ebook img

Electromagnetic Waves and Antennas PDF

419 Pages·2016·22.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electromagnetic Waves and Antennas

Electromagnetic Waves and Antennas Electromagnetic Waves and Antennas To Monica and John Sophocles J. Orfanidis Rutgers University viii ElectromagneticWaves&Antennas–S.J.Orfanidis–Feb. 28,2004 4 ReflectionandTransmission 81 4.1 PropagationMatrices, 81 4.2 MatchingMatrices, 85 4.3 ReflectedandTransmittedPower, 88 4.4 SingleDielectricSlab, 91 Contents 4.5 ReflectionlessSlab, 94 4.6 Time-DomainReflectionResponse, 102 4.7 TwoDielectricSlabs, 104 4.8 Problems, 106 5 MultilayerStructures 109 Preface viii 5.1 MultipleDielectricSlabs, 109 5.2 AntireflectionCoatings, 111 1 Maxwell’sEquations 1 5.3 DielectricMirrors, 116 5.4 PropagationBandgaps, 127 1.1 Maxwell’sEquations, 1 5.5 Narrow-BandTransmissionFilters, 127 1.2 LorentzForce, 2 5.6 EqualTravel-TimeMultilayerStructures, 132 1.3 ConstitutiveRelations, 3 5.7 ApplicationsofLayeredStructures, 146 1.4 BoundaryConditions, 6 5.8 ChebyshevDesignofReflectionlessMultilayers, 149 1.5 Currents,Fluxes,andConservationLaws, 8 5.9 Problems, 157 1.6 ChargeConservation, 9 1.7 EnergyFluxandEnergyConservation, 10 6 ObliqueIncidence 160 1.8 HarmonicTimeDependence, 12 1.9 SimpleModelsofDielectrics,Conductors,andPlasmas, 13 6.1 ObliqueIncidenceandSnell’sLaws, 160 1.10 Problems, 21 6.2 TransverseImpedance, 162 6.3 PropagationandMatchingofTransverseFields, 165 2 UniformPlaneWaves 25 6.4 FresnelReflectionCoefficients, 167 6.5 TotalInternalReflection, 169 2.1 UniformPlaneWavesinLosslessMedia, 25 6.6 BrewsterAngle, 175 2.2 MonochromaticWaves, 31 6.7 ComplexWaves, 178 2.3 EnergyDensityandFlux, 34 6.8 GeometricalOptics, 188 2.4 WaveImpedance, 35 6.9 Fermat’sPrinciple, 190 2.5 Polarization, 35 6.10 RayTracing, 192 2.6 UniformPlaneWavesinLossyMedia, 42 6.11 Problems, 203 2.7 PropagationinWeaklyLossyDielectrics, 48 2.8 PropagationinGoodConductors, 49 7 MultilayerFilmApplications 205 2.9 PropagationinObliqueDirections, 50 2.10 ComplexorInhomogeneousWaves, 53 7.1 MultilayerDielectricStructuresatObliqueIncidence, 205 2.11 Problems, 55 7.2 LossyMultilayerStructures, 207 7.3 SingleDielectricSlab, 209 3 PropagationinBirefringentMedia 60 7.4 AntireflectionCoatingsatObliqueIncidence, 211 7.5 OmnidirectionalDielectricMirrors, 215 3.1 LinearandCircularBirefringence, 60 7.6 PolarizingBeamSplitters, 225 3.2 UniaxialandBiaxialMedia, 61 7.7 ReflectionandRefractioninBirefringentMedia, 228 3.3 ChiralMedia, 63 7.8 BrewsterandCriticalAnglesinBirefringentMedia, 232 3.4 GyrotropicMedia, 66 7.9 MultilayerBirefringentStructures, 235 3.5 LinearandCircularDichroism, 67 7.10 GiantBirefringentOptics, 237 3.6 ObliquePropagationinBirefringentMedia, 68 7.11 Problems, 242 3.7 Problems, 75 vii www.ece.rutgers.edu/∼orfanidi/ewa ix x ElectromagneticWaves&Antennas–S.J.Orfanidis–Feb. 28,2004 8 Waveguides 243 11.6 Quarter-WavelengthTransformerWithShuntStub, 372 11.7 Two-SectionSeriesImpedanceTransformer, 374 8.1 Longitudinal-TransverseDecompositions, 244 11.8 SingleStubMatching, 379 8.2 PowerTransferandAttenuation, 249 11.9 BalancedStubs, 383 8.3 TEM,TE,andTMmodes, 251 11.10DoubleandTripleStubMatching, 385 8.4 RectangularWaveguides, 254 11.11L-SectionLumpedReactiveMatchingNetworks, 387 8.5 HigherTEandTMmodes, 256 11.12Pi-SectionLumpedReactiveMatchingNetworks, 390 8.6 OperatingBandwidth, 258 11.13ReversedMatchingNetworks, 397 8.7 PowerTransfer,EnergyDensity,andGroupVelocity, 259 11.14Problems, 399 8.8 