(cid:1) (cid:1) “DVBugg2” 2005/6/3 pageiii (cid:1) (cid:1) Electronics Circuits, Amplifiers and Gates Second Edition DV Bugg Emeritus Professor, Queen Mary, University of London InstituteofPhysicsPublishing BristolandPhiladelphia Copyright © 2005 IOP Publishing Ltd. (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) “DVBugg2” 2005/6/3 pageiv (cid:1) (cid:1) ©IOPPublishingLtd2005 All rights reserved. No part of this publication may be reproduced, stored in a retrievalsystemortransmittedinanyformorbyanymeans,electronic,mechan- ical, photocopying, recording or otherwise, without the prior permission of the publisher. Multiplecopyingispermittedinaccordancewiththetermsoflicences issuedbytheCopyrightLicensingAgencyunderthetermsofitsagreementwith UniversitiesUK(UUK). BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN0750310375 LibraryofCongressCataloging-in-PublicationDataareavailable Firstedition1991 Reprinted1995,1996,1999 CommissioningEditor: TomSpicer EditorialAssistant: LeahFielding ProductionEditor: SimonLaurenson ProductionControl: SarahPlenty CoverDesign: VictoriaLeBillon Marketing: LouiseHigham,KerryHopkinsandBenThomas Published by Institute of Physics Publishing, wholly owned by The Institute ofPhysics,London InstituteofPhysicsPublishing,DiracHouse,TempleBack,BristolBS16BE,UK USOffice: InstituteofPhysicsPublishing,ThePublicLedgerBuilding,Suite929, 150SouthIndependenceMallWest,Philadelphia,PA19106,USA TypesetbyDomexe-DataPvt. Ltd. PrintedintheUKbyMPGBooksLtd,Bodmin,Cornwall Copyright © 2005 IOP Publishing Ltd. (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) “DVBugg2” 2005/6/3 pagev (cid:1) (cid:1) Contents Preface ix 1 Voltage, Current and Resistance 1 1.1 Basic Notions 1 1.2 Waveforms 3 1.3 Ohm’s Law 6 1.4 Diodes 6 1.5 Kirchhoff’s Laws 8 1.6 Node Voltages 14 1.7 EARTHS 15 1.8 Superposition 16 1.9 Summary 19 2. Thevenin and Norton 24 2.1 Thevenin’s Theorem 24 2.2 How to Measure V and R 28 EQ EQ 2.3 Current Sources 30 2.4 Norton’s Theorem 31 2.5 General Remarks on Thevenin’s Theorem and Norton’s 34 2.6 Matching 35 2.7 Amplifiers 36 2.8 Systems 38 2.9 Summary 38 3. Capacitance 44 3.1 Charge and Capacitance 44 3.2 Energy Stored in a Capacitor 46 3.3 The Effect of a Dielectric 46 3.4 Capacitors in Parallel 47 3.5 Capacitors in Series 48 3.6 The CR Transient 48 3.7 AC Coupling and Baseline Shift 53 3.8 Stray Capacitance 55 3.9 Integration and Differentiation 55 3.10 Thevenin’s Theorem Again 56 3.11 Summary 57 4. Alternating Current (AC); Bandwidth 61 4.1 Introduction 61 4.2 Power in a Resistor: RMS Quantities 61 Copyright © 2005 IOP Publishing Ltd. (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) “DVBugg2” 2005/6/3 pagevi (cid:1) (cid:1) vi Contents 4.3 Phase Relations 62 4.4 Response of a Capacitor to AC 64 4.5 Simple Filter Circuits 65 4.6 Power Factor 70 4.7 Amplifiers 71 4.8 Bandwidth 73 4.9 Noise and Bandwidth 73 4.10 Summary 75 5. Inductance 78 5.1 Faraday’s Law 78 5.2 Self-inductance 79 5.3 LR Transient 80 5.4 Energy Stored in an Inductor 82 5.5 Stray Inductance 83 5.6 Response of an Inductor to Alternating Current 84 5.7 Phasors 84 5.8 Summary 85 6. Complex Numbers: Impedance 89 6.1 Complex Numbers 89 6.2 AC Voltages and Currents 93 6.3 Inductance 95 6.4 Summary on Impedance 96 6.5 Impedances in Series 96 6.6 Impedances in Parallel 98 6.7 Power 101 6.8 Bridges 102 7. Operational Amplifiers and Negative Feedback 109 7.1 Introduction 109 7.2 Series Voltage Feedback 111 ∗ 7.3 