ebook img

Electron Spin Interactions in Chemistry and Biology: Fundamentals, Methods, Reactions Mechanisms, Magnetic Phenomena, Structure Investigation PDF

355 Pages·2016·10.177 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electron Spin Interactions in Chemistry and Biology: Fundamentals, Methods, Reactions Mechanisms, Magnetic Phenomena, Structure Investigation

Biological and Medical Physics, Biomedical Engineering Gertz Likhtenshtein Electron Spin Interactions in Chemistry and Biology Fundamentals, Methods, Reactions Mechanisms, Magnetic Phenomena, Structure Investigation Electron Spin Interactions in Chemistry and Biology BIOLOGICAL AND MEDICAL PHYSICS, BIOMEDICAL ENGINEERING Thefieldsofbiologicalandmedicalphysicsandbiomedicalengineeringarebroad,multidisciplinaryanddynamic. Theylieatthecrossroadsoffrontierresearchinphysics,biology,chemistry,andmedicine.TheBiologicaland MedicalPhysics,BiomedicalEngineeringSeriesisintendedtobecomprehensive,coveringabroadrangeoftopics importanttothestudyofthephysical,chemicalandbiologicalsciences.Itsgoalistoprovidescientistsand engineerswithtextbooks,monographs,andreferenceworkstoaddressthegrowingneedforinformation. Booksintheseriesemphasizeestablishedandemergentareasofscienceincludingmolecular,membrane,and mathematicalbiophysics;photosyntheticenergyharvestingandconversion;informationprocessing;physical principlesofgenetics;sensorycommunications;automatanetworks,neuralnetworks,andcellularautomata. Equallyimportantwillbecoverageofappliedaspectsofbiologicalandmedicalphysicsandbiomedicalengi- neeringsuchasmolecularelectroniccomponentsanddevices,biosensors,medicine,imaging,physicalprinciples ofrenewableenergyproduction,advancedprostheses,andenvironmentalcontrolandengineering. Editor-in-Chief: EliasGreenbaum,OakRidgeNationalLaboratory,OakRidge,Tennessee,USA EditorialBoard: MasuoAizawa,DepartmentofBioengineering, MarkS.Humayun,DohenyEyeInstitute, TokyoInstituteofTechnology,Yokohama,Japan LosAngeles,California,USA OlafS.Andersen,DepartmentofPhysiology, PierreJoliot,InstitutedeBiologie BiophysicsandMolecularMedicine, Physico-Chimique,FondationEdmond CornellUniversity,NewYork,USA deRothschild,Paris,France RobertH.Austin,DepartmentofPhysics, LajosKeszthelyi,InstituteofBiophysics,Hungarian PrincetonUniversity,Princeton,NewJersey,USA AcademyofSciences,Szeged,Hungary JamesBarber,DepartmentofBiochemistry, RobertS.Knox,DepartmentofPhysics ImperialCollegeofScience,Technology andAstronomy,UniversityofRochester,Rochester, andMedicine,London,England NewYork,USA HowardC.Berg,DepartmentofMolecular AaronLewis,DepartmentofAppliedPhysics, andCellularBiology,HarvardUniversity, HebrewUniversity,Jerusalem,Israel Cambridge,Massachusetts,USA StuartM.Lindsay,DepartmentofPhysics VictorBloomfield,DepartmentofBiochemistry, andAstronomy,ArizonaStateUniversity, UniversityofMinnesota,St.Paul,Minnesota,USA Tempe,Arizona,USA RobertCallender,DepartmentofBiochemistry, DavidMauzerall,RockefellerUniversity, AlbertEinsteinCollegeofMedicine, NewYork,NewYork,USA Bronx,NewYork,USA EugenieV.Mielczarek,DepartmentofPhysics BrittonChance,UniversityofPennsylvania andAstronomy,GeorgeMasonUniversity,Fairfax, DepartmentofBiochemistry/Biophysics Virginia,USA Philadelphia,USA MarkolfNiemz,MedicalFacultyMannheim, StevenChu,LawrenceBerkeleyNational UniversityofHeidelberg,Mannheim,Germany Laboratory,Berkeley,California,USA V.AdrianParsegian,PhysicalScienceLaboratory, LouisJ.DeFelice,DepartmentofPharmacology, NationalInstitutesofHealth,Bethesda, VanderbiltUniversity,Nashville,Tennessee,USA Maryland,USA JohannDeisenhofer,HowardHughesMedical LindaS.Powers,UniversityofArizona, Institute,TheUniversityofTexas,Dallas, Tucson,Arizona,USA Texas,USA EarlW.Prohofsky,DepartmentofPhysics, GeorgeFeher,DepartmentofPhysics, PurdueUniversity,WestLafayette,Indiana,USA UniversityofCalifornia,SanDiego,LaJolla, California,USA TatianaK.Rostovtseva,NICHD HansFrauenfelder, NationalInstitutesofHealth LosAlamosNationalLaboratory, Bethesda,Maryland,USA LosAlamos,NewMexico,USA AndrewRubin,DepartmentofBiophysics,Moscow IvarGiaever,RensselaerPolytechnicInstitute, StateUniversity,Moscow,Russia Troy,NewYork,USA MichaelSeibert,NationalRenewableEnergy SolM.Gruner,CornellUniversity, Laboratory,Golden,Colorado,USA Ithaca,NewYork,USA DavidThomas,DepartmentofBiochemistry, JudithHerzfeld,DepartmentofChemistry, UniversityofMinnesotaMedicalSchool, BrandeisUniversity,Waltham,Massachusetts,USA Minneapolis,Minnesota,USA More information about this series at http://www.springer.com/series/3740 Gertz Likhtenshtein Electron Spin Interactions in Chemistry and Biology Fundamentals, Methods, Reactions Mechanisms, Magnetic Phenomena, Structure Investigation 123 Gertz Likhtenshtein Department ofChemistry Ben-Gurion University of the Negev Beersheba Israel and Institute of Problems of Chemical Physics Russian Academy of Science Chernogolovka Russia ISSN 1618-7210 ISSN 2197-5647 (electronic) Biological andMedical Physics, Biomedical Engineering ISBN978-3-319-33926-9 ISBN978-3-319-33927-6 (eBook) DOI 10.1007/978-3-319-33927-6 LibraryofCongressControlNumber:2016942036 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface Pivotal role of electron spin interactions in Nature cannot be overestimated. In manyprocessesfromenergytransductioninbiologytospecificityofbiorecognition these spin interactions appear as defining contributors. Another role involves determiningthepropertiesofmolecularandfunctionalmaterials’systemsthatdrive today’stechnology byfinding uses inelectronic,spintronic, andmagneticdevices. Electron spin effects are manifesting in the fundamental quantum phenomenon of spin exchange. This interaction enables a number of important elementary processesincludingelectrontransfer,tripletenergytransfer,andinterspincrossing. One should consider interactions of both electronic and nuclear spins including electron–electron, electron–nuclear dipolar, and electron–nuclear contact interac- tions among the others. Such interactions could be precisely studied by electron magneticresonance,nuclearmagneticresonance,andrelatedhyphenatedresonance techniques providing researchers with unique spectroscopic tools to investigate detailed molecular structure and dynamics of both small and large chemical and biological molecules. For rather long time the scientists were stuck with paradigm that chemical and biochemical reactions are only ruled by interactions that energetically prevail over the thermal motion. However, contrary to such a strong thermodynamic argument, the last decades of intense research resulted in conclusive evidence of many essential chemical and biological processes being governed by very weak inter- actionsoriginatingfromelectronicspinsystemsinstead.Advancingtheknowledge of molecular mechanisms responsible for photosynthesis in plants and model compounds, radical reactions and influence of magnetic field on these and other processes, as well as rational design of advanced molecular magnets, spintronic devices,catalysts,etc.,wouldnotbepossiblewithoutunderstandingthespineffects in these systems. This book represents a collective perspective from physical chemist with long and broad expertise in spin phenomena and related fields. The main intention was nottoprovidethereaderwithanexhaustivesurveyofeachtopicofvastliterature, butrathertodiscussthekeytheoreticalandexperimentalbackgroundandfocuson v vi Preface recentdevelopments.Thus,chemistsandbiologistswouldfindthefundamentalsof spinphenomena,instrumentationanddatainterpretation,andareviewofthemajor milestones.Thisgainedknowledgeisexpectedtopromotesomecriticalthinkingto solvenewemergingproblemintheirfields.Physicistsandexperts,forexample,in magnetic resonance and photoluminescence methods and instrumentation may know already about the above-mentioned technical and quantum mechanical aspects,butwouldbenefitfromoverviewofcurrentproblemsandachievementsin variousareasofchemistryandmolecularbiology,includingrapidlyevolvingfields of natural and artificial photosynthesis, photochemistry, material science, etc. The Chap. 1 of the monograph provides a brief outline offundamental theories of spin exchange and electron transfer. Non-radiative spin exchange processes involving excited triplet state is the subject of Chap. 2. Electron spin dipolar and electron-nuclear spin contact interactions are described in Chap. 3 as the basis for investigation of molecular structures. A general survey offundamentals and recent results on spin-selective processes of electron and nuclear spins is presentedin the Chap. 4. Three subsequent Chaps. 5–7 are dedicated to experimental methods of investigation of electron spin interactions based on measurements by continuous wave and pulse EPRand byother physicalmethods.Thesespectroscopic methods form an experimental basis for investigation of electron spin effects in chosen chemicalandphysicalprocesses(Chap.8),effectsofmagneticandelectromagnetic fields on chemical and biological processes (Chap. 9), establishing structure and spin state of organic and metalloorganic compounds (Chap. 10), and electron transfer in biological systems focusing on the light energy conversion (Chap. 11). Chapter 12 is a brief review of the fundamentals and main results obtained by the methods of spin and triplet (phosphorescence) labels. Chapter 11, Preface and Conclusion have been written in collaboration with professor Alex I. Smirnov This monograph is intended for scientists working in basic areas related to spin interactions such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions and magneto-chemistry and magneto-biology. The book will be also useful for engineers designing advance magneticmaterials,opticalandspintronicdevices,andphotocatalysts.Thistextasa whole or as separate chapters can also be employed as subsidiary manuals for instructors and graduate and undergraduate students of university physics, bio- physics, chemistry, and chemistry engineering departments. Beersheba, Israel Gertz Likhtenshtein Contents 1 Basic Conceptions: Spin Exchange and Electron Transfer . . . . . . . 1 1.1 Basic Conceptions and Definitions. . . . . . . . . . . . . . . . . . . . . 1 1.2 First Elements of Quantum Mechanics . . . . . . . . . . . . . . . . . . 4 1.3 Spin Exchange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Direct Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.2 Superexchange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.3 Dynamic Spin Exchange in Solution. . . . . . . . . . . . . . 10 1.3.4 Dynamic Spin Exchange in Flexible Biradicals in Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Electron Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.1 Prerequisite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.2 Electron Transfer Theories . . . . . . . . . . . . . . . . . . . . 14 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2 Spin Exchange Processes Involving Exited Triplet States. . . . . . . . 27 2.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Dexter Triplet-Triplet Energy Transfer . . . . . . . . . . . . . . . . . . 28 2.3 Triplet-Triplet Annihilation . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4 Dexter Singlet-Singlet Energy Transfer. . . . . . . . . . . . . . . . . . 34 2.5 Intersystem Crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5.1 Direct Intersystem Crossing. . . . . . . . . . . . . . . . . . . . 38 2.5.2 Induced Intersystem Crossing . . . . . . . . . . . . . . . . . . 43 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3 Spin Electron Dipolar and Contact Interactions . . . . . . . . . . . . . . 51 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Spin Relaxation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3 Electron Spin-Spin Dipole-Dipole Interaction. . . . . . . . . . . . . . 55 3.3.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.2 Interaction Between Slow Relaxing Dipoles . . . . . . . . 55 3.3.3 Interaction Between a Slow Relaxing Dipole and Fast Relaxing Dipole . . . . . . . . . . . . . . . . . . . . . 59 vii viii Contents 3.4 Electron Spin Nuclear Spin Interaction. . . . . . . . . . . . . . . . . . 61 3.4.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.2 Nuclear Magnetic Resonance of Paramagnetic Molecules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.4.3 Nuclear Relaxation Rates Enhancement by Electron Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.4.4 Contrast Enhancement of Water Protons in Magnetic Resonance Imaging . . . . . . . . . . . . . . . . 67 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4 Spin-Selective Processes of Electron and Nuclear Spins . . . . . . . . . 73 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Chemically Induced Spin Correlated Dynamic Electron Polarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.1 Triplet Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.2 Spin-Correlated Coupled Radical-Pair Mechanism . . . . 75 4.2.3 Radical-Pair Mechanism . . . . . . . . . . . . . . . . . . . . . . 