PowerAttenuation, 261 8.9 ReflectionModelofWaveguidePropagation, 264 12 S-Parameters 401 8.10 ResonantCavities, 266 8.11 DielectricSlabWaveguides, 268 12.1 ScatteringParameters, 401 8.12 Problems, 276 12.2 PowerFlow, 405 12.3 ParameterConversions, 406 9 TransmissionLines 278 12.4 InputandOutputReflectionCoefficients, 407 12.5 StabilityCircles, 409 9.1 GeneralPropertiesofTEMTransmissionLines, 278 12.6 PowerGains, 415 9.2 ParallelPlateLines, 284 12.7 GeneralizedS-ParametersandPowerWaves, 421 9.3 MicrostripLines, 285 12.8 SimultaneousConjugateMatching, 425 9.4 CoaxialLines, 289 12.9 PowerGainCircles, 430 9.5 Two-WireLines, 294 12.10UnilateralGainCircles, 431 9.6 DistributedCircuitModelofaTransmissionLine, 296 12.11OperatingandAvailablePowerGainCircles, 433 9.7 WaveImpedanceandReflectionResponse, 298 12.12NoiseFigureCircles, 439 9.8 Two-PortEquivalentCircuit, 300 12.13Problems, 444 9.9 TerminatedTransmissionLines, 301 9.10 PowerTransferfromGeneratortoLoad, 304 13 RadiationFields 446 9.11 Open-andShort-CircuitedTransmissionLines, 306 9.12 StandingWaveRatio, 309 13.1 CurrentsandChargesasSourcesofFields, 446 9.13 DetermininganUnknownLoadImpedance, 311 13.2 RetardedPotentials, 448 9.14 SmithChart, 315 13.3 HarmonicTimeDependence, 451 9.15 Time-DomainResponseofTransmissionLines, 319 13.4 FieldsofaLinearWireAntenna, 453 9.16 Problems, 326 13.5 FieldsofElectricandMagneticDipoles, 455 13.6 Ewald-OseenExtinctionTheorem, 460 10 CoupledLines 335 13.7 RadiationFields, 465 13.8 RadialCoordinates, 468 10.1 CoupledTransmissionLines, 335 13.9 RadiationFieldApproximation, 470 10.2 CrosstalkBetweenLines, 341 13.10ComputingtheRadiationFields, 471 10.3 WeaklyCoupledLineswithArbitraryTerminations, 344 13.11Problems, 473 10.4 Coupled-ModeTheory, 346 10.5 FiberBraggGratings, 348 14 TransmittingandReceivingAntennas 476 10.6 DiffuseReflectionandTransmission, 351 10.7 Problems, 353 14.1 EnergyFluxandRadiationIntensity, 476 14.2 Directivity,Gain,andBeamwidth, 477 11 ImpedanceMatching 354 14.3 EffectiveArea, 482 14.4 AntennaEquivalentCircuits, 486 11.1 ConjugateandReflectionlessMatching, 354 14.5 EffectiveLength, 488 11.2 MultisectionTransmissionLines, 356 14.6 CommunicatingAntennas, 490 11.3 Quarter-WavelengthChebyshevTransformers, 357 14.7 AntennaNoiseTemperature, 492 11.4 Two-SectionDual-BandChebyshevTransformers, 363 14.8 SystemNoiseTemperature, 496 11.5 Quarter-WavelengthTransformerWithSeriesSection, 369 14.9 DataRateLimits, 502 www.ece.rutgers.edu/∼orfanidi/ewa xi xii ElectromagneticWaves&Antennas–S.J.Orfanidis–Feb. 28,2004 14.10SatelliteLinks, 504 17.12LensAntennas, 618 14.11RadarEquation, 507 17.13Problems, 619 14.12Problems, 509 18 AntennaArrays 620 15 LinearandLoopAntennas 510 18.1 AntennaArrays, 620 15.1 LinearAntennas, 510 18.2 TranslationalPhaseShift, 620 15.2 HertzianDipole, 512 18.3 ArrayPatternMultiplication, 622 15.3 Standing-WaveAntennas, 514 18.4 One-DimensionalArrays, 632 15.4 Half-WaveDipole, 516 18.5 VisibleRegion, 634 15.5 MonopoleAntennas, 518 18.6 GratingLobes, 635 15.6 Traveling-WaveAntennas, 519 18.7 UniformArrays, 638 15.7 VeeandRhombicAntennas, 522 18.8 ArrayDirectivity, 642 15.8 LoopAntennas, 525 18.9 ArraySteering, 643 15.9 CircularLoops, 527 18.10ArrayBeamwidth, 645 15.10SquareLoops, 528 18.11Problems, 647 15.11DipoleandQuadrupoleRadiation, 529 15.12Problems, 531 19 ArrayDesignMethods 649 16 RadiationfromApertures 532 19.1 ArrayDesignMethods, 649 19.2 Schelkunoff’sZeroPlacementMethod, 652 16.1 FieldEquivalencePrinciple, 532 19.3 FourierSeriesMethodwithWindowing, 654 16.2 MagneticCurrentsandDuality, 534 19.4 SectorBeamArrayDesign, 655 16.3 RadiationFieldsfromMagneticCurrents, 536 19.5 Woodward-LawsonFrequency-SamplingDesign, 660 16.4 RadiationFieldsfromApertures, 537 19.6 Narrow-BeamLow-SidelobeDesigns, 664 16.5 HuygensSource, 540 19.7 BinomialArrays, 668 16.6 DirectivityandEffectiveAreaofApertures, 542 19.8 Dolph-ChebyshevArrays, 670 16.7 UniformApertures, 544 19.9 Taylor-KaiserArrays, 682 16.8 RectangularApertures, 544 19.10MultibeamArrays, 685 16.9 CircularApertures, 546 19.11Problems, 688 16.10VectorDiffractionTheory, 549 16.11ExtinctionTheorem, 553 20 CurrentsonLinearAntennas 689 16.12VectorDiffractionforApertures, 555 16.13FresnelDiffraction, 556 20.1 Hall´enandPocklingtonIntegralEquations, 689 16.14Knife-EdgeDiffraction, 560 20.2 Delta-GapandPlane-WaveSources, 692 16.15GeometricalTheoryofDiffraction, 566 20.3 SolvingHall´en’sEquation, 693 16.16Problems, 572 20.4 SinusoidalCurrentApproximation, 695 20.5 ReflectingandCenter-LoadedReceivingAntennas, 696 17 ApertureAntennas 575 20.6 King’sThree-TermApproximation, 699 20.7 NumericalSolutionofHall´en’sEquation, 703 17.1 Open-EndedWaveguides, 575 20.8 NumericalSolutionUsingPulseFunctions, 706 17.2 HornAntennas, 579 20.9 NumericalSolutionforArbitraryIncidentField, 710 17.3 HornRadiationFields, 581 20.10NumericalSolutionofPocklington’sEquation, 712 17.4 HornDirectivity, 586 20.11Problems, 718 17.5 HornDesign, 589 17.6 MicrostripAntennas, 592 21 CoupledAntennas 719 17.7 ParabolicReflectorAntennas, 598 17.8 GainandBeamwidthofReflectorAntennas, 600 21.1 NearFieldsofLinearAntennas, 719 17.9 Aperture-FieldandCurrent-DistributionMethods, 603 21.2 SelfandMutualImpedance, 722 17.10RadiationPatternsofReflectorAntennas, 606 21.3 CoupledTwo-ElementArrays, 726 17.11Dual-ReflectorAntennas, 615 21.4 ArraysofParallelDipoles, 729 www.ece.rutgers.edu/∼orfanidi/ewa xiii 21.5 Yagi-UdaAntennas, 738 21.6 Hall´enEquationsforCoupledAntennas, 743 21.7 Problems, 750 22 Appendices 752 Preface A PhysicalConstants, 752 B ElectromagneticFrequencyBands, 753 C VectorIdentitiesandIntegralTheorems, 755 D Green’sFunctions, 757 E CoordinateSystems, 760 F FresnelIntegrals, 762 G MATLABFunctions, 765 Thistextprovidesabroadandapplications-orientedintroductiontoelectromagnetic wavesandantennas. Currentinterestintheseareasisdrivenbythegrowthinwireless References 770 andfiber-opticcommunications,informationtechnology,andmaterialsscience. Communications,antenna,radar,andmicrowaveengineersmustdealwiththegener- Index 799 ation,transmission,andreceptionofelectromagneticwaves. Deviceengineersworking onever-smallerintegratedcircuitsandateverhigherfrequenciesmusttakeintoaccount wavepropagationeffectsatthechipandcircuit-boardlevels. Communicationandcom- puternetworkengineersroutinelyusewaveguidingsystems,suchastransmissionlines andopticalfibers. Novelrecentdevelopmentsinmaterials,suchasphotonicbandgap structures,omnidirectionaldielectricmirrors,andbirefringentmultilayerfilms,promise arevolutioninthecontrolandmanipulationoflight. Thesearejustsomeexamplesof topicsdiscussedinthisbook. Thetextisorganizedaroundthreemaintopicareas: • The propagation, reflection, and transmission of plane waves, and the analysis anddesignofmultilayerfilms. • Waveguides,transmissionlines,impedancematching,andS-parameters. • Linearandapertureantennas,scalarandvectordiffractiontheory,antennaarray design,andcoupledantennas. Thetextemphasizesconnectionstoothersubjects. Forexample,themathematical