Approximations in Voltage Feedback 115 7.4 Shunt Feedback 115 7.5 The Analogue Adder 118 7.6 The Differential Amplifier 119 7.7 Gain-Bandwidth Product 120 7.8 Offset Voltage and Bias Current 123 7.9 Complex Feedback Loops 125 7.10 Impedance Transformation 127 7.11 Input and Output Impedances with Feedback 128 7.12 Stabilised Current Supplies 132 ∗ 7.13 Input Impedance with Shunt Feedback 133 7.14 Oscillation 135 Copyright © 2005 IOP Publishing Ltd. (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) “DVBugg2” 2005/6/3 pagevii (cid:1) (cid:1) Contents vii 8. Integration and Differentiation 143 8.1 Integration 143 8.2 The Miller Effect 146 8.3 Compensation 148 8.4 Differentiation 149 8.5 The Charge Sensitive Amplifier 149 9. The Diode and the Bipolar Transistor 155 9.1 Conductors 155 9.2 Semiconductors and Doping 157 9.3 The pn Junction Diode 160 9.4 The Diode as a Switch 167 9.5 The npn Bipolar Transistor 169 9.6 Simple Transistor Circuits 171 9.7 Voltage Amplification 173 9.8 Biasing 175 10. The Field Effect Transistor (FET) 180 10.1 Gate Action 180 10.2 Simple FET Amplifiers 183 10.3 MOSFETs 186 10.4 Fabrication of Transistors and Integrated Circuits 188 10.5 CMOS 190 11. Equivalent Circuits for Diodes and Transistors 192 11.1 Introduction: the Diode 192 11.2 An Equivalent Circuit for the Bipolar Transistor 194 11.3 The Hybrid-π Equivalent Circuit 199 11.4 The FET 200 11.5 The Common Emitter Amplifier 201 11.6 Performance of the Common Emitter Amplifier 202 11.7 Emitter Follower 206 11.8 FETs 210 12. Gates 219 12.1 Introduction 219 12.2 Logic Combinations of A and B 220 12.3 Boolean Algebra 223 12.4 De Morgan’s Theorems 224 12.5 The Full Adder 225 12.6 The Karnaugh Map 226 12.7 Don’t Care or Can’t Happen Conditions 230 12.8 Products of Karnaugh Maps 231 12.9 Products of Sums 232 12.10 Use of NOR and NAND Gates 233 Copyright © 2005 IOP Publishing Ltd. (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) “DVBugg2” 2005/6/3 pageviii (cid:1) (cid:1) viii Contents 12.11 Decoders and Encoders 235 12.12 Multiplexing 237 13. Sequential Logic 241 13.1 The RS Flip-Flop 241 13.2 Clocks 242 13.3 The JK Flip-Flop 244 13.4 A Scale-of-4 Counter 246 13.5 State Diagrams 249 13.6 Trapping Sequences: Pattern Recognition 252 13.7 The Monostable 254 13.8 The Pulse Generator 256 14. Resonance and Ringing 261 14.1 Introduction 261 14.2 Resonance in a Series LCR Circuit 261 14.3 Transient in a CL Circuit 265 14.4 Transient in the Series LCR Circuit 266 14.5 Parallel LCR 269 ∗ 14.6 Poles and Zeros 273 15. Fourier’s Theorem 277 15.1 Introduction 277 15.2 A Square Wave applied to a CR Filter 278 15.3 How to Find Fourier Coefficients 279 15.4 The Heterodyne Principle 281 15.5 Broadcasting 282 15.6 Frequency Modulation (FM) 284 15.7 Frequency Multiplexing 285 15.8 Time Division Multiplexing 286 15.9 Fourier Series using Complex Exponentials 288 15.10 Fourier Transforms 289 15.11 Response to an impluse 290 15.12 Fourier analysis of a Damped Oscillator 291 15.13 The Perfect Filter 292 16. Transformers and 3-Phase Supplies 298 16.1 Introduction 298 16.2 Energy Stored in a Transformer 300 16.3 Circuit Equations and Equivalent Circuits 301 16.4 Three Phase Systems 304 16.5 Balanced Loads 306 Appendix A: Thevenin’s Theorem 313 Appendix B: Exponentials 315 Copyright © 2005 IOP Publishing Ltd. (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) “DVBugg2” 2005/6/3 pageix (cid:1) (cid:1) Preface