ebook img

Electronics for physicists PDF

332 Pages·2020·5.107 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electronics for physicists

Undergraduate Lecture Notes in Physics Bryan H. Suits Electronics for Physicists An Introduction Undergraduate Lecture Notes in Physics Series Editors Neil Ashby, University of Colorado, Boulder, CO, USA WilliamBrantley,DepartmentofPhysics,FurmanUniversity,Greenville,SC,USA MatthewDeady,PhysicsProgram,BardCollege,Annandale-on-Hudson,NY,USA Michael Fowler, Department of Physics, University of Virginia, Charlottesville, VA, USA Morten Hjorth-Jensen, Department of Physics, University of Oslo, Oslo, Norway Michael Inglis, Department of Physical Sciences, SUNY Suffolk County Community College, Selden, NY, USA Undergraduate Lecture Notes in Physics (ULNP) publishes authoritative texts covering topics throughout pure and applied physics. Each title in the series is suitable as a basis for undergraduate instruction, typically containing practice problems,workedexamples,chaptersummaries,andsuggestionsforfurtherreading. ULNP titles must provide at least one of the following: (cid:129) An exceptionally clear and concise treatment of a standard undergraduate subject. (cid:129) A solid undergraduate-level introduction to a graduate, advanced, or non-standard subject. (cid:129) A novel perspective or an unusual approach to teaching a subject. ULNPespeciallyencouragesnew,original,andidiosyncraticapproachestophysics teaching at the undergraduate level. ThepurposeofULNPistoprovideintriguing,absorbingbooksthatwillcontinueto be thereader’s preferredreference throughouttheir academiccareer. More information about this series at http://www.springer.com/series/8917 Bryan H. Suits Electronics for Physicists An Introduction 123 BryanH.Suits Physics Department Michigan Technological University Houghton,MI,USA ISSN 2192-4791 ISSN 2192-4805 (electronic) Undergraduate Lecture Notesin Physics ISBN978-3-030-39087-7 ISBN978-3-030-39088-4 (eBook) https://doi.org/10.1007/978-3-030-39088-4 ©SpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Physicists rely heavily on electrical instrumentation to measure physical phenom- ena.Therewasatime,notlongagoinhistory,whenitwasnormalforaphysicistto routinelydesignandconstructtheirownelectricalinstrumentation.Whilethereare exceptions, in general this is no longer the case; design and construction of most electronicinstrumentationislefttospecialistsandengineers.However,aphysicist, whether an experimentalist or theorist, will need some understanding of the basics of electronics and how the equipment works in order to fully understand and evaluate the results of measurements, and possibly in order to troubleshoot and makesimplerepairs.Muchofthisunderstandingmustfirstcomefromaknowledge of the language of electronics—the lexicon as well as the symbolic representation of circuits using schematic diagrams. This book was written for use as an under- graduatephysicstextwithsuchfutureuseinmind.Thedetailsnecessaryforquality engineering design are generally excluded here in favor of a basic and practical understanding of what is going on. A second utility of electronics in the physics curriculum is that many ideas and problem-solving strategies show up that are also used in other areas of science. Indeed,electricalanalogiesareoftenusedasanexplanationforsituationsthathave little to do with electronics. One prime example of cross-use is the appearance of imaginary numbers. Imaginary numbers show up in all areas of science and engi- neeringthatincludeperiodic signals.Inaddition toelectronics,thoseareasinclude studies of vibration, including seismometry, acoustics, optics, radio and radar, and even “brain waves.” It is important to understand how to use and interpret imagi- narynumberssince,afterall,bydefinitionnorealmeasurementwillevergiveyou animaginaryresult.Otheroverlappingtopicsincluderesonance,solutionsoflinear equations, and the use of linearized models. Each electronics instructor will have their own idea about what is most impor- tant.Thatcannotbehelped.Whatispresentedhererepresentsmypriorities.Based onmyperspectiveandexperienceasaphysicistandteacherofelectronics,Ichose introductorytopicsandproblemsthatIfindmostinterestingandpotentiallyuseful. There is, however, more in this book than can possibly be covered in a single v vi Preface semester course. Anyone using the book as a course textbook, in whole or in part, should feel free to skip those topics that do not match their interests. Anyelectronicscoursewouldbeexpectedtoincludealaboratorycomponent.In fact, some of the material here originated as background material for such a lab- oratory experience. It is recognized that each instructor has their own laboratory priorities, and possibly a limited or specialized supply of laboratory equipment for suchapurpose.Itishopedthatthepresentationhereiswritteninamannersuitable for use in either the laboratory or classroom. The first obvious examples of labo- ratories that appear here are the sections related to the Wheatstone and Kelvin bridges, both of which originated primarily as laboratory exercises. Along with material in the last chapter, some practical experience using an embedded micro- controller—that is, some programming—is definitely useful. Programming varies fromdevicetodeviceandisnotreally“electronics,”andsoitisonlyincludedhere in a very general way. The book includes three broad categories of electronics. Chapters 1–5 cover passive linear electronics, Chaps. 6–11 look at nonlinear and active devices includingdiodes,transistors,andop-amps,andChaps. 12–14considerthebasicsof digital electronics and simplified computers. This text originated as weekly handouts and laboratory write-ups for a course designed primarily for second-year university physics students. The level of the materialhereisappropriateforstudentswhohavesuccessfullylearnedthematerial in introductory electricity and magnetism as well as mathematics up to the first course in integral calculus. As the extent of the material in the handouts expanded overtheyears,itgottothepointthatsomestudentsstartedreferringtothehandouts as “the book.” That reference served as one motivating factor to formalize those coursenotesintoafullvolume.Ithankthosestudentsforprovidingthatinspiration, and I hope this proves to be a useful exercise for both of us. Houghton, MI, USA Bryan H. Suits Contents 1 The Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Voltage and Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Simple Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Kirchhoff’s Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Resistors in Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Resistors in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Effective Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Resistors in Parallel–Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Solving Circuits with Circuit Reduction. . . . . . . . . . . . . . . . . . . . . . . 