techniquesforanalyzingwavepropagationinmultilayerstructuresandthedesignof multilayeropticalfiltersarethesameasthoseusedindigitalsignalprocessing, such asthelatticestructuresoflinearprediction,theanalysisandsynthesisofspeech,and geophysical signal processing. Similarly, antenna array design is related to the prob- lemofspectralanalysisofsinusoidsandtodigitalfilterdesign,andButlerbeamsare equivalenttotheFFT. Use Thebookisappropriateforfirst-yeargraduateorseniorundergraduatestudents. There isenoughmaterialinthebookforatwo-semestercoursesequence. Thebookcanalso beusedbypracticingengineersandscientistswhowantaquickreviewthatcoversmost ofthebasicconceptsandincludesmanyapplicationexamples. Thebookisbasedonlecturenotesforafirst-yeargraduatecourseon“Electromag- neticWavesandRadiation”thatIhavebeenteachingatRutgersoverthepasttwenty xiv www.ece.rutgers.edu/∼orfanidi/ewa xv xvi ElectromagneticWaves&Antennas–S.J.Orfanidis–Feb. 28,2004 years. Thecoursedrawsstudentsfromavarietyoffields,suchassolid-statedevices, inhomogeneousmedia. Wepresentseveralexactlysolvableray-tracingexamplesdrawn wirelesscommunications,fiberoptics,abiomedicalengineering,anddigitalsignaland fromapplicationssuchasatmosphericrefraction,mirages,ionosphericrefraction,prop- arrayprocessing. Undergraduateseniorshavealsoattendedthegraduatecoursesuc- agationinastandardatmosphere, theeffectofEarth’scurvature, andpropagationin cessfully. graded-indexopticalfibers. Thebookrequiresaprerequisitecourseonelectromagnetics,typicallyofferedatthe Weapplythetransfermatrixapproachtotheanalysisanddesignofomnidirectional junioryear.Suchintroductorycourseisusuallyfollowedbyasenior-levelelectivecourse dielectricmirrorsandpolarizingbeamsplitters. Wediscussreflectionandrefractionin on electromagnetic waves, which covers propagation, reflection, and transmission of birefringentmedia,birefringentmultilayerfilms,andgiantbirefringentoptics. waves,waveguides,transmissionlines,andperhapssomeantennas. Thisbookmaybe Chapters8–10dealwithwaveguidingsystems. Webeginwiththedecompositionof usedinsuchelectivecourseswiththeappropriateselectionofchapters. Maxwell’sequationsintolongitudinalandtransversecomponentsandfocusprimarily At the graduate level, there is usually an introductory course that covers waves, on rectangular waveguides, resonant cavities, and dielectric slab guides. We discuss guides, lines, and antennas, and this is followed by more specialized courses on an- issues regarding the operating bandwidth, group velocity, power transfer, and ohmic tennadesign,microwavesystemsanddevices,opticalfibers,andnumericaltechniques losses. Then, we go on to discuss various types of TEM transmission lines, such as in electromagnetics. No single book can possibly cover all of the advanced courses. parallelplateandmicrostrip,coaxial,andparallel-wirelines. Thisbookmaybeusedasatextintheinitialcourse,andasasupplementarytextinthe Weconsidergeneralpropertiesoflines,suchaswaveimpedanceandreflectionre- specializedcourses. sponse, howtoanalyzeterminatedlinesandcomputepowertransferfromgenerator to load, matched-line and reflection losses, Th´evenin and Norton equivalent circuits, standingwaveratios,determiningunknownloadimpedances,theSmithchart,andthe ContentsandHighlights transientbehavioroflines. Inthefirstfourchapters,wereviewMaxwell’sequations,boundaryconditions,charge Wediscusscoupledlines,developtheeven-oddmodedecompositionforidentical and energy conservation, and simple models of dielectrics, conductors, and plasmas, matched or unmatched lines, and