω¯(R¯)) R¯eγ¯(R¯) 2 /3 /1 7 Theneutrinotemperatureattheradiusrcanbeexpressedintermsofthetemperatureoftheneutrinostreamattheneutrino-sphereradius 1 4 R,bytakingintoaccountthegravitationalredshift.TheredshiftformulaforTisthesameasforthephotonenergy, /9 8 (cid:17) (cid:13) (cid:14)(cid:18) 9 g (r) g2 (R)−g (R)g (R) 1/2 23 T(r)= gφφφφ(R)(cid:13)tgφt2φ(r)−gtttt(r)gφφφφ(r)(cid:14) T(R). (24) 3 by g u FLo∞rt=hegobs(eRrvg)eφ(cid:13)dφg(2lru(m→ri→n∞os∞i)t(cid:13)y)gL−t2φ∞(gRo)f(r−th→getnt(∞eRu))trggiφnφo((Rran)→n(cid:14)ih∞ila)t(cid:14)ioLn(Rth)e=red(cid:28)sghgit2fφt((RrRe)l)a−tiogntti(sRg)i(cid:29)veLn(bRy), (25) est on 02 φφ tφ tt φφ φφ A p sinceforisolatedgravitatingsystems,suchasrotatingstars,thespace–timeisasymptoticallyflat.Here,theneutrinoluminosityattheneutrino ril 2 sphereis 0 1 9 7 L(R)=L +L =(4πR2) acT4(R), (26) ν ν¯ 16 whereaistheradiationconstant.Inthisformula,thecurvatureradiusRisusedtoobtainthetotalareaofthesphericalsurfacethroughwhich theneutrinoradiationisemitted.Ifweinsertequation(20),describingthepathbendingoftheneutrinos,andtheredshiftformulae(equations 24–26)intothedecomposedexpressionequation(2)ofq˙,wecancalculatetheeffectsofthegravitationalpotentialonthedepositionratein theequatorialplane: ⎧ (cid:9) ⎫ 9/2 ⎨ g (r) g2 (R)−g (R)g (R) ⎬ q˙(r)∝L9/4(cid:9)(r) (cid:10)φφ (cid:13)tφ tt φφ (cid:14) R−9/4. (27) ∞ ⎩ g (R) g2 (r)−g (r)g (r) ⎭ φφ tφ tt φφ Theproportionalityfactor,omittedfromequation(27),isthesameastheoneintheNewtoniancase,whichwillbeusedinthefollowing tonormalizethedepositionrateforthegeneralrelativisticcase.Equation(27)describestheenergydepositionrateine+e− pairsfromthe neutrino–antineutrinoannihilationprocessatradiusr intheequatorialplaneabovetheneutronorquarkstarphotonsphereradiusR,and (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728 1720 Z.Kova´cs,K.S.ChengandT.Harko withtheneutrinoluminosityobservedatinfinityL∞.Thisrelationcanbealsogiveninthequasi-isotropiccoordinatesystemintermsofthe metricfunctionsofthelineelement(equation16), q˙(r¯)∝L9/4(cid:9)(r¯)e9[γ¯(R¯)+ρ¯(R¯)]/4−9[γ¯(r¯)+ρ¯(r¯)]/2R−9/4(R¯). (28) ∞ 4 EQUATIONS OF STATE AND STELLAR MODELS Inordertoobtainaconsistentandrealisticphysicaldescriptionoftherotatinggeneralrelativisticneutronandquarkstars,asafirststepwe havetoadopttheEOSforthedenseneutronandquarkmatter,respectively.Inthisstudy,weconsiderthefollowingEOSforneutronand quarkmatter: (1) Akmal–Pandharipande–Ravenhall(APR)EOS(Akmal,Pandharipande&Ravenhall1998).EOSAPRhasbeenobtainedbyusingthe D variationalchainsummationmethodsandtheArgonnev18two-nucleoninteraction.Boostcorrectionstothetwo-nucleoninteraction,which ow n givetheleadingrelativisticeffectoforder(v/c)2,aswellasthree-nucleoninteractions,arealsoincludedinthenuclearHamiltonian.The lo a densityrangeisfrom2×1014gcm−3 to2.6×1015gcm−3.ThemaximummasslimitinthestaticcaseforthisEOSis2.20M(cid:11).Wejoin d e