ebook img

Electromigration Inside Logic Cells: Modeling, Analyzing and Mitigating Signal Electromigration in NanoCMOS PDF

134 Pages·2017·4.901 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electromigration Inside Logic Cells: Modeling, Analyzing and Mitigating Signal Electromigration in NanoCMOS

Gracieli Posser · Sachin S. Sapatnekar Ricardo Reis Electromigration Inside Logic Cells Modeling, Analyzing and Mitigating Signal Electromigration in NanoCMOS Electromigration Inside Logic Cells Gracieli Posser • Sachin S. Sapatnekar Ricardo Reis Electromigration Inside Logic Cells Modeling, Analyzing and Mitigating Signal Electromigration in NanoCMOS 123 GracieliPosser SachinS.Sapatnekar InstitutodeInformática-PPGC/PGMicro DepartmentofElectricalandComputer UniversidadeFederaldoRioGrandedoSul Engineering (UFRGS) UniversityofMinnesota PortoAlegre,RioGrandedoSul,Brazil Minneapolis,MN,USA RicardoReis InstitutodeInformática-PPGC/PGMicro UniversidadeFederaldoRioGrandedoSul (UFRGS) PortoAlegre,RioGrandedoSul,Brazil ISBN978-3-319-48898-1 ISBN978-3-319-48899-8 (eBook) DOI10.1007/978-3-319-48899-8 LibraryofCongressControlNumber:2016959979 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Electromigration(EM)inon-chipmetalinterconnectsisacriticalreliability-driven failuremechanisminnanometer-scaletechnologies.Usually,worksintheliterature thataddressEMareconcernedwithpowernetworkEMandcelltocellinterconnec- tionEM.ThisworkdealswithanotheraspectoftheEMproblem,thecell-internal EM. This work specifically addresses the problem of electromigration on signal interconnectsandonVddandVssrailswithinastandardcell.Therearefewstudies intheliteratureaddressingthisproblem,andtheonesthatcanmodelEMareusing a very simple model. To our best knowledge, this is the first work that analyzes, models, and reduces the EM effects on the signals inside cells by projecting the pin placement. In this work, cell-internal EM is modeled incorporating Joule heating effects and currentdivergenceand is used to analyze the lifetime of large benchmark circuits. An efficient graph-based algorithm is developed to speed up thecharacterizationofcell-internalEM.Thisalgorithmestimatesthecurrentswhen the pin position is moved avoiding a new characterization for each pin position, producinganaverageerrorofjust0.53%comparedtoSPICEsimulation.Amethod foroptimizingtheoutput,Vdd,andVsspinplacementofthecellsandconsequently to optimize the circuit lifetime using minor layout modifications is proposed. To optimizethe TTFof the circuits, just the LEF file is changedavoidingthe critical pinpositions;thecelllayoutisnotchanged.Thecircuitlifetimecouldbeimproved upto62.50%atthesamearea,delay,andpowerbecausechangingthepinpositions affects very marginally the routing. This lifetime improvement is achieved just avoidingthecriticaloutputpinpositionsofthecells,78.54%avoidingthecritical Vdd pin positions, 89.89% avoiding the critical Vss pin positions, and up to 80.95% (from 1 to 5.25 years) when output, Vdd, and Vss pin positions are all optimizedsimultaneously.We alsoshowthelargestandsmallestlifetimesoverall pincandidatesforasetofcells,wherethelifetimeofacellcanbeimprovedupto 76(cid:2)bytheoutputpinplacement.Moreover,someexamplesarepresentedtoexplain why some cells have a larger TTF improvement when the output pin position is changed.Celllayoutoptimizationchangesaresuggestedtoimprovethelifetimeof thecellsthathaveaverysmallTTFimprovementbypinplacement.Atcircuitlevel, v vi Preface wepresentananalysisoftheEMeffectsondifferentmetallayersanddifferentwire lengthsforsignalwires(nets)thatconnectcells. PortoAlegre,RioGrandedoSul,Brazil GracieliPosser Minneapolis,MN,USA SachinS.Sapatnekar PortoAlegre,RioGrandedoSul,Brazil RicardoReis Acknowledgments ThisworkwaspartiallysupportedbytheBrazilianNationalCouncilforScientific andTechnologicalDevelopment(CNPq,Brazil),CoordinationfortheImprovement ofHigherEducationPersonnel(CAPES),andtheGraduateProgramsinComputer Science (PPGC) and on Microelectronics (PGMICRO), Institute of Informatics, UniversidadeFederaldoRioGrandedoSul(UFRGS)inBrazil. We thanktheUniversityofMinnesotaandtwootherresearchers:VivekMishra (fromtheUniversityofMinnesota)andPalkeshJain(fromQualcommIndia). vii Contents 1 Introduction .................................................................. 1 1.1 ReliabilityandElectromigration ....................................... 2 1.2 ElectromigrationinFutureTechnologies.............................. 3 1.3 MotivationandContributions .......................................... 5 1.4 MonographOutline ..................................................... 10 2 StateoftheArt............................................................... 11 2.1 MitigatingtheEMEffectsinDifferentICDesignFlowStages...... 11 2.1.1 ManagingElectromigrationinLogicDesigns................. 13 2.1.2 ElectromigrationImpactinFutureTechnologies ............. 15 2.1.3 SmartNon-defaultRoutingforClockPowerReduction...... 16 2.1.4 ImpactsofElectromigrationAwareness....................... 17 2.2 MitigatingtheEMEffectsinDifferentTypesofInterconnections... 20 2.2.1 TSVs ............................................................ 20 2.2.2 PowerDeliveryNetwork....................................... 21 2.2.3 ClockNetwork.................................................. 23 2.2.4 Vias.............................................................. 24 2.2.5 SignalInterconnects............................................ 26 2.2.6 Cell-InternalEM................................................ 27 2.3 SummaryofRelatedWorks ............................................ 30 2.4 Conclusions ............................................................. 31 3 ModelingCell-InternalEM................................................. 33 3.1 ModelingTime-to-FailureUnderEM.................................. 33 3.2 JouleHeating............................................................ 35 3.2.1 LocalHotSpotsfromJouleHeating........................... 36 3.3 CurrentDivergence ..................................................... 37 3.3.1 New ElectromigrationValidation:Via Node VectorMethod .................................................. 37 3.3.2 ApplyingCurrentDivergenceintheProposedEMModel... 40 3.3.3 TheImpactofBlechLengthonCell-InternalInterconnects.. 42 3.4 Conclusions ............................................................. 42 ix x Contents 4 CurrentCalculation ......................................................... 45 4.1 CurrentFlowsUsingGraphTraversals ................................ 48 4.2 AlgebraforAverage/RMSCurrentUpdates........................... 50 4.2.1 AlgebraforComputingAverageCurrent...................... 51 4.2.2 AlgebraforComputingtheRMSCurrent..................... 52 4.3 Results................................................................... 57 5 ExperimentalSetup.......................................................... 59 6 Results......................................................................... 63 6.1 TheElectromigrationEffectsforDifferentLogicGates.............. 81 6.1.1 NAND2_X2andNOR2_X2Gates ............................ 82 6.1.2 AOI21_X2....................................................... 85 6.1.3 NOR2_X4....................................................... 87 6.1.4 INV_X16........................................................ 88 6.2 Conclusion .............................................................. 91 7 AnalyzingtheElectromigrationEffectsonDifferentMetal LayersandDifferentWireLengths........................................ 93 7.1 ExperimentalSetup ..................................................... 94 7.2 SimulationResults...................................................... 95 7.3 Conclusion .............................................................. 98 8 Conclusions................................................................... 99 8.1 FutureWorks............................................................ 100 A Impact on Physical Synthesis Considering Different AmountsofInstanceswithEMAwareness................................ 103 B CouplingCapacitanceCurrents............................................ 111 References..................................................................... 113 List of Figures Fig.1.1 A CMOS circuitcanfailfromspatialortemporal unreliabilityeffects ................................................... 3 Fig.1.2 Expecteddevelopmentof currentdensities(J ) max neededfordrivingfourinvertergates,accordingto ITRS2011(seealsoTable1.1).EMdegradationneeds tobeconsideredwhencrossingtheyellowbarrierof currentdensities(J ).Asofnow,manufacturable EM solutionsarenotknownintheredarea ............................. 5 Fig.1.3 Evolutionoflifetimeversustechnologynode.Black lineshowstheeffectofreducedcriticalvoidvolume: GreenlineshowstheEMenhancementurgentlyneeded (ITRS2011)........................................................... 5 Fig.1.4 Problem space: (a) currentsource modelingfor signal-EM analysis and (b) load abstraction for cell-internalEManalysis............................................. 6 Fig.1.5 (a) Thelayoutandoutputpinpositionoptionsfor INV_X4.Charge/dischargecurrentswhentheoutput pinisat(b)node4and(c)node3.Thered[blue]lines representrise[fall]currents.(d)TheVddpinposition optionsforINV_X4andthecurrentswhentheVddpin isatnode30 and(e)node20.(f)TheVsspinposition optionsforINV_X4andthecurrentswhentheVsspin isatnode400and(g)node100......................................... 8 Fig.2.1 Standard-cellbasedsynthesisflow................................... 12 Fig.2.2 Flowdiagramimplementingprocessesproposed................... 14 Fig.2.3 Synthesis-analysisloopsinthedesignflowfordigital circuits.Thecriticalsteps—physicalsynthesis(a)and analysis(b)—areshown,supplementedbyoptionsto addresscurrentdensityandotherelectromigration issues(c) .............................................................. 15 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.