11 Solving Circuits with Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Branch and Mesh Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Example—Using Kirchhoff’s Laws . . . . . . . . . . . . . . . . . . . . . . . . 15 Nodal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 The Ideal Current Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 The Ground and Common Connections . . . . . . . . . . . . . . . . . . . . . . . 21 Multiple Sources—The Superposition Theorem . . . . . . . . . . . . . . . . . 22 Electrical Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Additional Application—The Kelvin-Varley Divider. . . . . . . . . . . . . . 24 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 Additional Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Thevenin and Norton Equivalents . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Determining the Thevenin and/or Norton Parameters. . . . . . . . . . . . 32 How Is This Used for Circuit Reduction?. . . . . . . . . . . . . . . . . . . . 34 Equivalent for an Infinite Array of Resistors. . . . . . . . . . . . . . . . . . 35 The Wheatstone Bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Wheatstone Bridge “Hieroglyphics” . . . . . . . . . . . . . . . . . . . . . . . . 38 The Reciprocity Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Example—R-2R Ladder with Sources . . . . . . . . . . . . . . . . . . . . . . 40 vii viii Contents Delta-Y Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 The Kelvin Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Additional Application—Resistivity of Lamellae. . . . . . . . . . . . . . . 47 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3 Complex Impedances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 What Is a Linear Device? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Some Vocabulary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Passive Linear Circuit Elements with Two Leads . . . . . . . . . . . . . . . . 55 Idealized Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 RC and L/R Time Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 RC Time Constant Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Capacitors and Inductors with Sinusoidal Sources . . . . . . . . . . . . . . . 60 Superposition and Complex Impedances . . . . . . . . . . . . . . . . . . . . . . 62 Series and Parallel Capacitors and Inductors. . . . . . . . . . . . . . . . . . . . 66 Comments About Complex Arithmetic. . . . . . . . . . . . . . . . . . . . . . . . 67 Solving Circuits Using Complex Impedances. . . . . . . . . . . . . . . . . . . 68 A.C. Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Condenser Microphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4 More on Capacitors and Inductors. . . . . . . . . . . . . . . . . . . . . . . . . 79 Real Capacitors and Inductors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Measuring Capacitors and Inductors . . . . . . . . . . . . . . . . . . . . . . . . . 80 Capacitive Position Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 A Simple Circuit for Measuring Inductors . . . . . . . . . . . . . . . . . . . . . 82 Switched Capacitor Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Charging a Capacitor Efficiently . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Mutual Inductance and Transformers . . . . . . . . . . . . . . . . . . . . . . . . . 86 The Dot Convention for Transformers . . . . . . . . . . . . . . . . . . . . . . . . 89 Inductive Position Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 RLC Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Cable Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Cable Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Signal Speed in a Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Impedance of Finite Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Capacitor and Inductor Labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Duality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Contents ix 5 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 The Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Laplace Transform Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Method I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Method II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Laplace Transform Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Laplace Transform Example 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Comment on Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Poles and Zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6 Diodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Semiconductor Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Diode Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Piece-Wise Linear Diode Models. . . . . . . . . . . . . . . . . . . . . . . . . . 125 An Analytic Model for the Semiconductor Diode . . . . . . . . . . . . . . 126 Solving Circuits with Diodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 The Ideal Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Graphical Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Diode Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Diode Capacitance and Response Time . . . . . . . . . . . . . . . . . . . . . . . 136 Specialty and Other Diodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7 FETs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Junction Field Effect Transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Circuit Analysis with a JFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Example 1—Determine Circuit Components. . . . . . . . . . . . . . . . . . 146 Example 2—Determine Operating Point. . . . . . . . . . . . . . . . . . . . . 147 The FET A.C. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 FET Amplifier Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 The Ohmic Region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 MOSFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Additional Application—Dynamic Memory . . . . . . . . . . . . . . . . . . . . 158 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 8 Bipolar Junction Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 BJT D.C. Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 BJT A.C. Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 BJT Large Signal Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Graphical Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Single Supply Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Solutions from Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.