ebook img

Electronic Design Project 2 PDF

118 Pages·2014·1.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electronic Design Project 2

Electronic Design Project 2 JohnH.Davies KathleenMeehan DavidJ.Muir 2014November4 Preamble Content of the course Thiscoursecoversanumberofdiversetopics.Someofthesearepracticalandyouwillneedthe skillsforprojectsinfutureyears. Otherssimplydidn’tfitintoothercoursesandwerecollected here! Thesearethemainsubjects. 1. UseoftheCadenceOrCADPCBDesignersuitetodraw,simulateandlayoutdesigns onprintedcircuitboards(laboratoriesonly,usedagaininthedesignproject). 2. Analogue-to-digital,digital-to-analogueconvertersandsignalconditioning(lectures andexam). 3. Thedesignprojectitself:research,design,constructionandtest(preliminarylaboratory, designassignmentandfinallaboratories). Thereisnocomplicatedmathematicsinthiscourse. Wetrytokeepthetopicspracticalbutyou can’tdesignoruseanyelectronicsystemwithoutsomeideaofhowitoperates. A glance will show you that this handout is not a collection of lecture slides. The notes contain far more material than the lectures. Instead of trying to cover everything in class we concentrate on the important concepts, leaving the details for you to study. This leads to the obviousquestion: WhatshouldIlearnfortheexam? Pastpapersareonmoodleandyouwill seethatthequestionsareverysimilartotheexamplesineachchapter. This handout is more like a textbook, partly because no single book covers the course at therightlevel. BonnieBaker’sbook[1]isgoodbutalotofthematerialistooadvanced. You shouldalsobecomefamiliarwithTheArtofElectronics[4],anotherwonderfulbook. Seethe chapterFurtherreadingonpage100forotherbooksandapplicationnotesthatmightbeuseful. Theseitemsarereferencedinthetextbynumbersinsquarebrackets,suchas[1]and[4]above. Pleasetakecareofthishandoutbecausealotofthetopicsareimportantforfutureprojects. Prerequisites Thesearethemainprerequisitesfromearliercourses. Weshalldrawonallthismaterialinthe project. (cid:15) Behaviour of the standard components – resistors, capacitors and inductors, Ohm’s law and so on. This includes their behaviour in time, not just in frequency. Impedance ii iii isusefulonlyforsinewaves(orsignalsthatcaneasilybeconstructedfromthem,asyou willlearninmathematicsthisyear)butmanyofthecurrentsandvoltagesthatweconsider arenothinglikesinewaves. (cid:15) Generalrelationbetweencurrentandcharge–notjustQDIT. (cid:15) Basiccircuitanalysis–Kirchoff’slaws,Thévenin’stheorem,nodalanalysisandthelike. (cid:15) Time-dependenceofRCandRLcircuits–thewayinwhichacapacitorchargesanddis- chargesthrougharesistorandthesameforaninductor. Inductorsaremajorcomponents inmanypowersupplies. (cid:15) Operational amplifiers – we need to use some unfamiliar circuits but they can all be analysedusingtheprinciplesthatyouhavebeentaught. (cid:15) Operationoffield-effecttransistor(FET),diodeandbipolarjunctiontransistor(BJT) –outlineonly,nodetails. (cid:15) Microcontrollers–usedinthefinalproject. Themicrocontrollerwillbeprogrammedin theClanguage,taughtinIntroductoryProgramming. Lookbackatyournotesfromlastyearorastandardtextbookifyouhaveforgottenanybasic theory. Youwillneeditforyourothercoursesandwemayquizyouaboutthesetopicsduring thecourse. Formal description Theuniversity’sformaldescriptionofthecourseiscontainedinthecoursespecification,which canbefoundinthecoursecatalogue. Alinkisprovidedfrommoodle. Thiscoursehassome unusualfeatures,describedhere. (cid:15) The requirements for award of credits include attendance at all sessions for the project, makingaworthwhilecontributiontotheteam’swork. Wewillnottolerate‘passengers’ ontheprojectbecauseitisnotfairtotheotherstudentsintheteam. (cid:15) Itisnotpossibletoofferreassessmentoftheprojectbecauseitiscarriedoutinteams. (cid:15) To receive a grade D in this course, students must achieve at least a grade E in every componentofassessment(exam,projectandPCBdesignlaboratory). Theresultwillbe cappedatE1otherwise.ThisisarequirementofourProfessionalEngineeringInstitution, theInstitutionofEngineeringandTechnology,whoaccredittheprogrammesinelectron- icsandcomputingscience. Theyareconcernedthatnobodyshouldbeableto‘pass’the courseoverall,whilefailingasignificantpartofit. Thesespecialconditionsaffectonlyaboutonestudentperyearandareofnoconcerntoanybody whotakesthecourseseriously. Contents 1 Introductiontodataconversion 1 2 Generalfeaturesofanalogue-to-digitalconverters 5 2.1 Input–outputcharacteristicofanidealADC . . . . . . . . . . . . . . . . . . . 5 2.2 Resolution,precisionandaccuracy . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Basictypesofanalogue-to-digitalconverter 11 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Comparators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Flashconverters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4 Pipelineconverters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.5 Successive-approximation(SAR)converters . . . . . . . . . . . . . . . . . . . 19 3.6 PracticalissueswithSARADCs . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.7 Integratingconverters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.8 SummaryofclassicalADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.9 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Sampling,oversamplingandsigma–deltaconverters 30 4.1 SamplingrateandtheNyquistfrequency. . . . . . . . . . . . . . . . . . . . . 30 4.2 Sigma–deltaconverters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 Practicalissueswithsigma–deltaconverters . . . . . . . . . . . . . . . . . . . 33 4.4 Summaryofsigma–deltaconverters . . . . . . . . . . . . . . . . . . . . . . . 34 4.5 ReflectiononADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5 Summary: SelectionofanADC 36 6 Signalconditioning 38 6.1 Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2 Single-supplyop-amps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.3 Circuitswithsingle-supplyop-amps . . . . . . . . . . . . . . . . . . . . . . . 42 6.4 Workedexample: Analysisofasingle-supplyopampcircuit . . . . . . . . . . 45 iv Contents v 6.5 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.6 ComparatorsandSchmitttriggers . . . . . . . . . . . . . . . . . . . . . . . . 47 6.7 Sample-and-holdcircuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.8 Summaryofsignalconditioning . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.9 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7 CompletesystemswithADCs 53 7.1 Voltagereference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7.2 Ratiometricmeasurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7.3 MeasurementofabsolutevoltageswithasimpleADC. . . . . . . . . . . . . . 55 7.4 Multistagesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.5 Workedexample: TemperaturesensorwithLM35and10-bitADC . . . . . . . 58 7.6 Workedexample: Sensorthatproducesagivenrangeofvoltages . . . . . . . . 60 7.7 Workedexample: Measurementoftemperatureusingathermistor . . . . . . . 62 7.8 Workedexample: Sensorforaweighingmachine . . . . . . . . . . . . . . . . 64 7.9 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8 Digital-to-analogueconverters 69 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 8.2 Generalfeaturesofdigitaltoanalogueconverters . . . . . . . . . . . . . . . . 69 8.3 Pulsewidthmodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 8.4 Typesofdigitaltoanalogueconverter . . . . . . . . . . . . . . . . . . . . . . 72 8.5 SummaryofDACs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 8.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 9 Passivecomponentsandprintedcircuitboards 81 9.1 Resistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 9.2 Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 9.3 Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 9.4 Standardvaluesofcomponents . . . . . . . . . . . . . . . . . . . . . . . . . . 88 9.5 Printedcircuitboards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 9.6 Componentpackages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 9.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 10 Howtoreadadatasheet 94 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 10.2 Electricalcharacteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 10.3 Typicalperformancecurves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 10.4 Pindescriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 10.5 Applicationinformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 10.6 Designaids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 10.7 Packaginginformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 10.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Furtherreading 100 vi Contents Solutionstoexamples 104 1 Introduction to data conversion Averylargenumberofelectronicsystemshavetheoverallstructureshowninfigure1.1. These arethemainfunctionalblocks. 1. Analogueinputcomesfromasensor(temperature,microphone,antenna,...). 2. Thisanaloguesignalisconvertedtoadigitalvaluebyananalogue-to-digitalconverter (A-to-D,ADC,A/D). 3. The signal is processed digitally. It may also be stored or communicated to another system. 4. Theprocessedvalueisreturnedtoananaloguesignalbyadigital-to-analogueconverter (D-to-A,DAC,D/A). 5. Finally,atransduceroractuator(controlvalve,speaker,...)isdrivenwiththeanalogue output. Amorespecificexampleisshowninfigure1.2onthefollowingpage.Thisisadigitalweighing machine, which was the project for this course long ago. In this case the output is only to a communication sensor transducer ADC processing DAC (input) (output) (analogue) (analogue) storage Figure1.1Ageneralizedsystemwithanalogueinputfromasensor,digitalprocessing,storage andcommunication,andanalogueoutputtoatransducer. 