PtheitshEicOkS&toStuhtehecrolamnpdo1si9t7e1BbB)P-F((cid:5)M/Tc2(>(cid:5)/4c.23<×110041g1gcmcm−3−)3()F(eByanymma,nB,eMtheetr&opPoelitshi&ckT1e9ll7e1ra1)9-4B9)PESO(1S0,4rgescpmec−t3iv<ely4..3×1011gcm−3)(Baym, d from (2) Douchin–Haensel(DH)EOS(Douchin&Haensel2001).EOSDHisanEOSoftheneutronstarmatter,describingboththeneutron http sthtaeracprpulsitcaatniodnthtoe ltihqeuicdalccourlea.tioItnisofbathseedproonpethrteieesffoefctviveerynnueculetarorninrtiecrhacmtioatnteSr.LTyhoefstthruecStukryermofetthyepec,ruwsth,icahndisitpsaErtOicSu,lairslycasluciutalabtleedfoinr s://ac a thezero-temperatureapproximation,andundertheassumptionoftheground-statecomposition.TheEOSoftheliquidcoreiscalculated de assuming(minimal)npeμcomposition.Thedensityrangeisfrom3.49×1011to4.04×1015gcm−3.Theminimumandmaximummasses mic ofthestaticneutronstarsforthisEOSare0.094and2.05M(cid:11),respectively. .ou p (3) Shen–Toki–Oyamatsu–Sumiyoshi (STOS) EOS (Shen et al. 1998). The STOS EOS of nuclear matter is obtained by using the .c o relativisticmean-fieldtheorywithnon-linearσ andωtermsinawidedensityandtemperaturerange,withvariousprotonfractions.TheEOS m /m wasspecificallydesignedfortheuseofsupernovasimulationandfortheneutronstarcalculations.TheThomas-Fermiapproximationisused n ra todescribeinhomogeneousmatter,whereheavynucleiareformedtogetherwithfreenucleongas.WeconsidertheSTOSEOSforseveral s temperatures,namelyT =0,0.5and1.0MeV,respectively.ThetemperatureismentionedforeachSTOSEOS,sothat,forexample,STOS /artic 0representstheSTOSEOSforT =0.Fortheprotonfraction,wechosethevalueY =10−2inordertoavoidthenegativepressureregime le p -a forlowbaryonmassdensities. b s (4) Relativistic mean field (RMF) EOS with isovector scalar mean field corresponding to the δ-meson–RMF soft and RMF stiff EOS tra c (Kubis&Kutschera1997).Whiletheδ-mesonmeanfieldvanishesinsymmetricnuclearmatter,itcaninfluencepropertiesofasymmetric t/4 0 nuclear matter in neutron stars. The RMF contribution due to the δ-field to the nuclear symmetry energy is negative. The energy per 2 /3 particle of neutron matter is then larger at high densities than the one with no δ-field included. Also, the proton fraction of β-stable /1 7 matterincreases.Splittingofprotonandneutroneffectivemassesduetotheδ-fieldcanaffecttransportpropertiesofneutronstarmatter. 14 The EOS can be parametrized by the coupling parameters Cσ2 = gσ2/m2σ,Cω2 = gω2/m2ω,b¯ = b/gσ3 and c¯ = c/gσ4, where mσ and mω /989 are the masses of the respective mesons and b and c are the coefficients in the potential energy U(σ) of the σ-field. The soft RMF 23 3 EOS is parametrized by C2 = 1.582 fm2,C2 = 1.019 fm2,b¯ = −0.7188 and c¯ = 6.563, while the stiff RMF EOS is parametrized by b σ ω y C2 =11.25fm2,C2 =6.483fm2,b¯ =0.003825andc¯ =3.5×10−6,respectively. g σ ω u (5) Baldo–Bombaci–Burgio (BBB) EOS (Baldo, Bombaci & Burgio 1997). The BBB EOS is an EOS for asymmetric nuclear matter, es derivedfromtheBrueckner–Bethe–Goldstonemany-bodytheorywithexplicitthree-bodyforces.TwoEOSareobtained,onecorresponding t on totheArgonneAV14(BBBAV14)andtheothertotheParistwo-bodynuclearforce(BBBParis),implementedbytheUrbanamodelforthe 02 trhesrepee-cbtoivdeylyf.oTrchee.oTnhseetmoafxdimireucmtUstractaicpmroacsesssceosnfiocgcuurarstioatnsdeanresitMiesmanx =≥01..685afnmd−13.9fo4rMth(cid:11)eAwVhe1n4tphoeteAnVti1al4aannddnPa≥ris0.i5n4tefrmac−t3iofnosrathreeuPsaerdis, April 2 potential.ThecomparisonwithothermicroscopicmodelsfortheEOSshowsnotabledifferences.Thedensityrangeisfrom1.35×1014to 01 9 3.507×1015gcm−3. (6) BagmodelEOSforquarkmatter(Q)EOS(Itoh1970;Bodmer1971;Witten1984;Cheng,Dai&Lu1998).Forthedescriptionofthe quarkmatter,weadoptfirstasimplephenomenologicaldescription,basedontheMITbagmodelEOS,inwhichthepressurepisrelatedto theenergydensityρby 1 p= (ρ−4B)c2, (29) 3 whereBisthedifferencebetweentheenergydensityoftheperturbativeandnon-perturbativeQCDvacuum(thebagconstant),withthevalue 4B=4.2×1014gcm−3. (7) ItisgenerallyagreedtodaythattheCFLstateislikelytobethegroundstateofmatter,atleastforasymptoticdensities,andevenifthe quarkmassesareunequal(Alford,Rajagopal&Wilczek1999;Rappetal.2000;Horvath&Lugones2004;Alfordetal.2008).Moreover, theequalnumberofflavoursisenforcedbysymmetry,andelectronsareabsent,sincethemixtureisautomaticallyneutral.Byassumingthat themassm ofthe‘s’quarkisnotlargeascomparedtothechemicalpotentialμ,thethermodynamicalpotentialofthequarkmatterinCFL s (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728 Electron–positron energydeposition 1721 1036 DH -2m] 1035 RRMMFF sstoiffft c STOS 0 es STOS 0.5 yn STOS 1.0 P [d 1034 BBBBBBAPVar1i4s APR Q CFL 150 CFL 300 1033 1014 1015 1016 D ρ [g cm-3] o w n Figure1. Pressureasafunctionofdensity(inalogarithmicscale)fortheEOSDH,RMFsoft,RMFstiff,STOS0.STOS0.5,STOS1,BBBAV14,BBBParis, loa d APR,Q,CFL150andCFL300,respectively. e d phasecanbeapproximatedas(Lugones&Horvath2002) from w(cid:19)hCeFLre=(cid:16)−is34tμπhe24g+ap34emπn22ser−gy.1W−it1h2t3hl2neπ(um2ses/o2fμth)mis4sex−prπe3s2s(cid:16)io2nμ,2th+epBr,essurePofthequarkmatterintheCFLphasecanbeobtainedasanexp(l3ic0i)t https://a c a functionoftheenergydensityεintheform(Lugones&Horvath2002) d e m P = 13(ε−4B)+ 2(cid:16)π22δ2 − m2π2sδ22, (31) ic.ou p where (cid:8) .c o 4 m δ2=−α+ α2+ π2(ε−B), (32) /m 9 n andα=−m2/6+2(cid:16)2/3.Inthefollowing,thevalueofthegapenergy(cid:16)consideredineachcasewillbealsomentionedfortheCFLEOS, ras sothat,forexsample,CFL200representstheCFLEOSwith(cid:16)=200.ForthebagconstantB,weadoptthevalue4B =4.2×1014gcm−3, /artic whileforthemassofthestrangequarkwetakethevaluem =150MeV. le s -a b Thepressure–densityrelationispresentedfortheconsideredEOSinFig.1. s tra introdTuocceadlcinulSatteertghieoueqlausil&ibrFiurimedcmonanfig(u1r9a9t5io)n,sanodftdhiescruostasetidnginneduettraoilnsainndSqteuragrikousltaasrs(w20it0h3t)h.eTEhiOsScopdreeswenatsedusheedref,owrtehuessetuthdeyRoNfSdcioffdeer,eanst ct/40 2 modelsofrotatingneutronstars(Nozawaetal.1998),andforthestudyoftherapidlyrotatingstrangestars(Stergioulasetal.1999).The /3 RNScodeproducesthemetricfunctionsinaquasi-spheroidalcoordinatesystem,asfunctionsoftheparameters =r¯/(r¯+r¯e),wherer¯eisthe /171 equatorialradiusofthestar,whichwehaveconvertedintoSchwarzschild-typecoordinatesraccordingtotheequationr =r¯exp[(γ¯−ρ¯)/2]. 4/9 8 9 2 3 5 ELECTRON–POSITRON ENERGY DEPOSITION RATE IN THE EQUATORIAL PLANE 3 b OF RAPIDLY ROTATING NEUTRON AND QUARK STARS y g u Todemonstratetheexistenceandthelocationofthephotonradiusforneutronandquarkstarsinthestaticandtherotatingcases,respectively, es inFig.2wepresentb(r)/M asafunctionoftheSchwarzschildcoordinateradius(normalizedtothemassofthestar).Forthestaticneutron t o n star(modelled,forexample,bytheSTOS0.5EOS),theexteriorgeometryisalwaystheSchwarzschildone,andthecurveb(r)connectsto 02 thecurveofthestaticblackholeataradiussomewhatlowerthan3M.Then,thecurvehasalocalminimumat3M,similarlytothecaseofthe Ap functionb(r),correspondingtotheSchwarzschildcase(Landau&Lifshitz1998).Therefore,thestarhasaphotonradiusat3M.Thisisnot ril 2 0 thecaseforthestaticquarkstar(withanEOSoftheCFL300type),whichisnotsocompact,anditscurveb(r)reachestheSchwarzschild 1 9 blackholecurveatasomewhathigherradiusthan3M.Theradialdependenceofb(r)forrotatingstarshasalsothesetwofeatures:themetric potentialsoftheneutronstarwithRMFstifftypeEOSandtheQ-andCFL-typequarkstarsgivelocalminimaforb(r),whereastheneutron starwithSTOS0.5typeEOSisnotcompactenoughtohaveaphotonradius(seeTable3).Wenotethatthephotonradiioftherotatingstellar objectsarelocatedathigherradiithan3M,whichisoppositetothebehaviouroftherotatingblackholes,wherethephotonradiiapproach Mastheblackholespinsup. Thedepositionrateofthetotalenergyofthee+e− pairsgeneratedintheneutrinoannihilationisusuallycharacterizedbytheintegral ofq˙ overthespatialpropervolumeoftheneutrinostream.Theintegralofq˙ intheradialdirection,measuringthetotalamountofenergy convertedformneutrinostoelectron–positronpairsatallradiiR,isthengivenby (cid:2) (cid:2) (cid:2) 2π π/2 ∞ √ Q˙(R)=2 q˙(r,R,θ) g g g drdθdφ. (33) rr θθ φφ 0 0 R Forasphericallysymmetricgeometry,theintegrationovertheangularcoordinatesφ andθ isastraightforwardcomputation.Thisis notthecaseintheaxiallysymmetriccase,wheretheθ-dependenceofthemetricaswellasthenatureofthenulltrajectoriesaremuchmore (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728 1722 Z.Kova´cs,K.S.ChengandT.Harko 10 8 M 6 b(r) / 4 ssttaattiicc BNHS static QS RMF stiff 2 STOS 0.5 Q CFL 300 0 0 1 2 3 4 5 6 7 8 9 10 D o r/M w n lo a Figure2. Theimpactparameterb/MasafunctionoftheSchwarzschildcoordinater/Mforstaticblackholes,andstaticandrotatingneutronandquarkstars, d e respectively. d fro m 5.0 stDatHic http s θ) 4.5 RMSTFO sSt i0ff ://ac d STOS 0.5 a .Q /N 4.0 BSBTBOASV 11.40 dem θ ) / (d 3.5 BBBPAaPrRis ic.ou .