ebook img

Electronically Scanned Arrays (ESAs) and K-Space Gain Formulation PDF

114 Pages·2019·7.07 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electronically Scanned Arrays (ESAs) and K-Space Gain Formulation

Roger A. Dana Electronically Scanned Arrays (ESAs) and K-Space Gain Formulation Electronically Scanned Arrays (ESAs) and K-Space Gain Formulation Roger A. Dana Electronically Scanned Arrays (ESAs) and K-Space Gain Formulation RogerA.Dana AdvancedTechnologyCenterofRockwellCollins CedarRapids,IA,USA ISBN978-3-030-04677-4 ISBN978-3-030-04678-1 (eBook) https://doi.org/10.1007/978-3-030-04678-1 LibraryofCongressControlNumber:2018964714 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Acknowledgments The electronically scanned array (ESA) simulation based on the theory described here has been developed over a number of years with the financial support and guidanceofJamesWestofRockwellCollinsAdvancedTechnologyCenter(ATC) AdvancedRadioSystems(ARS)Department.Muchofthematerialinthisbookhas beenwrittenwiththefinancialsupportofAndersWalkeroftheATCCommunica- tions&ElectronicWarfareGroup.Withouttheirsupport,thisbookwouldnothave been possible. Special thanks go to the ATC/ARS antenna group, and to Jeremiah WolfandDr.MatildaLivadaruinparticular,foraskinglotsofinterestingquestions, manyofwhichmotivatedthismaterial. v Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 KeyAssumptions,AnalysisLimitations,andAntenna PerformanceMetrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 PlaneWavesasSolutionstoMaxwell’sEquations. . . . . . . . . . . 3 1.3 FourierTransformsandPlaneWaves. . . . . . . . . . . . . . . . . . . . . 5 1.4 Organization. . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . 7 2 SomeBasicPrinciplesofRFElectronicSystemsandAntennas. . . . . 9 2.1 SomeBasicPrinciplesthatGovernElectronicSystems andApertureAntennas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Friis’LinkMarginEquation. . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Friis’FormulaforNoiseFactor. . . . . . . . . . . . . . . . . . . . . . . . . 15 3 K-SpaceGainandAntennaMetrics. . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 RelationshipBetweenK-andAngular-SpaceGains. . . . . . . . . . . 17 3.2 DFTImplementationofK-SpaceGain. . . . . . . . . . . . . . . . . . . . 21 3.3 AffineTransformationandForeshorteningEffects. . . . . . . . . . . . 24 3.4 CosineTaperofElementGain. . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.5 FrequencyandForeshorteningEffectsonPerformance Metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.6 PeakGainandEIRPforanESA. . . . . . . . . . . . . . . . . . . . . . . . 27 3.7 Phase-ComparisonMonopulse. . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.8 ComputingDirectivityDirectlyinK-Space. . . . . . . . . . . . . . . . . 30 3.9 IntegratedSidelobeLevel(ISL). . . . . . . . . . . . . . . . . . . . . . . . . 32 3.9.1 SomePropertiesofISL. . . . . . . . . . . . . . . . . . . . . . . . . 32 3.9.2 ISLof1-Dand2-DArrays. . . . . . . . . . . . . . . . . . . . . . . 35 4 EffectofSkyNoiseonAntennaTemperature. . . . . . . . . . . . . . . . . . 37 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 TotalAntennaTemperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3 ApplicationtoModernESAs. . . . . . . . . . . . . . . . . . . . . . . . . . . 42 vii viii Contents 5 SidelobeControlandMonopulseWeighting. . . . . . . . . . . . . . . . . . . 45 5.1 TaylorWeights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 OctagonalShapedESAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3 SidelobeRotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3.1 MathematicalGainofUniformlyWeighted Parallelograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3.2 SidelobeRotationwithParallelograms. . . . . . . . . . . . . . 55 5.4 BaylissandOtherWeightingSchemesforPhase-Comparison Monopulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6 DigitalBeamformingandAdaptiveProcessing. . . . . . . . . . . . . . . . . 61 6.1 One-DimensionalGainofUniformlyWeightedArray ofArrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.2 DigitalBeamformingatSubarrayLevel. . . . . . . . . . . . . . . . . . . 