Industryandresearchdependheavilyonelectricalinstrumentsandtechniques. Trouble-shooting invariably involves using multimeters and oscilloscopes. For many students, experience with these instruments begins in first year courses at UniversitiesandCollegesandthereaftercontinuestoexpandformanyyears. The objectiveofthisbookistoaccompanyfirst-yearcoursesandgojustbeyondthat for completeness. The aim is a rigorous but introductory treatment. I have fre- quentlytaughtcoursesforengineersandhaveincludedthematerialtheyneed-for example3-phasepowersupplies. Inthepresentperiloussituationinwhichmany departmentsfindthemselves,closercooperationbetweenengineeringandphysics faculties may be the way forward. I therefore hope the book may be helpful to bothphysicistsandengineers. Over90%ofthematerialincludedherehasbeenusedinpracticalclasses. The necessarykitconsistsofa2-beamoscilloscope,abreadboard,apowersupplywith twoindependentoutputsupto12V,andageneratorwhichprovidessinewavesand pulsetrainsupto∼106Hz. ComputerpackagesforFourieranalysisandFourier transformsareagreathelptoo. Studentprojectsbeyondthebasiccourseworkare tobeencouraged. Theyhaveaknackofuncoveringknottyproblems. The new Edition is a slimmed down version of the first. Integrated circuits cannowbeboughtsocheaplythattheyreplaceattemptsatdo-it-yourselfdesign of electronics. This has made the more advanced parts of the earlier Edition redundant. However,Iclingtotheideathatallstudentsneedpracticalexperience ofhowtransistorsamplifycurrentsandvoltagesinafewrudimentaryexamples. The volume has been kept as slim as possible so that students can afford it, and canalsocarryitaround! Exercises graded in difficulty are provided with most chapters. Students are encouragedtochecksolutionsinthelab. Manyexercisescomefromexamination paperssetincollegesofLondonUniversity,andIamgratefultotheUniversityfor permissiontoreproducethem.Answersaremineandhavebeenmultiplychecked, thoughIwouldbegratefultohearaboutanysurvivingerrors. Within the text, tricky questions are posed every now and then in italics. No answers are given, deliberately. I find that such unanswered teasers provoke as muchthoughtanddiscussionasdetailedexercisesandIconsiderthemanintegral partofthelearningprocess. Forme,ithasbeenalifetimeoffuntacklingphysicsproblemsandIhopethis volumewillbesomereturntothecommunity,encouragingnewstudentstofollow asimilarpath. Ioweagreatdebttomywifeforenduringthetribulationsofdoing physics. DavidBugg February2005 Copyright © 2005 IOP Publishing Ltd. (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) “oner” 2005/6/3 page1 (cid:1) (cid:1) 1 Voltage, Current and Resistance 1.1 BasicNotions Athunderstormisadramaticelectricalspectacle. Whocoulddoubttherealityof voltages and currents when confronted by such a display? The storm separates electricalchargesbetweentopandbottomofthecloud. Theenergyrequiredfor thisseparationcomesfromwarmmoistairwhichrisesandcondenses. Inawell developedstorm,avoltageof≈200millionvoltsbuildsupbetweenthecloudand the earth. Eventually the air breaks down when the electric field at the base of the cloud approaches 106 V m−1. In the ensuing lightning stroke the current is 104–105amps. B A 2 × 108 V Earth Fig.1.1. Thundercloudandlightning. The physics of a thunderstorm is complicated. For present purposes this example serves to focus attention on basic notions of charge, current, voltage andenergy. Whatdothenumbersmean? Howarevoltageandcurrentdefined? Firstlet’sgetcleartherelationbetweenvoltageandenergy. IfachargeQis