(dQ/d 3.0 CFL 15Q0 p.com /m 2.5 n ra s /a 2.0 5 6 7 8 9 10 rtic le R/M -a b s Figure3. Theelectron–positronenergydepositionrate(dQ˙/dθ)/(dQ˙N/dθ)|θ=π/2intheequatorialplanearoundrotatingneutronandquarkstars,withthe tra sametotalmassM=1.8M(cid:11),andsamerotationalvelocity(cid:19)=5×103s−1. ct/4 0 2 complicated.Inordertoavoidthisproblem,werestrictthestudyoftheelectron–positronenergydepositionratetoneutrinopairsmovingin /3 theequatorialplaneonly.InsteadofthequantityQ˙ definedbyequation(33),weconsideritsderivativewithrespecttoθ intheequatorial /17 1 4 plane$, (cid:2) (cid:2) $ /98 ddQθ˙ $$$θ=π/2 == 24π0(cid:2)2π∞q˙R(∞r,q˙R(r,,θR)√,θg)r√rggθrθrggφθφθdgrφφ$$$$drdφ.$$$θ=π/2 (34) 9233 by gue R θ=π/2 st o Q˙,andthereforeitsθ-derivative,isneitheranobservable,noraLorentz-invariantquantity(Salmonson&Wilson1999),butQ˙ canbe n 0 2 used to measure the total amount of local energy deposited via the neutrino pair annihilation outside the neutrino sphere. The derivative A tdhQe˙/Ndeθw,teovnailaunatceadseatcaθn=beπa/p2p,liaeldlotwoscoonmeptaoredtehsecreibneertghyedeenpeorgsiytiodneproasteitsioinnrdaitfefeorennlytginravthiteateiqounaatloproiatlenptliaanlse.,Sbiuntcietsthvealquueanntoirtymagliivzeendbtyo pril 20 1 equation(34)hasasimpleformintheNewtoniancase,theratioofthegeneralrelativisticcasetotheNewtonianmodelisgivenby 9 ddQ˙Q˙//ddθθ$$$$ = %R∞q˙(r,R,θ)(cid:10)g%r∞r(rq˙,θ()rg,θRθ()rr,2θd)rgφφ(r,θ)dr$$θ=π/2. (35) N θ=π/2 R N Here,q˙(r,R,θ)isthedepositionratecalculatedbytakingintoaccountthegeneralrelativisticeffects,whereasq˙ (r,R)isthedeposition N rateforthesimpleNewtoniancase,withouttakingintoaccountthebendingoftheneutrinopathandtheredshiftintheneutrinotemperature. Wewillusetheratiogivenbyequation(35)tocomparetheelectron–positronenergydepositionratesinthespace–timesofneutronandquark stars,withdifferentEOS. InFig.3,wepresenttheratiogivenbyequation(35)asafunctionoftheneutrino-sphereradius,measuredincurvaturecoordinates,for eachneutronandquarkstarmodelpreviouslydescribed.ThetotalmassMofthecentralobjectsissetto1.8M(cid:11),andtherotationalfrequency (cid:19)ofthestarsisabout5×103s−1.Forthisconfiguration,thephysicalparametersofthestarsareshowninTable1. Fromtheanalysisofthecompactnessofthesestars,i.e.oftheratioofthetotalmasstotheequatorialradius,weseethatthe1.8M(cid:11) massstarsarenotcompactenoughtohaveaphotonoraneutrinosphere.Inotherwords,theimpactparameterbgivenbyequation(18) (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728 Electron–positron energydeposition 1723 Table1. PhysicalparametersofthecompactstarswithtotalmassM≈1.8M(cid:11)androtationalfrequency(cid:19)≈5×103s−1. EOS DH RMFstiff STOS0 STOS0.5 STOS1 BBBAV14 BBBParis APR Q CFL150 ρc(1015g/cm3) 1.29 0.57 0.369 0.383 0.40 2.15 1.70 1.225 0.931 0.71 M(M(cid:11)) 1.81 1.80 1.85 1.80 1.79 1.80 1.80 1.80 1.79 1.80 M0(M(cid:11)) 2.05 2.00 2.01 1.95 1.93 2.08 2.07 2.11 2.09 2.09 Re(km) 12.01 15.79 21.03 22.84 22.72 10.57 10.98 10.99 11.79 12.36 (cid:19)(103s−1) 4.99 5.00 4.90 4.71 4.45 5.01 5.00 5.00 4.79 5.00 (cid:19)p(103s−1) 11.16 7.97 5.37 4.56 4.54 13.96 13.19 13.23 11.97 11.28 T/W(10−2) 3.43 8.93 14.91 12.25 9.83 2.35 2.66 3.41 4.45 5.64 cJ/GM2(cid:11) 1.15 2.00 2.95 2.49 2.15 0.95 1.00 1.12 1.28 1.50 I(1045gcm2) 2.03 3.52 5.30 4.65 4.25 1.66 1.76 1.98 2.35 2.63 (cid:11)2(1043gcm2) 8.54 43.82 106.53 80.44 61.22 4.42 5.43 7.87 1.30 1.91 D h+(km) 6.85 0.00 0.00 0.00 0.00 3.19 2.69 0.00 0.00 0.00 o w h−(km) 7.48 −3.40 7.91 3.87 2.27 8.14 7.90 -2.11 0.00 0.00 n ωc/(cid:19)(10−1) 5.85 4.52 4.10 4.07 4.08 6.67 6.34 5.86 5.27 5.00 loa d re(km) 9.10 12.85 18.00 19.97 19.91 7.64 8.06 8.05 8.86 9.40 ed rp/re 0.88 0.72 0.54 0.53 0.58 0.92 0.91 0.90 0.87 0.84 fro m Note.Here,ρcisthecentraldensity,Misthegravitationalmass,M0istherestmass,Reisthecircumferentialradiusattheequator,(cid:19)istheangularvelocity, h (cid:19)pistheangularvelocityofaparticleincircularorbitattheequator,T/Wistherotational-gravitationalenergyratio,cJ/GM2(cid:11)istheangularmomentum, ttp Iisthemomentofinertia,(cid:11)2givesthemassquadrupolemomentM2sothatM2=c4(cid:11)2/(G2M3M3(cid:11)),h+istheheightfromthesurfaceofthelaststable s://a co-rotatingcircularorbitintheequatorialplane,h−istheheightfromsurfaceofthelaststablecounter-rotatingcircularorbitintheequatorialplane,ωc/(cid:19)is ca theratioofthecentralvalueofthepotentialωto(cid:19),reisthecoordinateequatorialradiusandrp/reistheaxesratio(polartoequatorial),respectively. de m ic .o isamonotonicfunctionoftheradialcoordinate,withoutanyminimum.Forcomparison,wealsoplottedthestaticcasewiththesametotal u p mass,whichisessentiallythesameforanytypeoftheEOSdescribingthepropertiesofthedensestarmatter,sincetheexteriormetricof .c o thestaticstarsisdescribedbytheSchwarzschildmetric.TheenergydepositionrateforthiscasecoincideswiththeQ˙/Q˙ versusr/Mplot m √ N /m givenbySalmonson&Wilson(1999),sincethemultiplicativefactorcomingfromtheintegrationofq˙ g g g overθ isunityforthe n rr θθ φφ ra Schwarzschildspace–time.FromFig.3,itcanbeimmediatelyseenhowtheenergydepositionrateoftheelectron–positronpairsisenhanced s /a bytherotationofthecentralobject.ItisalsoclearthatthemeasureofenhancementdependsonthetypeoftheEOSusedtodescribethedense rtic neutronandquarkstars.Intherotatingcase,theincreaseintheratiooftheenergydepositionrates,givenbyequation(35),isthesmallest, le -a ascomparedtothestaticcase,fortheBBBAV14-andBBBParis-typeEOS.TheneutronstarswithDH-andAPR-typeEOSproduceroughly bs thesameratios,whicharesomewhatgreaterthantheBBB-typeneutronstarpairproductionrates.Forthequarkstars,describedbytheQ tra c andtheCFL-typeEOS,weobtainevenhigherdepositionrates.Althoughnoneofthesetypesofcentralobjectspossessesneutrinospheres, t/4 0 theyarestillcompactenoughtohaveequatorialradiilessthan5M.TheequatorialradiioftheneutronstarswiththeRMF-andSTOS-type 