77 4.2.4 Radical-Triplet Dynamic Electron Polarization Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2.5 Triplet Pair Mechanism of Chemically Induced Dynamic Electron Polarization. . . . . . . . . . . . . . . . . . 80 4.3 Dynamic Nuclear Polarization . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3.1 Chemical-Induced Dynamic Nuclear Polarization. . . . . 85 4.4 Chiral-Induced Spin Selectivity. Spin Filter. . . . . . . . . . . . . . . 89 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5 Experimental Methods of Investigation of Electron Spin Interactions Based on ESR Phenomena: Continuous Wave EPR Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 Spin Electron Relaxation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2.1 Determination of Spin-Spin Relaxation Rates from the Form of the ESR Spectrum . . . . . . . . . . . . . 95 5.2.2 Determination of Spin-Lattice Relaxation Rates from ESR Spectral Saturated Curves. . . . . . . . . . . . . . 95 5.3 Exchange Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.4 Multiquantum ESR Spectroscopy. . . . . . . . . . . . . . . . . . . . . . 99 5.5 Electron Spin Electron Spin Electron Dipolar Interaction. . . . . . 100 5.6 Hyperfine Interaction in ESR Spectra. . . . . . . . . . . . . . . . . . . 100 5.6.1 Hyperfine Interaction Parameters in CW-ESR Spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.6.2 Electron Spin Nuclear Spin Interaction and Dynamical Phenomena . . . . . . . . . . . . . . . . . . . . . . . 103 Contents ix 5.7 CW Double Resonance Techniques . . . . . . . . . . . . . . . . . . . . 106 5.7.1 Electron Nuclear Double Resonance. . . . . . . . . . . . . . 106 5.7.2 Continuous Wave Electron–Electron Double Resonance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.8 Methods Based on the Effect of an Applied External Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.8.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.8.2 Optically Detected ESR . . . . . . . . . . . . . . . . . . . . . . 111 5.8.3 Reaction Yield Detected Magnetic Resonance . . . . . . . 112 5.8.4 Magnetically Field Effects on Reaction Yield . . . . . . . 113 5.8.5 Time-Resolved Magnetic Field Effect. . . . . . . . . . . . . 115 5.8.6 Singlet–Triplet Oscillations . . . . . . . . . . . . . . . . . . . . 116 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6 Experimental Methods for the Investigation of Electron Spin Interactions Based on ESR Phenomena. Pulse EPR Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2 Electron Spin Echo Methods. . . . . . . . . . . . . . . . . . . . . . . . . 126 6.2.1 Two and Three Pulse Methods. . . . . . . . . . . . . . . . . . 126 6.2.2 Spin Echo Detected ESR . . . . . . . . . . . . . . . . . . . . . 127 6.3 Electron Spin Resonance Methods Based on Pulse ELDOR . . . 128 6.3.1 Three-Pulse ELDOR. . . . . . . . . . . . . . . . . . . . . . . . . 128 6.3.2 Four-Pulse PELDOR . . . . . . . . . . . . . . . . . . . . . . . . 132 6.3.3 5 Pulse ELDOR (DEER 5) . . . . . . . . . . . . . . . . . . . . 133 6.4 Two-Dimentional Fourier Transfer ESR . . . . . . . . . . . . . . . . . 136 6.4.1 COSY (Correlation Spectroscopy), SECSY (Spin–Echo Correlation Spectroscopy) . . . . . . . . . . . . 136 6.5 Two-Dimensional Electron-Electron Double Resonance (2D-ELDOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.6 Double-Quantum Coherence ESR . . . . . . . . . . . . . . . . . . . . . 139 6.7 Electron Spin Echo Envelope Modulation. . . . . . . . . . . . . . . . 143 6.8 Pulse ENDOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.9 Pulse Saturation and Inversion Recovery. . . . . . . . . . . . . . . . . 149 6.10 ESR Spectra Hole Burning . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.11 ESR Nutation Spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . 152 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 7 Miscellaneous Methods of Investigation of Electron Spin Interactions Based on Optical and Other Techniques. . . . . . . . . . . 159 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.2 Optical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.2.1 Intramolecular Excited Triplet States Decay Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.2.2 Intermolecular Singlet and Triplet Excited States Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.