Volume107,Number1,January–February2002 Journal of Research of the National Institute of Standards and Technology [J.Res.Natl.Inst.Stand.Technol.107,63–67(2002)] Electron-Impact Total Ionization Cross Sections of Hydrocarbon Ions Volume 107 Number 1 January–February 2002 KarlK.IrikuraandYong-KiKim TheBinary-Encounter-Bethe(BEB)model Keywords: CH+;CH+;CH+;CH+; 2 3 4 2 2 forelectron-impacttotalionizationcross CH+;CH+;andHO+;electron-impaction- 2 4 2 6 3 National Institute of Standards and sectionshasbeenappliedtoCH+,CH+, ization;molecularions. 2 3 Technology, CH+,CH+,CH+,CH+,andHO+.The 4 2 2 2 4 2 6 3 Gaithersburg, MD 20899-0001 crosssectionsforthehydrocarbonionsare neededformodelingcoolplasmasinfu- and siondevices.Noexperimentaldataare availablefordirectcomparison.Molecu- larconstantstogeneratetotalionization Accepted: December18,2001 M. A. Ali crosssectionsatarbitraryincidentelec- Department of Chemistry, tronenergiesusingtheBEBformulaare presented.Arecentexperimentalresult Howard University, ontheionizationofHO+isfoundtobeal- 3 Washington, DC 20059 most1/20ofthepresenttheoryatthe crosssectionpeak. Availableonline: http://www.nist.gov/jres [email protected] [email protected] 1. Introduction Ionization cross sections for atomic and molecular tionofHO++byelectronimpact[8]iscomparedtothe 3 ions are among the critical data needed in modeling present theory in Sec. 3. plasmas in fusion devices. Hydrocarbon molecules and theirionfragmentsareformedinsideatokamakinedge 2. Outline of Theory plasmas and near a divertor. The Binary-Encounter- Bethe(BEB)model[1]hassuccessfullygeneratedreli- The BEB formula for ionizing an electron from a able total ionization cross sections of small as well as molecularorbitalofaneutralmoleculebyelectronim- largemolecules[2-6].TheBEBmodelcombinesamod- pact is [1]: ifiedformoftheMottcrosssectionwiththeasymptotic (cid:1) (cid:2) (cid:3) (cid:4) form of the Bethe theory (i.e., high incident energy T) S lnt 1 1 lnt for electron-impact ionization of a neutral atom or (cid:1)BEB=t+u+1 2 1(cid:2)t2 +1(cid:2) t (cid:2)t+1 , (1) molecule. The original BEB model was slightly modi- fied for applications to atomic and molecular ions [7]. where t=T/B, u=U/B, S=4(cid:3)a2NR2/B2, a is the 0 0 InthisarticleweapplythemodifiedBEBformulafor Bohr radius (=0.5292 Å), R is the Rydberg energy ionstohydrocarbonionsofinteresttomagneticfusion: (=13.6057eV),Tistheincidentelectronenergy,andN, CH+, CH+, CH+, CH+, CH+, CH+, and HO+. We out- B,andU aretheelectronoccupationnumber,thebind- 2 3 4 2 2 2 4 2 6 3 linethetheoryinSec.2,andourtheoreticalresultsare ingenergy,andtheaveragekineticenergyoftheorbital, presentedinSec.3.Arecentexperimentontheforma- respectively. 63 Volume107,Number1,January–February2002 Journal of Research of the National Institute of Standards and Technology InEq.(1),thetermsinthesquarebracketsarebased 3. Theoretical Results on the Mott theory and the Bethe theory. However, the denominator t+u+1 is based on a plausible, but less We present the BEB cross sections from Eq. (2) for rigorous argument, i.e., the effective kinetic energy of CH+, CH+, CH+, CH+, CH+, CH+, and HO+ in Figs. 2 3 4 2 2 2 4 2 6 3 the incident electron seen by the bound target electron 1-4. The molecular constants B, U, andN for the shouldbetheincidentelectronenergyTplusthepoten- molecules are listed in Table 1. For all molecular ions tialenergyU+Bofthetargetelectron[9].HencetheT exceptCH+,moleculargeometrieswerecomputedusing 4 inthedenominatoroftheoriginalMottandBethetheo- a hybrid density functional (B3LYP) [10,11] with 6- rieswasreplacedbyT+U+B,ort +u+1inEq.(1), 31G(d) basis sets. For CH+, B3LYP/6-31G(d) gave an 4 where B is used as the energy unit. incorrect molecular symmetry (C point group instead 2 The net effect of using t+u+1 instead of t in the of C ), so the geometry was computed using frozen- 2v denominator of Eq. (1) is to reduce substantially the core, second-order perturbation (MP2) theory with 6- crosssectionneartheionizationthreshold.Thismodifi- 31G(d)basissets.TheB3LYPorMP2geometrieswere cationwasfoundnotonlytobeeffectivebutalsoabso- usedforallsubsequentcalculationsofBandU.Kinetic lutely necessary to have the theory agree with reliable energiesUforallorbitals,andbindingenergiesBforthe experimentalionizationcrosssectionsnearthethreshold innerorbitals,werecalculatedattheHartree-Fock(HF) for many neutral atoms and molecules. level using 6-311G(d,p) basis sets. More accurate, cor- Inapreviousarticle[7]forsinglychargedmolecular related values of B were obtained for the outer-valence ions, we have shown that the denominator t+u+1 is orbitalsbyusingfrozen-coreGreen’sfunction(OVGF) replaced by t+(u+1)/2 to generate ionization cross methods [12,13] and 6-311+G(d,p) basis sets. For the sectionsingoodagreementwithavailableexperimental important threshold ionization, B values were obtained data. The modified BEB equation for singly charged byusingfrozen-corecoupledclustertheory[CCSD(T)], ions is: withthesingleanddoubleexcitationoperatorsincluded (cid:1) (cid:2) (cid:3) (cid:4) iteratively [14] and the contribution from connected S lnt 1 1 lnt triplesestimatedperturbatively[15].Dunning’scorrela- (cid:1) = 1(cid:2) +1(cid:2) (cid:2) . (2) ion t+(u+1)/2 2 t2 t t+1 tion-consistent valence-triple-zeta (cc-pVTZ) basis sets [16] were used for the CCSD(T) calculations. The HF Equation(2)isassimpleastheBEBformulaforneutral calculations were performed using the GAMESS [17] targets, Eq. (1), and does not require any more input programpackage;allothercalculationsemployedGaus- data than the original BEB formula. sian 981 [18]. Fig.1. Electron-impactionizationcrosssectionsforCH+andCH+. 2 2 2 1Certaincommercialequipment,instruments,ormaterialsareidentified inthispapertofosterunderstanding.Suchidentificationdoesnotimply recommendationorendorsementbytheNationalInstituteofStandards andTechnology,nordoesitimplythatthematerialsorequipmentiden- tifiedarenecessarilythebestavailableforthepurpose. 64 Volume107,Number1,January–February2002 Journal of Research of the National Institute of Standards and Technology Fig.2. Electron-impactionizationcrosssectionsforCH+andCH+. 3 2 4 Fig.3. Electron-impactionizationcrosssectionforCH+andCH+. 4 2 6 Fig.4. Electron-impactionizationcrosssectionforHO+. 3 65 Volume107,Number1,January–February2002 Journal of Research of the National Institute of Standards and Technology Table1. Molecularpointgroup,molecularorbitals(MO),electron or A+++B+2e(cid:4), (7) bindingenergyB,kineticenergyU,andelectronoccupationnumber NforCH2+,CH3+,CH4+,C2H2+,C2H4+,C2H6+,andH3O+ or A+B+++2e(cid:4). (8) Molecule(pointgroup) MO B(eV) U(eV) N Processes(3)and(4)aredissociationwithoutioniza- CH+(C ) 1a 319.07 436.58 2 tion, while processes (5) through (8) are the ionizing 2 2v 1 2a 33.16 38.98 2 eventsdescribedbytheBEBmodel.Themodelcalcu- 1 1b2 27.04 29.90 2 lates the sum of all processes (5) through (8) that lead 3a1 22.17 37.74 1 totheejectionofaboundelectron.Moreover,themodel also assumes—erroneously—that all energy transfers CH+(D ) 1a' 317.93 436.46 2 3 3h 1 from the incident electron to the target molecule that 2a' 33.55 37.57 2 1 1e' 25.59 29.56 4 exceed the ionization energy of a given molecular or- bitalresultinionization.Thisisanassumptioncommon CH4+(C2v) 1a1 315.92 436.20 2 toallbinary-encountertypetheories.Althoughsuchan 2a 33.67 33.40 2 1 assumption may be valid for atoms, molecules may 3a 25.87 27.79 2 1 dissociatewithoutionizingevenifenergytransfersex- 1b 24.48 28.73 2 2 1b 22.08 29.42 1 ceed the orbital binding energies. If processes (3) and 1 (4) are significant for energy transfers above orbital C2H2+(D(cid:1)h) 1(cid:2)g 316.56 435.87 2 bindingenergies,thentheBEBmodelwilloverestimate 1(cid:2) 316.48 436.63 2 u ionizationcrosssections.Morediscussionsonthispoint 2(cid:2) 34.59 49.00 2 g 2(cid:2) 27.96 35.66 2 can be found in Ref. [5]. u 3(cid:2) 26.06 34.23 2 Experimentally, the production of doubly charged g 1(cid:3)u 21.00 31.42 3 ions can be detected directly when the doubly charged ions have reasonably long lifetimes. In reality, most CH+(D) 1a 315.15 436.08 2 2 4 2 doubly charged molecular ions quickly dissociate into 1b 315.12 436.44 2 1 twosinglychargedfragments,makingitalmostimpos- 2a 33.52 40.73 2 2b 28.22 36.01 2 sibletodistinguishprocesses(3)and(4)fromthedisso- 1 1b2 24.41 27.06 2 ciation of doubly charged ions by Coulomb repulsion, 3a 23.30 35.07 2 i.e.,process(6).Forthisreason,itisdifficulttodistin- 1b 21.81 29.99 2 3 guishprocesses(3)and(4)fromprocess(6)simplyby 2b 19.21 29.54 1 3 detecting singly charged ions unless coincidence mea- CH+(D ) 1a 314.28 436.27 2 surementsofallproductsareperformed.Theusualex- 2 6 3d 1g 1a2u 314.28 436.30 2 perimentalprocedureistomeasurethecrosssectionfor 2a1g 31.76 33.19 2 producinganyion,i.e.,(3)through(8).Then,processes 2a 29.16 38.10 2 2u (3) and (4) are measured separately, and subtracted 1e 23.07 26.29 4 u from the total ion production cross section. This sub- 1e 21.38 30.07 4 g 3a 19.04 30.07 1 traction introduces large uncertainties in the resulting 1g experimental ionization cross sections. H3O+(C3v) 1a1 571.51 794.48 2 The direct measurement of only the doubly charged 2a 45.59 72.42 2 1 ions—processes (5), (7), and (8)—tends to produce 1e 29.90 52.11 4 3a 24.7a 65.41 2 small cross sections compared to the total ionization 1 cross section because of the high probability for the aExperimentalvaluefromRef.[8]. rapidbreak-upofthedoublychargedionsasshownin Ref.[7]forCO+.Asanotherexample,Bahatietal.[8] Ingeneral,whenanelectroncollideswithamolecu- recently reported experimental cross sections for the lar ion we get process of e(cid:4)+AB+→A+B++e(cid:4), (3) e(cid:4)+HO+→HO+++2e(cid:4) (9) 3 3 or A++B+e(cid:4). (4) Theirmeasurementcorrespondstoprocess(5)only,and theirpeakcrosssectionis0.049Å2atT(cid:1)125eV.The e(cid:4)+AB+→AB+++2e(cid:4), (5) positionofthepeakisinagreementwiththeBEBcross sectioninFig.4,butthemagnitudeisalmost1/20ofthe or A++B++2e(cid:4), (6) BEB cross section. This discrepancy and the similar 66 Volume107,Number1,January–February2002 Journal of Research of the National Institute of Standards and Technology discrepancy in CO+ (experiment is lower by a factor of C.Y.Peng,A.Nanayakkara,C.Gonzalez,M.Challacombe,P. 1/12atthepeak)measuredbythesamegroup[19]isa M.W.Gill,B.Johnson,W.Chen,M.W.Wong,J.L.Andres, strongindicationthateitherdissociativeionizationisthe C.Gonzalez,M.Head-Gordon,E.S.Replogle,andJ.A.Pople, Gaussian,Inc.,Pittsburgh,PA(1998). dominantprocess,orthebreak-upofthedoublycharged [19] D.S.Belic,D.J.Yu,A.Siari,andP.Defrance,J.Phys.B30, ionsisfasterthantheexperimentalcapabilitytodetect. 5535(1997). Acknowledgments Abouttheauthors: KarlK.Irikuraisachemistinthe PhysicalandChemicalPropertiesDivisionintheNIST We gratefully acknowledge partial financial support Chemical Science and Technology Laboratory. Yong- by the Office of Fusion Energy Sciences of the U.S. KiKimisaphysicistintheAtomicPhysicsDivisionin DepartmentofEnergyandbytheAdvancedTechnology theNISTPhysicsLaboratory.M.AsgarAliisaprofes- Program of NIST. sorintheDepartmentofChemistryatHowardUniver- sity,andaguestresearcherintheAtomicPhysicsDivi- sion at NIST. The National Institute of Standards and 4. References TechnologyisanagencyoftheTechnologyAdministra- tion, U.S. Department of Commerce. [1] Y.-K.KimandM.E.Rudd,Phys.Rev.A50,3954(1994). [2] W.Hwang,Y.-K.Kim,andM.E.Rudd,J.Chem.Phys.104, 2956(1996). [3] Y.-K.Kim,W.Hwang,N.M.Weinberger,M.A.Ali,andM.E. Rudd,J.Chem.Phys.106,1026(1997). [4] M.A.Ali,Y.-K.Kim,W.Hwang,N.M.Weinberger,andM.E. Rudd,J.Chem.Phys.106,9602(1997). [5] H.Nishimura,W.M.Huo,M.A.Ali,andY.-K.Kim,J.Chem. Phys.110,3811(1999). [6] Y.-K.KimandM.E.Rudd,CommentsAt.Mol.Phys.34,309 (1999). [7] Y.-K.Kim,K.K.Irikura,andM.A.Ali,J.Res.Natl.Inst.Stand. Technol.105,285(2000). [8] E.M.Bahati,J.J.Jureta,H.Cherkani-Hassani,andP.Defrance, J.Phys.B34,L333(2001). [9] A.Burgess,Proc.3rdInt.Conf.onElectronicandAtomicCol- lisions,London,1963,M.R.C.McDowell,ed.,NorthHolland, Amsterdam (1964) p. 237; Proc. Symp. on Atomic Collision ProcessesinPlasmas,Culham,AERERept.4818(1964)p.63. [10] A.D.Becke,J.Chem.Phys.98,5648(1993). [11] P.J.Stephens,F.J.Devlin,C.F.Chabalowski,andM.J.Frisch, J.Phys.Chem.98,11623(1994). [12] W. von Niessen, J. Schirmer, and L. S. Cederbaum, Comput. Phys.Rep.1,57(1984). [13] V.G.ZakrzewskiandJ.V.Ortiz,J.Phys.Chem.100,13979 (1996). [14] G.D.PurvisandR.J.Bartlett,J.Chem.Phys.76,1910(1982). [15] K.Raghavachari,G.W.Trucks,J.A.Pople,andM.Head-Gor- don,Chem.Phys.Lett.157,479(1989). [16] T.H.Dunning,Jr.,J.Chem.Phys.90,1007(1989). [17] M.W.Schmidt,K.K.Baldridge,J.A.Boatz,S.T.Elbert,M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen,S.J.Su,T.L.Windus,M.Dupuis,andJ.A.Mont- gomery,J.Comput.Chem.14,1347(1993). [18] M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Mont- gomery,Jr.,R.E.Stratmann,J.C.Burant,S.Dapprich,J.M. Millam,A.D.Daniels,K.N.Kudin,M.C.Strain,O.Farkas,J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli,C.Adamo,S.Clifford,J.Ochterski,G.A.Petersson,P. Y.Ayala,Q.Cui,K.Morokuma,D.K.Malick,A.D.Rabuck, K.Raghavachari,J.B.Foresman,J.Cioslowski,J.V.Ortiz,B. B.Stefanov,G.Liu,A.Liashenko,P.Piskorz,I.Komaromi,R. Gomperts,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham, 67