2/3 EOSaremuchlargerthanthoseofthepreviousgroup:6MfortheRMF-typeEOS,and8MorevenmorefortheSTOS-typestars,depending /1 7 onthetemperatureofthesestellarconfigurations.Thismeansthatalthoughtheygivethehighestdepositionrates,withtheSTOST =1Mev 14 /9 typestarhavingthemaximalvalue,theenergyreleasedbytheneutrinopairannihilationoutsidethestarintheequatorialplaneissmaller 8 9 2 thaninthecaseofthefirstgroup.Thisresultmightbenottrueintheregionsclosetothepolesofthestar,iftheaxisratiosr¯p/r¯ewouldbe 33 considerablysmallerforthesecondgroupascomparedtotheaxisratiosofthefirstgroup.InthecaseoftheSTOS-typeEOSr¯ /r¯ isbetween b p e y 0.5and0.6,whichisindeedmuchsmallerthan0.85–0.9,theaveragevaluesoftheaxisratiosforthefirstgroup.Thismeansthedifference g u e betweenthepolarradiir¯ ofthefistgroup,andtheSTOS-typeneutronstar,issmallerthanthedifferencebetweentheirequatorialradii,and s p t o thelowerboundaryoftheintegralofq˙ overtheradialcoordinateisclosertoeachother.Inthiscase,theintegrateddepositionratecanbe n 0 higherfortheneutronstarwithSTOS-typeEOSthantheonewiththeothertypesofEOSforneutronstarsandquarkstars. 2 A However,inthisframeworkoneshouldbeverycautiouswithanystatementonthephysicalprocesseslocatedfarfromtheequatorial p plane,sincetheneutrinosreachingtheregionclosetothepoleoftherotatingstarshaveimpactparametersratherdifferentfromtheneutrinos ril 2 0 moving in the equatorial plane, and the formalism applied for the latter cannot be extended straightforwardly to the motion outside the 19 equatorialplane. Next,weconsidertheelectron–positronenergydepositionrateforamoremassivegroupofstars,withthetotalmassMsetto2.8M(cid:11). Althoughthisvalueofthemassissmallerthanthetheoreticalstabilitymasslimitof3solarmassesforultracompactobjects,notalltypes oftheEOSconsideredheredohaveconfigurationsofsuchhighmasses,evenintherapidlyrotatingcase.Wehaveobtainedsolutionstothe fieldequationsforthismassregimeonlyforthequarkstars,fortheRMF,andfortheSTOS-typeneutronstarEOS,respectively.Forthe otherEOS,wedidnotevenfindacompatiblerotationfrequencyinthehigh-massregime.Forthestablemassiveconfigurations,theangular velocityvariedupto6×103s−1fortheSTOS-typeneutronstarmodelsandtheCFL-typequarkstars,whereas(cid:19)reachedvaluesofaround 9×103−104s−1fortheneutronstarswiththeRMF-typeEOS,andforQ-typequarkstars.Themodelsweconsideredforthestudyofthe electron–positronenergydepositionratehavearotationalfrequencyof6×103s−1,forthefirsttwomodels,andafrequencyof104s−1for thesecondones,asshowninTable2.Theseconfigurations,exceptthemodelwiththeRMF-typeEOS,arealreadycompactenoughtohave photonorneutrinoradiiintheequatorialplane.Thevaluesoftheneutrinoradiitogetherwiththeequatorialradiiofthestarsaregivenin Table3.Theradialprofileoftheratioinequation(35)fortheseconfigurations,andofthestaticcase,ispresentedinFig.4. (cid:4)C 2009TheAuthors.Journalcompilation(cid:4)C 2009RAS,MNRAS402,1714–1728
Description: