ebook img

Electromagnetically induced transparency with degenerate atomic levels PDF

0.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electromagnetically induced transparency with degenerate atomic levels

Electromagnetically induced transparency with degenerate atomic levels 3 V. A. Reshetov, I. V. Meleshko 1 0 Department of General and Theoretical Physics, Tolyatti State University, 14 2 Belorousskaya Street, 446667 Tolyatti, Russia n a Abstract J ForthecoherentlydrivenΛ-typethree-levelsystemsthegeneralready- 6 to-calculateexpressionforthesusceptibilitytensoratthefrequencyofthe 2 weak probe field is obtained for the arbitrary polarization of the strong coupling laser field and arbitrary values of the angular momenta of reso- ] s nantatomiclevels. Thedependenceoftherelativedifferenceinthegroup c velocities of the two polarization components of the probe field on the i t polarization of the coupling field is studied. p o s. 1 Introduction c i s The phenomenon of the electromagnetically induced transparency (EIT), when y the optical properties of the media for the weak probe field are coherently con- h p trolled by the strong coupling field, has been extensively studied in the recent [ yearsandprovidedanumberofattractiveapplications[1]. Themostprominent feature of EIT is a spectacular reduction of the group velocity of light pulses 1 in the resonant media [2, 3]. The strong coupling field with the definite polar- v 4 ization produces also the optical anisotropy for the probe field, which reveals 6 itself in the electromagneticallyinduced birefringenceand polarizationrotation 2 of the probe field [4, 5]. Among the most promising applications of EIT is 6 the implementation of quantum memory [6, 7, 8]. Such memory based on the . 1 controlledadiabaticdecelerationandaccelerationofsingle-photonpulses inthe 0 resonant media was suggested in [9, 10], and soon the possibility of storage of 3 light pulses was realized in rubidium vapor in the experiment [11]. The recent 1 experiments [12, 13, 14] on EIT-based quantum memory demonstrate the con- : v tinuously improving efficiency and fidelity. There are different ways to encode i X the single-photonqubit, for example, in twospectralcomponents ofthe photon r pulse,asitwasrecentlyproposedin[15],butthemostnaturalwayforqubiten- a coding is providedby the photon two polarizationdegreesof freedom, as it was implementedintheexperiments[12,13]. Tostorethephotonpolarizationqubit its both polarization components must be effectively stopped in the medium, howeverthe groupvelocitiesofthese twocomponentsmaydifferessentiallydue to the optical anisotropyinduced by the polarizationof the coupling field. The experiments on EIT are performed on the the three-level Λ-type systems with degenerate levels, which are in many cases the hyperfine structure components of alkali atoms degenerate in the projections of the atomic total angular mo- mentum on the quantization axis. The theoretical treatment of EIT on such 1 (cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1) (cid:1) (cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:2) (cid:1) (cid:1) (cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:5)(cid:13)(cid:3)(cid:14)(cid:11)(cid:1)(cid:10)(cid:7)(cid:11)(cid:6)(cid:12)(cid:1) (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:1)(cid:10)(cid:7)(cid:11)(cid:6)(cid:12)(cid:1) (cid:1) ω(cid:1) ω (cid:1) (cid:1) (cid:1) (cid:1) (cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:2) (cid:1)(cid:1)(cid:1) (cid:3) (cid:1) (cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:2) (cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1) (cid:4) Figure 1: The level diagram. levels involves the solution of the equations for the atomic density matrix and the number of elements of this matrix increases drastically with the increase of the level angular momentum values. The objective of the present article is to obtainthegeneralexpressionforthelinearsusceptibilitytensoratthefrequency of the probe field, which describes the polarization properties of EIT, and to studythedependenceoftherelativedifferenceinthegroupvelocitiesofthetwo polarization components of the probe field on the polarization of the coupling field. The essential point about this expression is that the susceptibility tensor may be easily calculated by means of standard matrix operations for the arbi- trary polarization of the driving field and for the arbitrary values of the level angular momenta. 2 Basic equations and relations We considerthe weakprobe fieldpropagatingalongthe sample axisZ with the carrierfrequency ω, whichis in resonancewith the frequency ω of an optically 0 allowed transition J J between the ground state J and the excited state a c a → J , and the strong coherent coupling field propagating in the same direction c with the carrier frequency ω , which is in resonance with the frequency ω of c c0 an optically allowed transition J J between the long-livedstate J and the b c b → same excited state J (Fig.1). Here J , J and J are the values of the angular c a b c momenta of the levels. The electric field strength of the coupling field (inside thesampleaswellasoutside)andthatoftheprobefieldincidentonthesample border z =0 may be put down as follows: E =e l e−iωc(t−z/c)+c.c., (1) c c c E =e e−iω(t−z/c)+c.c., (2) 0 0 2 where e and l are the constant amplitude and the unit polarization vector c c of the coupling field, while e is the constant vector amplitude of the incident 0 probe field. At some sample point z, where the vector amplitude of the probe field is e, the evolution of the atomic slowly-varying density matrix ρˆ in the rotating-waveapproximation is described by the equation: dρˆ i dρˆ = Vˆ,ρˆ + , (3) dt 2h i (cid:18)dt(cid:19)rel Vˆ =2(∆Pˆ +δPˆ )+Ω (gˆ +gˆ†)+Gˆ+Gˆ†, (4) c b c c c gˆ =gˆ l∗, Gˆ =(2d/¯h)gˆe∗. (5) c c c | | Here∆=ω ω and∆ =ω ω arethefrequencydetuningsfromresonance 0 c c c0 of the probe−and of the coupli−ng fields, while δ = ∆ ∆ , Pˆ is the projector c α − on the subspace of the atomic level J (α = a,b,c), Ω = 2d e /¯h is the α c c c | | reduced Rabi frequency for the coupling field, d = d(J J ) and d = d(J J ) a c c b c being the reduced matrix elements of the electric dipole moment operator for the transitions J J and J J , while gˆ and gˆ are the dimensionless a → c b → c c electric dipole moment operators for the transitions J J and J J . a c b c → → The matrix elements of the circular components gˆ and gˆ (q =0, 1)of these q cq ± vector operators are expressed through Wigner 3J-symbols [16]: J 1 J (gˆ )ac =( 1)Ja−ma a c , (6) q mamc − (cid:18) ma q mc(cid:19) − J 1 J (gˆ )bc =( 1)Jb−mb b c . (7) cq mbmc − (cid:18) mb q mc(cid:19) − Finally, the term (dρˆ/dt) in the equation (3) describes the irreversible relax- rel ation. Initially the atoms are at the ground state a the atomic density matrix being ρˆ(0)=ρˆ . a Generallytheatomsareattheequilibriumgroundstatewithequallypopulated Zeeman sublevels, however they may be prepared at some special state [13]. In the linear approximation for the probe field we obtain from the equations (3)-(4) for the elements of the steady-state (dρˆ/dt = 0) atomic density matrix the following relations: i (γ i∆)ρˆca = Ω gˆ†ρˆba+Gˆ†ρˆ , (8) − 2(cid:16) c c a(cid:17) i (Γ iδ)ρˆba = Ω gˆ ρˆca, (9) c c − 2 where ρˆαβ =Pˆ ρˆPˆ , α,β =a,b,c, α β 3 while the irreversible relaxation is simply characterized by the two real relax- ation rates – γ for the optically allowed transition J J and Γ for the a c → optically forbidden transition J J : a b → ca ba dρˆ dρˆ = γρˆca, = Γρˆba. (cid:18)dt(cid:19) − (cid:18)dt(cid:19) − rel rel From (8)-(9) it follows immediately: i ρˆca = Uˆ−1Gˆ†ρˆ , (10) a 2(γ i∆) − where Ω2 Uˆ =Pˆ + c gˆ†gˆ . (11) c 4(γ i∆)(Γ iδ) c c − − The medium polarization component at point z P=pe−iωt+c.c. with the frequency ω of the probe field is expressedthroughthe density matrix ρˆca defined by (10)-(11): p=n dTr gˆρˆca , (12) 0 A | | { } wheren istheconcentrationofresonantatomsandthetraceiscarriedoutover 0 atomic states. With the two orthonormal vectors l in the polarization plane i XY (l l∗ =δ , j,k =1,2) the equation (12) with an account of (10)-(11) and j k jk (5) may be expressed through the susceptibility tensor χ : jk 2 p =ε χ e , (13) j 0 jk k kX=1 where iχ χ = 0 Tr Uˆ−1gˆ†ρˆ gˆ , (14) jk 1 i(∆/γ) A k a j n o − n d2 χ = 0| | , gˆ =gˆl∗. (15) 0 ε ¯hγ j j 0 With the introduction of the orthonormal set of eigenvectors c > with non- n | negative eigenvalues c2 of the hermitian operator gˆ†gˆ : n c c gˆ†gˆ c >=c2 c >,n=1,...,2J +1, c c| n n| n c the susceptibility tensor (14) may be transformed to the expression: iχ 2Jc+1<c gˆ†ρˆ gˆ c > χ = 0 n| k a j| n , (16) jk 1 i(∆/γ) λ − nX=1 n 4 c2Ω2 λ =1+ n c . (17) n 4(γ i∆)(Γ iδ) − − Now let χ be the two eigenvalues and k 2 v = v l , k =1,2, (18) k jk j Xj=1 be the corresponding two eigenvectors of the 2 2 susceptibility matrix χˆ = × χ : jk { } χˆv =χ v , k =1,2. k k k Then, the vector amplitude e of the incident probe field after the passage of 0 the distance z in the medium is transformed to e=Sˆe , Sˆ=vˆTˆvˆ−1, (19) 0 where vˆ = v is the 2 2-matrix, defined by the equation (18), while the jk { } × diagonal matrix Tˆ is determined by the eigenvalues χ of the susceptibility k matrix: T =δ ei(ω/c)znj, n = 1+χ , (20) jk jk j j p as it may be obtained in a usual way from the Maxwell equation ∂2E 1 ∂2E 1 ∂2P = ∂z2 − c2 ∂t2 ε c2 ∂t2 0 forthe electric fieldstrengthE of the probe field. The intensity I andthe 2 2 × polarizationmatrixσˆ = σ oftheprobefieldafterthepassageofthedistance jk { } z in the medium are related to the intensity I and the polarization matrix σˆ 0 0 of the incident probe field by the equations: I Sˆσˆ Sˆ† =tr Sˆσˆ Sˆ† , σˆ = 0 , (21) 0 I0 (cid:16) (cid:17) tr Sˆσˆ Sˆ† 0 (cid:16) (cid:17) where transformation matrix Sˆ is defined by (19)-(20). The electromagneticallyinduced transparencyis associatedwith the signifi- cantreductionofthegroupvelocityoftheprobefieldduetothesteepdispersion at the transparencywindow. Since the dispersion is different for the two polar- ization components of the probe field, these two components will be differently slowed down in the medium. Let us calculate the relative difference of the group velocities for these two polarization components. For the observation of the electromagnetically induced transparencythe coupling field must be strong enough: Ω2 Γγ. c ≫ Then, close to the two-photon resonance δ Γ the general formula (16)-(17) ≤ for the susceptibility tensor is simplified to the following expression: 4χ γ 0 χ = (δ+iΓ)a , (22) jk Ω2 jk c 5 (cid:3)(cid:4)(cid:6) (cid:3)(cid:4)(cid:5) (cid:9)(cid:10)(cid:11)(cid:12) (cid:3)(cid:4)(cid:1) (cid:8) (cid:3)(cid:4)(cid:2) (cid:3) −(cid:1) −(cid:2) (cid:3) (cid:2) (cid:1) (cid:2)(cid:7)γ Figure 2: The imaginary part of susceptibility Im(χ /χ ) (dashed line) and xx 0 Im(χ /χ ) (solid line) versus dimensionless frequency detuning ∆/γ on the yy 0 transitions with J = 0, J = J = 1 at Ω /γ = 1, Γ/γ = 0.01 and l = l , a b c c c x ∆ =0. c where <c gˆ†ρˆ gˆ c > a = n| k a j| n , (23) jk c2 Xn n is a hermitian 2 2 matrix. The summation in (23) is carried out over all × eigenvectors c > of the operator gˆ†gˆ with non-zero eigenvalues c2 > 0. The | n c c n twoeigenvectorsv (18)ofthesusceptibilitymatrix χ coincidewiththetwo k jk { } orthonormaleigenvectors of the hermitian matrix a , while its eigenvalues jk { } 4χ γ 0 χ = (δ+iΓ)a , k Ω2 k c are expressed through the real eigenvalues a of matrix a . The group ve- k jk locities Vgr of the two probe field components polarized{alon}g eigenvectors v k k are determined by the refraction indices n′ =Re √1+χ : k k (cid:0) (cid:1) c Vgr = . k n′ +ω(dn′/dω) k k Since χ 1, in the case of steep dispersion k | |≪ χ γω Ω2, 0 ≫ c we obtain for the group velocities: c 2χ γωa Vgr = , ngr = 0 k. (24) k ngr k Ω2 k c The relative difference of these two group velocities Vgr Vgr a ε= 2 − 1 =1 2 (25) Vgr − a 2 1 6 (cid:3)(cid:4)(cid:1) (cid:3)(cid:4)(cid:2) (cid:6)(cid:7)(cid:8)(cid:9)(cid:10) (cid:3) −(cid:3)(cid:4)(cid:2) −(cid:3)(cid:4)(cid:1) −(cid:1) −(cid:2) (cid:3) (cid:2) (cid:1) (cid:2)(cid:5)γ Figure 3: The real part of susceptibility Re(χ /χ ) (dashed line) and xx 0 Re(χ /χ ) (solid line) versus dimensionless frequency detuning ∆/γ on the yy 0 transitions with J = 0, J = J = 1 at Ω /γ = 1, Γ/γ = 0.01 and l = l , a b c c c x ∆ =0. c isdeterminedbythedifferenceofthetwoeigenvaluesa ofmatrix a ,a be- k jk 1 ingthe largestofthemandthe groupvelocityVgr ofthe probefield{ com}ponent 1 polarized along the corresponding eigenvector v being the smallest of two. 1 3 Discussion The (2J +1) (2J +1) matrices gˆ and (2J +1) (2J +1) matrices gˆ b c c a c j × × (j = 1,2) of the electric dipole moment operators may be easily calculated for any reasonable values of the angular momenta J , J and J of the resonant a b c atomiclevelsusingtheknownformulaeforWigner3J-symbols,andfurthercal- culations ofthe susceptibility tensor χˆ (14) and ofthe transformationmatrix Sˆ (19), involving standard matrix operations, are rather simple. In the following numerical calculations we shall assume the coupling field to be rather strong: Ω /γ =1andexactlyresonant∆ =0,andthe relaxationrateofthe forbidden c c transition to be rather small: Γ/γ = 0.01, as it is the case for the electromag- netically induced transparency, while the atoms are initially at the equilibrium state: Pˆ a ρˆ = . a 2J +1 a We shall also considerthe linearly polarizedcoupling field, then without loss of generalityitspolarizationvectormaybedirectedalongtheCartesianaxisX: l c = l , and we shall choose the Cartesian basis l = l , l l in the polarization x 1 x 2= y plane XY for the calculation of the elements of the susceptibility tensor. With this choice of the Cartesian basis the polarization matrix σˆ (21) of the probe field may be expressed through the Stokes parameters ξ (n=1,2,3): n 1 1+ξ ξ iξ σ = 3 1− 2 , 2(cid:18)ξ1+iξ2 1 ξ3 (cid:19) − 7 (cid:3) (cid:31) (cid:21)(cid:22)(cid:16)(cid:10)(cid:22)(cid:23)(cid:12)(cid:16)(cid:24)(cid:14)(cid:21)(cid:14)(cid:25)(cid:22)(cid:11)(cid:14)(cid:11)(cid:10)(cid:26)(cid:27)(cid:10)(cid:10)(cid:14)(cid:28)(cid:29)(cid:14)(cid:15)(cid:28)(cid:30)(cid:25)(cid:27)(cid:12)(cid:18)(cid:25)(cid:16)(cid:12)(cid:28)(cid:22)(cid:14) (cid:1)(cid:1)(cid:1)(cid:1)(cid:4)(cid:4)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:1) (cid:1) (cid:2) (cid:3)(cid:1) (cid:3)(cid:2) (cid:9)(cid:10)(cid:11)(cid:12)(cid:13)(cid:9)(cid:14)(cid:11)(cid:10)(cid:15)(cid:16)(cid:17)(cid:14)(cid:18)(cid:19)(cid:20) Figure 4: The relative intensity I/I (dashed line) and the degree of polariza- 0 tion P (solid line) of the initially unpolarized probe field versus dimensionless medium depth z/L (L=1/kχ ) on the transitions with J =0, J =J =1 at 0 a b c Ω /γ =1, Γ/γ =0.01 and l =l , ∆=∆ =0. c c x c P = ξ2+ξ2+ξ2 1 2 3 q being the total degree of polarization, P = ξ2+ξ2 l 1 3 q being the degree of linear polarization, and P = ξ c 2 | | being the degree of circular polarization. Let us consider the transitions with the low values of angular momenta J = 0, J = J = 1, which may be realized in thallium vapor for example. a b c With the linear polarization l = l of the coupling field the susceptibility ten- c x sorbecomesdiagonalintheCartesianbasis. Thedependenciesoftheimaginary Im(χ /χ ),Im(χ /χ )andrealRe(χ /χ ),Re(χ /χ )partsofthesuscep- xx 0 yy 0 xx 0 yy 0 tibility eigenvalues versus the dimensionless frequency detuning ∆/γ, obtained from the calculations according to the formula (16), are presented in the Fig- ures2and3. Asitfollowsfromthesedependenciesthestronglinearlypolarized (along the axis X) coupling field opens the ”transparency window” (solid line) for the polarization component of the probe field linearly polarized in the per- pendicular direction (along the axis Y), while for the component of the probe field collinearly polarized with the coupling field (along the axis X) this ”win- dow” remains shut (dashed line), which gives rise to rather strong dichroism for the resonant (∆ = 0) probe field. This happens because the X-polarized component of the probe field interacts with a single substate 1 c >= (m = 1> m =1>) x c c | √2 | − −| 8 (cid:1)(cid:2)(cid:7)(cid:3) (cid:1)(cid:2)(cid:7) (cid:10)(cid:11)(cid:12)(cid:13) (cid:1)(cid:2)(cid:1)(cid:6) (cid:9) (cid:1)(cid:2)(cid:1)(cid:5) (cid:1)(cid:2)(cid:1)(cid:4) −(cid:1)(cid:2)(cid:3) (cid:1) (cid:1)(cid:2)(cid:3) (cid:2)(cid:8)γ Figure 5: The imaginary part of susceptibility Im(χ /χ ) (dashed line) and xx 0 Im(χ /χ ) (solid line) versus dimensionless frequency detuning ∆/γ on the yy 0 transitions with J = 1, J = J = 2 at Ω /γ = 1, Γ/γ = 0.01 and l = l , a b c c c x ∆ =0. c of the excited level c, which is not affected by the coupling field: gˆ c >=0. c x | For the initially unpolarized probe field: 1 1 0 σˆ = , 0 2(cid:18)0 1(cid:19) the dependencies of its relative intensity I/I (dashed line) and the degree of 0 polarization P (solid line) versus the dimensionless medium depth z/L, where L = 1/kχ , are presented in the Figure 4. As it may be seen in this figure, 0 the probe field becomes almost fully polarized with the degree of polarization P =0.96(linearlyalongthe axisY), while its intensity is reducedbythe factor of 0.19. Let us now consider the transitions with larger values of angular momenta J = 1, J = J = 2, which were employed in the experiment [4] performed a b c in 87Rb vapor. For the linear polarization l = l of the coupling field the c x dependencies of the imaginary Im(χ /χ ), Im(χ /χ ) and real Re(χ /χ ), xx 0 yy 0 xx 0 Re(χ /χ ) parts of the susceptibility eigenvalues versus the dimensionless fre- yy 0 quency detuning ∆/γ are presented in the Figures 5 and 6. In this case the ”transparencywindows”areopenforbothpolarizationcomponentsoftheprobe field, however,that for the Y-component (solid line), perpendicular to the cou- pling field, is larger than for the X-component(dashed line), collinear with the couplingfield. Inthe caseoflargevaluesoftheangularmomentathe dichroism is less than in the case of small ones, as it may be seen in the Figure 7. When the degree of polarization of the initially unpolarized probe field attains the value of 0.5 its intensity is reduced by the factor of 0.17. 9 (cid:1)(cid:2)(cid:1)(cid:5) (cid:1)(cid:2)(cid:1)(cid:3) (cid:7)(cid:8)(cid:9)(cid:10)(cid:11) (cid:1) −(cid:1)(cid:2)(cid:1)(cid:3) −(cid:1)(cid:2)(cid:1)(cid:5) −(cid:1)(cid:2)(cid:3) −(cid:1)(cid:2)(cid:4) (cid:1) (cid:1)(cid:2)(cid:4) (cid:1)(cid:2)(cid:3) (cid:2)(cid:6)γ Figure 6: The real part of susceptibility Re(χ /χ ) (dashed line) and xx 0 Re(χ /χ ) (solid line) versus dimensionless frequency detuning ∆/γ on the yy 0 transitions with J = 1, J = J = 2 at Ω /γ = 1, Γ/γ = 0.01 and l = l , a b c c c x ∆ =0. c The relativedifference ε inthe groupvelocities ofthe two polarizationcom- ponents of the probe field (25) depends only on the values of total angular momenta of resonant levels, on the initial atomic state and on the polarization of the coupling field. Let us consider the coupling field with arbitrary elliptic polarization in the plane XY: l =cosαδ sinαδ , cq q,−1 q,1 − where parameter α defines the ratio of the lengthes a and a of the axes of y x polarization ellipse along the axes Y and X according to the relation π a y tan α = , (cid:12) (cid:16) − 4(cid:17)(cid:12) ax (cid:12) (cid:12) (cid:12) (cid:12) while the sign of tan(α π/4) determines the direction of rotation of the pulse − electricfieldvectorintheplaneXY. Fortheatomsatinitiallyequilibriumstate andwiththe fixedvaluesofthelevelangularmomentathe relativedifferencein thegroupvelocitiesεdependsonlyontheellipticityparameterαofthecoupling field. An example of such dependence for the levels with the angular momenta J =J =1,J =2,employedintheexperiment[13],ispresentedintheFigure a c b 8. Themaximumdifferenceinthegroupvelocitiesε=0.625isobtainedwiththe circularly polarized coupling field (α = 0,π/2), while the minimum difference ε = 0.125 is obtained with the linearly polarized coupling field (α = π/4). In the case of circularly polarized coupling field the polarization component with the larger group velocity is circularly polarized in the same direction as the coupling field, while the polarization component with the smaller group velocity is circularly polarized in the direction opposite to that of the coupling field. Inthe caseoflinearlypolarizedcouplingfieldthe polarizationcomponent with the smaller group velocity is linearly polarized in same direction as the coupling field, while the polarization component with the larger group velocity is linearly polarizedin the direction perpendicular to that of the coupling field. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.