derive the crosstalk coefficients. The problem of anddiscussuniformplanewavepropagationinvarioustypesofmedia,suchaslossless, crosstalkonweakly-couplednon-identicallineswitharbitraryterminationsissolvedin lossy,isotropic,birefringent,andchiralmedia. Weintroducethemethodsoftransfer general. Wepresentalsoashortintroductiontocoupled-modetheory, co-directional and matching matrices for analyzing propagation, reflection, and transmission prob- couplers,fiberBragggratingsasexamplesofcontra-directionalcouplers,andquarter- lems. Suchmethodsareusedextensivelylateron. wave phase-shifted fiber Bragg gratings as narrow-band transmission filters. We also Inchapterfiveonmultilayerstructures,wedevelopatransfermatrixapproachto presentbrieflytheSchuster-Kubelka-Munktheoryofdiffusereflectionandtransmission the reflection and transmission through a multilayer dielectric stack and apply it to asanexampleofcontra-directionalcoupling. antireflectioncoatings. Wediscussdielectricmirrorsconstructedfromperiodicmulti- Chapters11and12discussimpedancematchingandS-parametertechniques. Sev- layers,introducetheconceptsofBlochwavenumberandreflectionbands,anddevelop eralmatchingmethodsareincluded,suchaswidebandmulti-sectionquarter-wavelength analyticalandnumericalmethodsforthecomputationofreflectionbandwidthsandof impedancetransformers,two-sectiondual-bandtransformers,quarter-wavelengthtrans- the frequency response. We discuss the connection to the new field of photonic and formerswithseriessectionsorwithshuntstubs,two-sectiontransformers,single-stub otherbandgapstructures. Weconsidertheapplicationofquarter-wavephase-shifted tuners, balanced stubs, double- and triple-stub tuners, L-, T-, and Π-section lumped Fabry-Perotresonatorstructuresinthedesignofnarrow-bandtransmissionfiltersfor reactivematchingnetworksandtheirQ-factors. densewavelength-divisionmultiplexingapplications. WehaveincludedanintroductiontoS-parametersbecauseoftheirwidespreaduse Wediscussequaltravel-timemultilayerstructures,developtheforwardandback- inmicrowavemeasurementsandinthedesignofmicrowavecircuits. Wediscusspower wardlatticerecursionsforcomputingthereflectionandtransmissionresponses, and flow,parameterconversions,inputandoutputreflectioncoefficients,stabilitycircles, maketheconnectiontosimilarlatticestructuresinotherfields,suchasinlinearpre- powergaindefinitions(transducer,operating,andavailablegains),powerwavesandgen- diction and speech processing. We apply the equal travel-time analysis to the design eralizedS-parameters,simultaneousconjugatematching,powergainandnoise-figure ofquarter-wavelengthChebyshevreflectionlessmultilayers. Suchdesignsarealsoused circles on the Smith chart and their uses in designing low-noise high-gain microwave laterinmulti-sectionquarter-wavelengthtransmissionlinetransformers. Thedesigns amplifiers. areexactandnotbasedonthesmall-reflection-coefficientapproximationthatisusually Therestofthebookdealswithradiationandantennas. Inchapters13and14,we madeintheliterature. considerthegenerationofradiationfieldsfromchargeandcurrentdistributions. We Inchapterssixandseven,wediscussobliqueincidenceconceptsandapplications, introducetheLorenz-gaugescalarandvectorpotentialsandsolvetheresultinginhomo- suchasSnell’slaws,TEandTMpolarizations,transverseimpedances,transversetrans- geneousHelmholtzequations. Weillustratethevectorpotentialformalismwiththree fermatrices,Fresnelreflectioncoefficients,totalinternalreflectionandBrewsterangles. applications: (a)thefieldsgeneratedbyalinearwireantenna,(b)thenearandfarfields Thereisabriefintroductionofhowgeometricalopticsarisesfromwavepropagation ofelectricandmagneticdipoles,and(c)theEwald-Oseenextinctiontheoremofmolec- inthehigh-frequencylimit. Fermat’sprincipleisappliedtoderivetherayequationsin www.ece.rutgers.edu/∼orfanidi/ewa xvii xviii ElectromagneticWaves&Antennas–S.J.Orfanidis–Feb. 28,2004 ular optics. Then, we derive the far-field approximation for the radiation fields and mulas,wedevelopasystematicmethodfordesigningsector-beampatterns—aproblem introducetheradiationvector. equivalenttodesigningabandpassFIRfilter. WeapplytheWoodward-Lawsonmethod Wediscussgeneralcharacteristicsoftransmittingandreceivingantennas,suchas to the design of shaped-beam patterns. We view the problem of designing narrow- energy flux and radiation intensity, directivity, gain, beamwidth, effective area, gain- beamlow-sidelobearraysasequivalenttotheproblemofspectralanalysisofsinusoids. beamwidthproduct,antennaequivalentcircuits,effectivelength,polarizationandload Choosingdifferentwindowfunctions,wearriveatbinomial,Dolph-Chebyshev,andTay- mismatches, communicating antennas and Friis formula, antenna noise temperature, lor arrays. We also discuss multi-beam arrays, Butler matrices and beams, and their systemnoisetemperature,limitsonbitrates,powerbudgetsofsatellitelinks,andthe connectiontotheFFT. radarequation. Inchapters20and21,weundertakeamoreprecisestudyofthecurrentsflowing Chapter15isanintroductiontolinearandloopantennas. StartingwiththeHertzian onalinearantennaanddeveloptheHall´enandPocklingtonintegralequationsforthis dipole,wepresentstanding-waveantennas,thehalf-wavedipole,monopoleantennas, problem. The nature of the sinusoidal current approximation and its generalizations traveling wave antennas, vee and rhombic antennas, circular and square loops, and byKingarediscussed,andcomparedwiththeexactnumericalsolutionsoftheintegral dipoleandquadrupleradiationingeneral. equations. Wediscusscoupledantennas,definethemutualimpedancematrix,anduse Chapters 16 and 17 deal with radiation from apertures. We start with the field ittoobtainsimplesolutionsforseveralexamples,suchasYagi-Udaandotherparasitic equivalenceprincipleandtheequivalentsurfaceelectricandmagneticcurrentsgiven ordrivenarrays. Wealsoconsidertheproblemofsolvingthecoupledintegralequations intermsoftheaperturefields,andextendthefar-fieldapproximationtoincludemag- foranarrayofparalleldipoles,implementitwithMATLAB,andcomparetheexactresults netic current sources, leading eventually to Kottler’s formulas for the fields radiated withthosebasedontheimpedancematrixapproach. fromapertures. Dualitytransformationssimplifythediscussions. Thespecialcasesof OurMATLAB-basednumericalsolutionsarenotmeanttoreplacesophisticatedcom- uniformrectangularandcircularaperturesarediscussedindetail. mercialfieldsolvers. Theinclusionofnumericalmethodsinthisbookwasmotivated Then, we embark on a long justification of the field equivalent principle and the by the desire to provide the reader with some simple tools for self-study and experi- derivationoftheStratton-ChuandKottler-Franzformulas,anddiscussvectordiffrac- mentation. Thestudyofnumericalmethodsinelectromagneticsisasubjectinitself tiontheory. Thismaterialisratherdifficultbutwehavebrokendownthederivations andourtreatmentdoesnotdojusticetoit. However,wefeltthatitwouldbefuntobe intologicalstepsusingseveralvectoranalysisidentitiesfromtheappendix. Oncethe abletoquicklycomputefairlyaccurateradiationpatternsofYagi-Udaandothercoupled ramificationsoftheKottlerformulasarediscussed,weapproximatetheformulaswith antennas,aswellasradiationpatternsofhornandreflectorantennas. theconventionalKirchhoffdiffractionintegralsanddiscussthescalartheoryofdiffrac- Theappendixincludessummariesofphysicalconstants,electromagneticfrequency tion. WeconsiderFresneldiffractionthroughaperturesandknife-edgediffractionand bands,vectoridentities,integraltheorems,Green’sfunctions,coordinatesystems,Fres- presentanintroductiontothegeometricaltheoryofdiffractionthroughSommerfeld’s nelintegrals,andadetailedlistoftheMATLABfunctions. Finally,thereisalarge(but exactsolutionofdiffractionbyaconductinghalf-plane. inevitably incomplete) list of references, arranged by topic area, that we hope could We apply the aperture radiation formulas to various types of aperture antennas, serveasastartingpointforfurtherstudy. suchasopen-endedwaveguides,horns,microstripantennas,andparabolicreflectors. Wepresentacomputationalapproachforthecalculationofhornradiationpatternsand MATLABToolbox optimumhorndesign. Weconsiderparabolicreflectorsinsomedetail,discussingthe aperture-field and current-distribution methods, reflector feeds, gain and beamwidth ThetextmakesextensiveuseofMATLAB.Wehavedevelopedan“ElectromagneticWaves properties, and numerical computations of the radiation patterns. We also discuss &Antennas”toolboxcontaining130MATLABfunctionsforcarryingoutallofthecom- brieflydual-reflectorandlensantennas. putations and simulation examples in the text. Code segments illustrating the usage Chapters18and19discussantennaarrays. Westartwiththeconceptofthearray of these functions are found throughout the book, and serve as a user manual. The factor,whichdeterminestheangularpatternofthearray. Weemphasizetheconnection functionsmaybegroupedintothefollowingcategories: toDSPandviewthearrayfactorasthespatialequivalentofthetransferfunctionofan FIRdigitalfilter. Weintroducebasicarrayconcepts,suchasthevisibleregion,grating 1. Design and analysis of multilayer film structures, including antireflection coat- lobes,directivity,beamwidth,arrayscanningandsteering,anddiscusstheproperties ings,polarizers,omnidirectionalmirrors,narrow-bandtransmissionfilters,bire- of uniform arrays. We present several array design methods for achieving a desired fringentmultilayerfilmsandgiantbirefringentoptics. angular radiation pattern, such as Schelkunoff’s zero-placement method, the Fourier 2. Designofquarter-wavelengthimpedancetransformersandotherimpedancematch- seriesmethodwithwindowing,anditsvariant,theWoodward-Lawsonmethod,known ingmethods,suchasChebyshevtransformers,dual-bandtransformers,stubmatch- inDSPasthefrequency-samplingmethod. ingandL-,Π-andT-sectionreactivematchingnetworks. Theissuesofproperlychoosingawindowfunctiontoachievedesiredpassbandand 3. Designandanalysisoftransmissionlinesandwaveguides,suchasmicrostriplines stopbandcharacteristicsarediscussed. WeemphasizetheuseoftheTaylor-Kaiserwin- anddielectricslabguides. dow,whichallowsthecontrolofthestopbandattenuation. UsingKaiser’sempiricalfor- www.ece.rutgers.edu/∼orfanidi/ewa xix 4. S-parameter functions for gain computations, Smith chart generation, stability, gain,andnoise-figurecircles,simultaneousconjugatematching,andmicrowave amplifierdesign. 5. Functionsforthecomputationofdirectivitiesandgainpatternsoflinearantennas, suchasdipole,vee,rhombic,andtraveling-waveantennas. 6. Aperture antenna functions for open-ended waveguides, horn antenna design, diffractionintegrals,andknife-edgediffractioncoefficients. 7. Antennaarraydesignfunctionsforuniform,binomial,Dolph-Chebyshev,Taylor arrays,sector-beam,multi-beam,Woodward-Lawson,andButlerarrays. Functions forbeamwidthanddirectivitycalculations,andforsteeringandscanningarrays. 8. NumericalmethodsforsolvingtheHall´enandPocklingtonintegralequationsfor singleandcoupledantennasandcomputingselfandmutualimpedances. 9. Severalfunctionsformakingazimuthalandpolarplotsofantennaandarraygain patternsindecibelsandabsoluteunits. 10. TherearealsoseveralMATLABmoviesshowingthepropagationofstepsignals andpulsesonterminatedtransmissionlines;thepropagationoncascadedlines; stepsignalsgettingreflectedfromreactiveterminations; faultlocationbyTDR; crosstalksignalspropagatingoncoupledlines;andthetime-evolutionofthefield linesradiatedbyaHertziandipole. TheMATLABfunctionsaswellasotherinformationaboutthebookmaybedown- loadedfromthewebpage: www.ece.rutgers.edu/~orfanidi/ewa. Acknowledgements SophoclesJ.Orfanidis April2003 viii ElectromagneticWaves&Antennas–S.J.Orfanidis–Feb. 28,2004 4 ReflectionandTransmission 81 4.1 PropagationMatrices, 81 4.2 MatchingMatrices, 85 4.3 ReflectedandTransmittedPower, 88 4.4 SingleDielectricSlab, 91 Contents 4.5 ReflectionlessSlab, 94 4.6 Time-DomainReflectionResponse, 102 4.7 TwoDielectricSlabs, 104 4.8 Problems, 106 5 MultilayerStructures 109 Preface xiv 5.1 MultipleDielectricSlabs, 109 5.2 AntireflectionCoatings, 111 1 Maxwell’sEquations 1 5.3 DielectricMirrors, 116 5.4 PropagationBandgaps, 127 1.1 Maxwell’sEquations, 1 5.5 Narrow-BandTransmissionFilters, 127 1.2 LorentzForce, 2 5.6 EqualTravel-TimeMultilayerStructures, 132 1.3 ConstitutiveRelations, 3 5.7 ApplicationsofLayeredStructures, 146 1.4 BoundaryConditions, 6 5.8 ChebyshevDesignofReflectionlessMultilayers, 149 1.5 Currents,Fluxes,andConservationLaws, 8 5.9 Problems, 157 1.6 ChargeConservation, 9 1.7 EnergyFluxandEnergyConservation, 10 6 ObliqueIncidence 160 1.8 HarmonicTimeDependence, 12 1.9 SimpleModelsofDielectrics,Conductors,andPlasmas, 13 6.1 ObliqueIncidenceandSnell’sLaws, 160 1.10 Problems, 21 6.2 TransverseImpedance, 162 6.3 PropagationandMatchingofTransverseFields, 165 2 UniformPlaneWaves 25 6.4 FresnelReflectionCoefficients, 167 6.5 TotalInternalReflection, 169 2.1 UniformPlaneWavesinLosslessMedia, 25 6.6 BrewsterAngle, 175 2.2 MonochromaticWaves, 31 6.7 ComplexWaves, 178 2.3 EnergyDensityandFlux, 34 6.8 GeometricalOptics, 188 2.4 WaveImpedance, 35 6.9 Fermat’sPrinciple, 190 2.5 Polarization, 35 6.10 RayTracing, 192 2.6 UniformPlaneWavesinLossyMedia, 42 6.11 Problems, 203 2.7 PropagationinWeaklyLossyDielectrics, 48 2.8 PropagationinGoodConductors, 49 7 MultilayerFilmApplications 205 2.9 PropagationinObliqueDirections, 50 2.10 ComplexorInhomogeneousWaves, 53 7.1 MultilayerDielectricStructuresatObliqueIncidence, 205 2.11 Problems, 55 7.2 LossyMultilayerStructures, 207 7.3 SingleDielectricSlab, 209 3 PropagationinBirefringentMedia 60 7.4 AntireflectionCoatingsatObliqueIncidence, 211 7.5 OmnidirectionalDielectricMirrors, 215 3.1 LinearandCircularBirefringence, 60 7.6 PolarizingBeamSplitters, 225 3.2 UniaxialandBiaxialMedia, 61 7.7 ReflectionandRefractioninBirefringentMedia, 228 3.3 ChiralMedia, 63 7.8 BrewsterandCriticalAnglesinBirefringentMedia, 232 3.4 GyrotropicMedia, 66 7.9 MultilayerBirefringentStructures, 235 3.5 LinearandCircularDichroism, 67 7.10 GiantBirefringentOptics, 237 3.6 ObliquePropagationinBirefringentMedia, 68 7.11 Problems, 242 3.7 Problems, 75 vii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.