62 6.3 MinimumVarianceDistortionlessResponse(MVDR). . . . . . . . . 65 6.4 Space-TimeAdaptiveProcessing(STAP). . . . . . . . . . . . . . . . . . 67 6.5 EquivalenceofIdealizedSTAPandMVDR. . . . . . . . . . . . . . . . 67 6.6 ExamplesofDigitalBeamformingandAdaptiveProcessing on32(cid:1)32ESAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.6.1 VariationwithNumberofJammersandDistance ofJammersfromSignal. . . . . . . . . . . . . . . . . . . . . . . . . 70 6.6.2 AngleofArrivalofSignal. . . . . . . . . . . . . . . . . . . . . . . 73 6.6.3 NumberofAdaptiveSubarrays. . . . . . . . . . . . . . . . . . . . 75 6.6.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Appendix1:Far-FieldDemarcation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Appendix2:DiscreteFourierTransforms. . . . . . . . . . . . . . . . . . . . . . . 79 Appendix3:AntennaPointingwithDirectionCosineMatrices. . . . . . . 89 Appendix4:TranslationofPositionandAttitudeErrors intoPointingDirectionErrors. . . . . . . . . . . . . . . . . . . . . . 99 Appendix5:LossofESAGainbyNoiseCorrelationorSignal Decorrelation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Chapter 1 Introduction Modern engineering literature often starts where others have left off, stating well- knownresultswithlittleornoattributionordiscussionastotheirrelationshipwith first principles. This seems particularly true of literature on antenna theory. Alter- natively,someantennabooksbeginwithlongdiscussionsofMaxwell’sequations, always a good starting point, that tend to obscure the simple set of principles on which antenna gain calculations depend. So when this author was asked by the design team engineers to make predictions on the effect of imperfections on the performance of an electronically scanned array (ESA) under development, his approachasaphysiciststartedwithbasicconcepts,havingfailedtofindanantenna referenceto his liking that did thesame. Thiswork isa compilationof discoveries made,mostofwhichhavebeenlostinthepast,onthetheoryofESAsstartingfrom firstprinciplesandafewbasicconceptsusedtocomputeormeasureantennagains. Akeyconceptisthatonceatransmittedsignal,forexample,propagatesbeyond the far-field boundary, one can consider the received field at a point to be a plane wave. So why not eliminate the middle man, the near field, and consider the transmittedorreceivedsignalatthefaceoftheaperturetobeaplanewave? Just as time domain functions can be expanded in terms of sine waves using Fourier transforms, spatial domain functions can be expanded in terms of plane waves also using a Fourier transform. The Fourier domain of physical space is k- space,andantennagainink-spaceisexpressedasaFouriertransformoftheaperture distribution. But k-space gain is not the same as the more familiar angular-space gain, and relating the two provides in a straightforward manner the relationship betweenantennagainandeffectiveaperturearea:G¼4πA/λ2. So the goal for the book is to allow readers to understand the firm theoretical foundationofantennagaincalculationsevenwhentheymuststartfromwell-known formulations rather than first principles. Applications such as sidelobe control and adaptiveprocessingareanattempttoshowtheunityofideasinthesetopicsandthat adaptive processing, which is often described in gruesome detail in the literature, also has unifying concepts that connect techniques such as minimum variance distortionlessresponse(MVDR)andspace-timeadaptiveprocessing(STAP). ©SpringerNatureSwitzerlandAG2019 1 R.A.Dana,ElectronicallyScannedArrays(ESAs)andK-SpaceGain Formulation,https://doi.org/10.1007/978-3-030-04678-1_1 2 1 Introduction Thisisabookaboutmathematical modelingESAs topredict howthey perform ideally;itisnotaboutactuallyconstructingthemorabouthowimperfections(e.g., mutual coupling, process tolerances, failed elements, dynamic range, and/or quan- tization)degradeperformancefromtheideal. OthertopicsdiscussedinthisbookincludethediscreteFouriertransform(DFT) formulationofantennagainandwhatismissinginthisformulation,theeffectofsky temperature on the often specified G/T ratio of antennas, sidelobe control using conventional and novel techniques, and ESA digital beamforming versus adaptive processingtolimitinterference.Theappendicesdescribe(1)theDFTinmoredetail andshowhowtocomputethepowerspectraldensityofarandomprocess,wherethe 1/N term goes most naturally and why, and why zero padding is used to compute antenna gain; (2) how to point an ESA at a known target using direction cosine matrices(DCMs)andwhyDCMshavetheparticularformtheydo;and(3)theeffect ofnoisecorrelationandsignaldecorrelationonthemaximumgainofanESA. 1.1 Key Assumptions, Analysis Limitations, and Antenna Performance Metrics Thereareanumberofassumptionsthatwemakeinthemathematicaldevelopments reportedhere, somemade explicitandsome notsomuch. Unless stated otherwise, thekeyassumptionsincludedinthemathematicaldevelopmentsare: (cid:129) Planararrayofomnidirectionalelements,uniformlysampled (cid:129) PassiveESAinreceivingmode (cid:129) Narrowband,singlebeamwithlinearpolarization (cid:129) Arraypatternobservedinthefarfield Asthisworkisnotabouthardwareimplementationsorlimitations,keyeffectsnot includedare,forexample: (cid:129) Elementmutualcoupling (cid:129) Impedancemodulationasafunctionofscanangle (cid:129) Surfacewaveinitiation (cid:129) Quantizationandsummationnetworkimperfections The far-field demarcation is often mentioned in the literature but rarely is described as arbitrary. So consider a linear array of length D, and an observation pointatadistanceRfromthecenterofthearrayandalongalinenormaltothearray. ThenthepropagationdistancedifferenceΔRfromawavelaunchedfromthecenter elementandthatofawavefromanedgeelementis qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi (cid:3) (cid:4) ΔR¼ R2þðD=2Þ2(cid:2)R(cid:3)R 1þD2=8R2 (cid:2)R¼D2=8R: 1.2 PlaneWavesasSolutionstoMaxwell’sEquations 3 (cid:4) Ifwearbitrarilyallowthetwopathstodifferinphasebynomorethan22.5 ,thenit mustbethecasethatΔR<λ/16,and R>2D2=λ ðFarFieldRangeLimitÞ: Equivalently,ifwetransmitasphericalwavefromthepointR,thephasevariationof thesphericalelectricfieldincidentontheapertureoflengthDisnomorethan22.5(cid:4). Ofcourse,wecouldchooseaphasedifferenceofλ/8orλ/32orsomeotherarbitrary fraction ofawavelengthandgetadifferentexpressionforthefar-fieldrange limit. ThisissueisdiscussedfurtherinAppendix1. When discussing examples, we are compelled to compare performance metrics for various configurations. We focus on four out of a large number of possible metrics: (cid:129) Peakgainandpeaksidelobelevel (cid:129) Beamwidth (cid:129) Integratedsidelobelevel(ISL) TheISLasaperformancemetricwarrantsfurtherdiscussion,asmoreofteninthe antennaliteraturemetricssuchasaverageorRMSsidelobelevelsarequoted.Weuse ISL in this book as this metric compares integrated main beam gain to integrated gain in the sidelobes, something that is not apparent from sidelobe-only based metrics. Formally, ISL is the ratio of the integrated gain outside of the main beam extenttothatinsidethemainbeamandassuchrepresentstheratiooftheintegrated gaininthesideloberegiontothatinthemainlobe.Itisreportedindecibelssolarger negativenumbersarebetter–moresignalpowerinthemainlobecomparedtothatin the sidelobes. We show that an ideal, uniformly weighted rectangular array has an ISL of (cid:2)6.44 dB, the gold standard for schemes that seek to improve the sidelobe structureofanarray. 1.2 Plane Waves as Solutions to Maxwell’s Equations A simplified approach to the demarcation between the near and far fields of an antenna, as described above, is 2D2/λ, where D is a representative aperture size. Beyondthisdistance,thesphericalwavesemanatingfromtheelementssumtogether inamannerthatshowslittlecurvatureacrossadistanceD,essentiallylookinglikea planewave.Soweeliminatethemiddleman,thenearfield,andassumethatplane wavesaretransmittedbyeachelementgivingusthefar-fieldgainfromthesumma- tionofallcontributions. Maxwell’s equations for propagation in free space, written in physics units, are (e.g.,Jackson1962;orStratton1941)

Description:
This book fills in details that are often left out of modern books on the theory of antennas. The starting point is a discussion of some general principles that apply to all electronic systems and to antennas in particular. Just as time domain functions can be expanded in terms of sine waves using F
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.