1 2 Introductiontodataconversion Chapter1 liquid weight crystal display V CC R + dR R - dR v+ analog to LCD micro- sensor amplifier digital con- V controller v- out converter troller R - dR R + dR grams / ounces set zero Figure1.2Blockdiagramofadigitalweighingmachine. display although there would probably be a digital interface to a computer in a commercial system. Itshowsabitmoredetailoftheanalogueinput,whichwillbecoveredinchapter6. The complete system would have operated on analogue signals in the past. For example, televisionusedtobeananaloguesignalandwasstoredinthisformonVHStapes. Thesame was true of sound. Control systems were also entirely analogue (the department owned an analogue computer when I arrived in 1986). A controller for the temperature of an industrial processwouldhaveusedananaloguesensor,processedthesignalusingop-ampswithfeedback networks, and produced an analogue output to drive the heater. The circuit with the op-amps wouldbedesignedspecificallytoachievethedesiredfunctionandthecomponentswouldneed tobechangedifadifferentcontrollawwasneeded. Controllersusedtobemadewithterminals onthebacksothatthecriticalcomponentscouldbeexchangedeasily. Nowthetrendistodoasmuchaspossiblewithdigitalsignals. Televisionisagainagood example. Analogue transmission will cease in the next few years and all broadcasts will be digital. ProgrammescannowberecordedindigitalformonharddisksorDVDs. Thishaslong beenthecaseforaudio,whereCDswereintroducedaboutthirtyyearsago. Heretheamplifiers usedtobeanaloguesystemsbuteventhatischanging,andmanyaudiopoweramplifiersarenow ‘classD’systems,whichusevariousformsofpulsemodulation(suchaspulsewidthmodulation or PWM). The conversion back to an analogue signal takes place at the last possible point, in thespeakeritself. The same trend can be seen on the input side of systems as well. For example, it is con- venient for manufacturers of mobile phones if they can be adapted with minimal effort to the varioussystemsinusearoundtheworld. Theradioreceiversthereforedoaslittleaspossible in the analogue domain before they convert the signal to digital form. It is relatively easy to reprogrammeadigitalsignalprocessortoworkintheUSAratherthantheUK,forinstance. Chapter1 Introductiontodataconversion 3 AV DV CC CC low- sample analogue(cid:0) sensor ampli- digital pass and hold to digital (input) fier (cid:0) system filter (S/H) converter analogue ground digital ground Figure1.3Blockdiagramofadataacquisitionsystem,includingthefunctionsneededtocon- ditionthesignalfortheconverteritself. This all makes it seem as though analogue electronics is being pushed to the periphery of manysystems(apartfromthepowersupply,althougheventheyuseanincreasinglevelofdig- ital control). While this is partly true, it requires very high performance from the analogue circuitrythatremains. Majorelectronicscompaniesthereforepromotetheiranalogueproducts vigorously.Forexample,TexasInstrumentsisprobablybestknownfordigitalsignalprocessors (DSPs)nowadaysbutthetitleofitshomewebpageiscurrentlyAnalogTechnologies,Semicon- ductors, Digital Signal Processing. Analogue is unavoidable! Often the interface between a sensor and the ADC is the most difficult part of a system to design. It can be very tricky to eliminate noise and present a clean signal of the correct magnitude to the analogue to digital converter. Youwillhavetohandleallthisinfutureprojects. A great deal more than just an ADC is needed to turn a signal from the analogue voltage ofasensortoadigitaloutputforfurtherprocessing. Someofthiswasshowninfigure1.2and figure1.3showsanexpandedversionofatypicalsystem. Noteveryblockmaybeneededand theordermayvaryslightly. Hereisanoutlineofthefunctionofeachblock. 1. Theinputcomesfromasensorofsomesort. Theoutputisoftenavoltagebutsometimes a current or change in resistance, capacitance or inductance – an enormous variety of sensorsisavailable. 2. Many sensors produce very small outputs, perhaps only µV, and an amplifier may be necessarytoraisethemtoasuitablelevelfortheADC. 3. Alow-passfilterisalmostalwaysneededfortworeasons. (cid:15) To remove noise from the signal. Typically the signal has a low frequency, in whichcaseanyhighfrequenciespresentareunwantednoiseandcanbesuppressed withalow-passfilter.Sometypesofnoisehaveawell-definedfrequency,suchasthe mainsat50Hzandharmonics. Anotchfiltercanbeusedtoeliminatethese. Some typesofADCoperateinawaythatremovesparticularfrequenciesintrinsically. (cid:15) Toavoidaliasing. Ifthesignalissampledatfrequencyf ,thenfrequenciesgreater s than 1f mustnormallybeeliminatedfromtheinputbeforeitissampled. Thiswill 2 s beexplainedinsection4.1. 4. TheinputtotheADCshouldbeheldconstantwhileitisbeingconvertedtoensurethat the sample refers to a well-defined time. The sample-and-hold (S/H) circuit does this 4 Introductiontodataconversion Chapter1 undercontrolfromtheADC.ManytypesofADCactastheirownS/Hcircuitanddonot needanexternalone. 5. Finally,theanalogue-to-digitalconverterturnstheanaloguesignalintoadigitalrepre- sentation. The blocks before the ADC will be covered in chapter 6. Note that the analogue and digi- tal blocks have separate power and ground rails (supplies). This keeps the measurement free of digital noise. The ADC is the interface between the analogue and digital worlds and may thereforeneedbothpowersuppliesandgrounds.

Description:
Basic circuit analysis – Kirchoff's laws, Thйvenin's theorem, nodal analysis and the like. MSP430F2002 10-bit successive-approximation ADC $0.99 .. to use a SAR ADC than any other type of ADC so it gets the most space.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.