movedfrompointAinthecloudatvoltageVA to pointB at voltageVB, (figure 1.2), 1 Copyright © 2005 IOP Publishing Ltd. (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) “oner” 2005/6/3 page2 (cid:1) (cid:1) 2 Voltage,CurrentandResistance V B B Q V A A Fig.1.2.Workdone=Q(VB −VA). theworkdoneonthechargeisQ×(VB−VA). InSIunits,itrequiresonejoule(J) tomoveonecoulomb(C)ofchargethroughonevolt(V): Energy(J)=Charge(C)×Potentialdifference(V). (1.1) When the thundercloud discharges, this energy is liberated as heat, thunder and electromagneticradiation. Ifthecloudcarriesachargeof10C,theenergyliberated inacompletedischargeis10×2×108J=2×109Jor2GJ(Gigajoules). In an electrical circuit, a battery likewise provides a potential difference and a source of energy. A fully charged 12 V car battery can deliver a charge of typically 3 × 105 C from chemical reactions and an energy of 3.6 × 106 J or 3.6MJ(megajoules). A third familiar example will illustrate these ideas. Figure 1.3 shows schema- ticallythelayoutofanoscilloscope. Electronsareemittedfromaheatedcathode andarethenacceleratedthroughalargevoltageV,typically1–5kV(kilovolts). TheyacquirekineticenergyinfallingthroughthepotentialdifferenceV andreach avelocityvgivenby eV = 1mv2 (1.2) 2 where e and m are the charge and mass of the electron. We must distinguish betweenthevoltagedifferenceV throughwhichthebeamisacceleratedandthe energy eV acquired by each electron. If V = 5 kV, this energy is 1.6×10−19 ×5×103J=8×10−16J. Next,whatistherelationbetweencurrentandcharge? Themovingelectrons carryacurrent,whosemagnitudeisdefinedbythechargeQpassingthroughthe controlgridinunittime: 1Ampere=1Coulombpersecond. Sincethecurrent mayvarywithtime,itneedstobeexpressedintermsofdifferentialquantities: dQ(C)=I(A)×dt(s) or I =dQ/dt. (1.3) Forexample,abeamof1013electrons/scarriesacurrentof−1.6×10−19×1013 A = −1.6 ×10−6A or −1.6 µA (microamps). The minus sign arises because Copyright © 2005 IOP Publishing Ltd. (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) “oner” 2005/6/3 page3 (cid:1) (cid:1) Waveforms 3 heated cathode at potential −V control grid Vy Vx electron beam Y plates X plates focusing coils screen − V + Fig.1.3. Schematicofanoscilloscope. electrons are negatively charged; conventional current flows in the opposite di- rectiontotheelectrons. Thecurrentmaybemeasuredusingtheforceonitina magneticfield. Youcandemonstratethisforcebyholdingabarmagnetuptoan oscilloscopeoraTVsetandwatchingthebeamdeflect. TheAmpere,theabsolute unit of current, is actually defined in terms of the force between two current- carrying coils. Then the Coulomb is derived from the Ampere using equation (1.3). Another important electrical quantity is power P. It is defined as the rate of changeofenergy,E: P =dE/dt. (1.4) Itmayberelatedtovoltageandcurrentusingequation(1.1).AchargedQfalling through potential V gains energy dE = VdQ, so a current I flowing through potentialdifferenceV generatespower dQ P =V =VI. (1.5) dt This is the familiar result for power dissipated in a resistor. Power is measured inwatts(W):onewatt= 1joule/second. Ineachstrokeofalightningdischarge, powerisdissipatedfor≈100µsatarateofabout5×1012W.Bycomparison,a largepowerstationgenerates2000MW=2×109W. 1.2 Waveforms This chapter is concerned mostly with constant voltages and currents. Such a situationisreferredtoasDC,meaningdirectcurrent. However, theprinciples Copyright © 2005 IOP Publishing Ltd. (cid:1) (cid:1) (cid:1) (cid:1)
Description: