Electromagnetic Waves and Antennas Electromagnetic Waves and Antennas To Monica and John Sophocles J. Orfanidis Rutgers University viii ElectromagneticWaves&Antennas–S.J.Orfanidis–June21,2004 4 ReflectionandTransmission 86 4.1 PropagationMatrices, 86 4.2 MatchingMatrices, 90 4.3 ReflectedandTransmittedPower, 93 4.4 SingleDielectricSlab, 96 Contents 4.5 ReflectionlessSlab, 99 4.6 Time-DomainReflectionResponse, 107 4.7 TwoDielectricSlabs, 109 4.8 ReflectionbyaMovingBoundary, 111 4.9 Problems, 114 Preface xiv 5 MultilayerStructures 117 5.1 MultipleDielectricSlabs, 117 1 Maxwell’sEquations 1 5.2 AntireflectionCoatings, 119 5.3 DielectricMirrors, 124 1.1 Maxwell’sEquations, 1 5.4 PropagationBandgaps, 135 1.2 LorentzForce, 2 5.5 Narrow-BandTransmissionFilters, 135 1.3 ConstitutiveRelations, 3 5.6 EqualTravel-TimeMultilayerStructures, 140 1.4 BoundaryConditions, 6 5.7 ApplicationsofLayeredStructures, 154 1.5 Currents,Fluxes,andConservationLaws, 8 5.8 ChebyshevDesignofReflectionlessMultilayers, 157 1.6 ChargeConservation, 9 5.9 Problems, 165 1.7 EnergyFluxandEnergyConservation, 10 1.8 HarmonicTimeDependence, 12 6 ObliqueIncidence 168 1.9 SimpleModelsofDielectrics,Conductors,andPlasmas, 13 1.10 Problems, 21 6.1 ObliqueIncidenceandSnell’sLaws, 168 6.2 TransverseImpedance, 170 2 UniformPlaneWaves 25 6.3 PropagationandMatchingofTransverseFields, 173 6.4 FresnelReflectionCoefficients, 175 2.1 UniformPlaneWavesinLosslessMedia, 25 6.5 TotalInternalReflection, 177 2.2 MonochromaticWaves, 31 6.6 BrewsterAngle, 183 2.3 EnergyDensityandFlux, 34 6.7 ComplexWaves, 186 2.4 WaveImpedance, 35 6.8 ObliqueReflectionbyaMovingBoundary, 196 2.5 Polarization, 35 6.9 GeometricalOptics, 199 2.6 UniformPlaneWavesinLossyMedia, 42 6.10 Fermat’sPrinciple, 202 2.7 PropagationinWeaklyLossyDielectrics, 48 6.11 RayTracing, 204 2.8 PropagationinGoodConductors, 49 6.12 Problems, 215 2.9 PropagationinObliqueDirections, 50 2.10 ComplexorInhomogeneousWaves, 53 7 MultilayerFilmApplications 217 2.11 DopplerEffect, 55 2.12 Problems, 59 7.1 MultilayerDielectricStructuresatObliqueIncidence, 217 7.2 LossyMultilayerStructures, 219 3 PropagationinBirefringentMedia 65 7.3 SingleDielectricSlab, 221 7.4 AntireflectionCoatingsatObliqueIncidence, 223 3.1 LinearandCircularBirefringence, 65 7.5 OmnidirectionalDielectricMirrors, 227 3.2 UniaxialandBiaxialMedia, 66 7.6 PolarizingBeamSplitters, 237 3.3 ChiralMedia, 68 7.7 ReflectionandRefractioninBirefringentMedia, 240 3.4 GyrotropicMedia, 71 7.8 BrewsterandCriticalAnglesinBirefringentMedia, 244 3.5 LinearandCircularDichroism, 72 7.9 MultilayerBirefringentStructures, 247 3.6 ObliquePropagationinBirefringentMedia, 73 7.10 GiantBirefringentOptics, 249 3.7 Problems, 80 vii www.ece.rutgers.edu/∼orfanidi/ewa ix x ElectromagneticWaves&Antennas–S.J.Orfanidis–June21,2004 7.11 Problems, 254 11.4 Two-SectionDual-BandChebyshevTransformers, 375 11.5 Quarter-WavelengthTransformerWithSeriesSection, 381 8 Waveguides 255 11.6 Quarter-WavelengthTransformerWithShuntStub, 384 11.7 Two-SectionSeriesImpedanceTransformer, 386 8.1 Longitudinal-TransverseDecompositions, 256 11.8 SingleStubMatching, 391 8.2 PowerTransferandAttenuation, 261 11.9 BalancedStubs, 395 8.3 TEM,TE,andTMmodes, 263 11.10DoubleandTripleStubMatching, 397 8.4 RectangularWaveguides, 266 11.11L-SectionLumpedReactiveMatchingNetworks, 399 8.5 HigherTEandTMmodes, 268 11.12Pi-SectionLumpedReactiveMatchingNetworks, 402 8.6 OperatingBandwidth, 270 11.13ReversedMatchingNetworks, 409 8.7 PowerTransfer,EnergyDensity,andGroupVelocity, 271 11.14Problems, 411 8.8 PowerAttenuation, 273 8.9 ReflectionModelofWaveguidePropagation, 276 12 S-Parameters 413 8.10 ResonantCavities, 278 8.11 DielectricSlabWaveguides, 280 12.1 ScatteringParameters, 413 8.12 Problems, 288 12.2 PowerFlow, 417 12.3 ParameterConversions, 418 9 TransmissionLines 290 12.4 InputandOutputReflectionCoefficients, 419 12.5 StabilityCircles, 421 9.1 GeneralPropertiesofTEMTransmissionLines, 290 12.6 PowerGains, 427 9.2 ParallelPlateLines, 296 12.7 GeneralizedS-ParametersandPowerWaves, 433 9.3 MicrostripLines, 297 12.8 SimultaneousConjugateMatching, 437 9.4 CoaxialLines, 301 12.9 PowerGainCircles, 442 9.5 Two-WireLines, 306 12.10UnilateralGainCircles, 443 9.6 DistributedCircuitModelofaTransmissionLine, 308 12.11OperatingandAvailablePowerGainCircles, 445 9.7 WaveImpedanceandReflectionResponse, 310 12.12NoiseFigureCircles, 451 9.8 Two-PortEquivalentCircuit, 312 12.13Problems, 456 9.9 TerminatedTransmissionLines, 313 9.10 PowerTransferfromGeneratortoLoad, 316 13 RadiationFields 458 9.11 Open-andShort-CircuitedTransmissionLines, 318 9.12 StandingWaveRatio, 321 13.1 CurrentsandChargesasSourcesofFields, 458 9.13 DetermininganUnknownLoadImpedance, 323 13.2 RetardedPotentials, 460 9.14 SmithChart, 327 13.3 HarmonicTimeDependence, 463 9.15 Time-DomainResponseofTransmissionLines, 331 13.4 FieldsofaLinearWireAntenna, 465 9.16 Problems, 338 13.5 FieldsofElectricandMagneticDipoles, 467 13.6 Ewald-OseenExtinctionTheorem, 472 10 CoupledLines 347 13.7 RadiationFields, 477 13.8 RadialCoordinates, 480 10.1 CoupledTransmissionLines, 347 13.9 RadiationFieldApproximation, 482 10.2 CrosstalkBetweenLines, 353 13.10ComputingtheRadiationFields, 483 10.3 WeaklyCoupledLineswithArbitraryTerminations, 356 13.11Problems, 485 10.4 Coupled-ModeTheory, 358 10.5 FiberBraggGratings, 360 14 TransmittingandReceivingAntennas 488 10.6 DiffuseReflectionandTransmission, 363 10.7 Problems, 365 14.1 EnergyFluxandRadiationIntensity, 488 14.2 Directivity,Gain,andBeamwidth, 489 11 ImpedanceMatching 366 14.3 EffectiveArea, 494 14.4 AntennaEquivalentCircuits, 498 11.1 ConjugateandReflectionlessMatching, 366 14.5 EffectiveLength, 500 11.2 MultisectionTransmissionLines, 368 14.6 CommunicatingAntennas, 502 11.3 Quarter-WavelengthChebyshevTransformers, 369 14.7 AntennaNoiseTemperature, 504 www.ece.rutgers.edu/∼orfanidi/ewa xi xii ElectromagneticWaves&Antennas–S.J.Orfanidis–June21,2004 14.8 SystemNoiseTemperature, 508 17.10RadiationPatternsofReflectorAntennas, 618 14.9 DataRateLimits, 514 17.11Dual-ReflectorAntennas, 627 14.10SatelliteLinks, 516 17.12LensAntennas, 630 14.11RadarEquation, 519 17.13Problems, 631 14.12Problems, 521 18 AntennaArrays 632 15 LinearandLoopAntennas 522 18.1 AntennaArrays, 632 15.1 LinearAntennas, 522 18.2 TranslationalPhaseShift, 632 15.2 HertzianDipole, 524 18.3 ArrayPatternMultiplication, 634 15.3 Standing-WaveAntennas, 526 18.4 One-DimensionalArrays, 644 15.4 Half-WaveDipole, 528 18.5 VisibleRegion, 646 15.5 MonopoleAntennas, 530 18.6 GratingLobes, 647 15.6 Traveling-WaveAntennas, 531 18.7 UniformArrays, 650 15.7 VeeandRhombicAntennas, 534 18.8 ArrayDirectivity, 654 15.8 LoopAntennas, 537 18.9 ArraySteering, 655 15.9 CircularLoops, 539 18.10ArrayBeamwidth, 657 15.10SquareLoops, 540 18.11Problems, 659 15.11DipoleandQuadrupoleRadiation, 541 15.12Problems, 543 19 ArrayDesignMethods 661 16 RadiationfromApertures 544 19.1 ArrayDesignMethods, 661 19.2 Schelkunoff’sZeroPlacementMethod, 664 16.1 FieldEquivalencePrinciple, 544 19.3 FourierSeriesMethodwithWindowing, 666 16.2 MagneticCurrentsandDuality, 546 19.4 SectorBeamArrayDesign, 667 16.3 RadiationFieldsfromMagneticCurrents, 548 19.5 Woodward-LawsonFrequency-SamplingDesign, 672 16.4 RadiationFieldsfromApertures, 549 19.6 Narrow-BeamLow-SidelobeDesigns, 676 16.5 HuygensSource, 552 19.7 BinomialArrays, 680 16.6 DirectivityandEffectiveAreaofApertures, 554 19.8 Dolph-ChebyshevArrays, 682 16.7 UniformApertures, 556 19.9 Taylor-KaiserArrays, 694 16.8 RectangularApertures, 556 19.10MultibeamArrays, 697 16.9 CircularApertures, 558 19.11Problems, 700 16.10VectorDiffractionTheory, 561 16.11ExtinctionTheorem, 565 20 CurrentsonLinearAntennas 701 16.12VectorDiffractionforApertures, 567 16.13FresnelDiffraction, 568 20.1 Hall´enandPocklingtonIntegralEquations, 701 16.14Knife-EdgeDiffraction, 572 20.2 Delta-GapandPlane-WaveSources, 704 16.15GeometricalTheoryofDiffraction, 578 20.3 SolvingHall´en’sEquation, 705 16.16Problems, 584 20.4 SinusoidalCurrentApproximation, 707 20.5 ReflectingandCenter-LoadedReceivingAntennas, 708 17 ApertureAntennas 587 20.6 King’sThree-TermApproximation, 711 20.7 NumericalSolutionofHall´en’sEquation, 715 17.1 Open-EndedWaveguides, 587 20.8 NumericalSolutionUsingPulseFunctions, 718 17.2 HornAntennas, 591 20.9 NumericalSolutionforArbitraryIncidentField, 722 17.3 HornRadiationFields, 593 20.10NumericalSolutionofPocklington’sEquation, 724 17.4 HornDirectivity, 598 20.11Problems, 730 17.5 HornDesign, 601 17.6 MicrostripAntennas, 604 17.7 ParabolicReflectorAntennas, 610 17.8 GainandBeamwidthofReflectorAntennas, 612 17.9 Aperture-FieldandCurrent-DistributionMethods, 615 www.ece.rutgers.edu/∼orfanidi/ewa xiii 21 CoupledAntennas 731 21.1 NearFieldsofLinearAntennas, 731 21.2 SelfandMutualImpedance, 734 21.3 CoupledTwo-ElementArrays, 738 21.4 ArraysofParallelDipoles, 741 Preface 21.5 Yagi-UdaAntennas, 750 21.6 Hall´enEquationsforCoupledAntennas, 755 21.7 Problems, 762 22 Appendices 764 A PhysicalConstants, 764 Thistextprovidesabroadandapplications-orientedintroductiontoelectromagnetic B ElectromagneticFrequencyBands, 765 wavesandantennas. Currentinterestintheseareasisdrivenbythegrowthinwireless C VectorIdentitiesandIntegralTheorems, 767 andfiber-opticcommunications,informationtechnology,andmaterialsscience. D Green’sFunctions, 770 Communications,antenna,radar,andmicrowaveengineersmustdealwiththegener- E CoordinateSystems, 773 ation,transmission,andreceptionofelectromagneticwaves. Deviceengineersworking F FresnelIntegrals, 775 G LorentzTransformations, 778 onever-smallerintegratedcircuitsandateverhigherfrequenciesmusttakeintoaccount H MATLABFunctions, 785 wavepropagationeffectsatthechipandcircuit-boardlevels. Communicationandcom- puternetworkengineersroutinelyusewaveguidingsystems,suchastransmissionlines References 790 andopticalfibers. Novelrecentdevelopmentsinmaterials,suchasphotonicbandgap structures,omnidirectionaldielectricmirrors,andbirefringentmultilayerfilms,promise arevolutioninthecontrolandmanipulationoflight. Thesearejustsomeexamplesof Index 820 topicsdiscussedinthisbook. Thetextisorganizedaroundthreemaintopicareas: • The propagation, reflection, and transmission of plane waves, and the analysis anddesignofmultilayerfilms. • Waveguides,transmissionlines,impedancematching,andS-parameters. • Linearandapertureantennas,scalarandvectordiffractiontheory,antennaarray design,andcoupledantennas. Thetextemphasizesconnectionstoothersubjects. Forexample,themathematical techniquesforanalyzingwavepropagationinmultilayerstructuresandthedesignof multilayeropticalfiltersarethesameasthoseusedindigitalsignalprocessing, such asthelatticestructuresoflinearprediction,theanalysisandsynthesisofspeech,and geophysical signal processing. Similarly, antenna array design is related to the prob- lemofspectralanalysisofsinusoidsandtodigitalfilterdesign,andButlerbeamsare equivalenttotheFFT. Use Thebookisappropriateforfirst-yeargraduateorseniorundergraduatestudents. There isenoughmaterialinthebookforatwo-semestercoursesequence. Thebookcanalso beusedbypracticingengineersandscientistswhowantaquickreviewthatcoversmost ofthebasicconceptsandincludesmanyapplicationexamples. Thebookisbasedonlecturenotesforafirst-yeargraduatecourseon“Electromag- neticWavesandRadiation”thatIhavebeenteachingatRutgersoverthepasttwenty xiv www.ece.rutgers.edu/∼orfanidi/ewa xv xvi ElectromagneticWaves&Antennas–S.J.Orfanidis–June21,2004 years. Thecoursedrawsstudentsfromavarietyoffields,suchassolid-statedevices, inhomogeneousmedia. Wepresentseveralexactlysolvableray-tracingexamplesdrawn wirelesscommunications,fiberoptics,abiomedicalengineering,anddigitalsignaland fromapplicationssuchasatmosphericrefraction,mirages,ionosphericrefraction,prop- arrayprocessing. Undergraduateseniorshavealsoattendedthegraduatecoursesuc- agationinastandardatmosphere, theeffectofEarth’scurvature, andpropagationin cessfully. graded-indexopticalfibers. Thebookrequiresaprerequisitecourseonelectromagnetics,typicallyofferedatthe Weapplythetransfermatrixapproachtotheanalysisanddesignofomnidirectional junioryear.Suchintroductorycourseisusuallyfollowedbyasenior-levelelectivecourse dielectricmirrorsandpolarizingbeamsplitters. Wediscussreflectionandrefractionin on electromagnetic waves, which covers propagation, reflection, and transmission of birefringentmedia,birefringentmultilayerfilms,andgiantbirefringentoptics. waves,waveguides,transmissionlines,andperhapssomeantennas. Thisbookmaybe Chapters8–10dealwithwaveguidingsystems. Webeginwiththedecompositionof usedinsuchelectivecourseswiththeappropriateselectionofchapters. Maxwell’sequationsintolongitudinalandtransversecomponentsandfocusprimarily At the graduate level, there is usually an introductory course that covers waves, on rectangular waveguides, resonant cavities, and dielectric slab guides. We discuss guides, lines, and antennas, and this is followed by more specialized courses on an- issues regarding the operating bandwidth, group velocity, power transfer, and ohmic tennadesign,microwavesystemsanddevices,opticalfibers,andnumericaltechniques losses. Then, we go on to discuss various types of TEM transmission lines, such as in electromagnetics. No single book can possibly cover all of the advanced courses. parallelplateandmicrostrip,coaxial,andparallel-wirelines. Thisbookmaybeusedasatextintheinitialcourse,andasasupplementarytextinthe Weconsidergeneralpropertiesoflines,suchaswaveimpedanceandreflectionre- specializedcourses. sponse, howtoanalyzeterminatedlinesandcomputepowertransferfromgenerator to load, matched-line and reflection losses, Th´evenin and Norton equivalent circuits, standingwaveratios,determiningunknownloadimpedances,theSmithchart,andthe ContentsandHighlights transientbehavioroflines. Inthefirstfourchapters,wereviewMaxwell’sequations,boundaryconditions,charge Wediscusscoupledlines,developtheeven-oddmodedecompositionforidentical and energy conservation, and simple models of dielectrics, conductors, and plasmas, matched or unmatched lines, and derive the crosstalk coefficients. The problem of anddiscussuniformplanewavepropagationinvarioustypesofmedia,suchaslossless, crosstalkonweakly-couplednon-identicallineswitharbitraryterminationsissolvedin lossy,isotropic,birefringent,andchiralmedia. Weintroducethemethodsoftransfer general. Wepresentalsoashortintroductiontocoupled-modetheory, co-directional and matching matrices for analyzing propagation, reflection, and transmission prob- couplers,fiberBragggratingsasexamplesofcontra-directionalcouplers,andquarter- lems. Suchmethodsareusedextensivelylateron. wave phase-shifted fiber Bragg gratings as narrow-band transmission filters. We also Inchapterfiveonmultilayerstructures,wedevelopatransfermatrixapproachto presentbrieflytheSchuster-Kubelka-Munktheoryofdiffusereflectionandtransmission the reflection and transmission through a multilayer dielectric stack and apply it to asanexampleofcontra-directionalcoupling. antireflectioncoatings. Wediscussdielectricmirrorsconstructedfromperiodicmulti- Chapters11and12discussimpedancematchingandS-parametertechniques. Sev- layers,introducetheconceptsofBlochwavenumberandreflectionbands,anddevelop eralmatchingmethodsareincluded,suchaswidebandmulti-sectionquarter-wavelength analyticalandnumericalmethodsforthecomputationofreflectionbandwidthsandof impedancetransformers,two-sectiondual-bandtransformers,quarter-wavelengthtrans- the frequency response. We discuss the connection to the new field of photonic and formerswithseriessectionsorwithshuntstubs,two-sectiontransformers,single-stub otherbandgapstructures. Weconsidertheapplicationofquarter-wavephase-shifted tuners, balanced stubs, double- and triple-stub tuners, L-, T-, and Π-section lumped Fabry-Perotresonatorstructuresinthedesignofnarrow-bandtransmissionfiltersfor reactivematchingnetworksandtheirQ-factors. densewavelength-divisionmultiplexingapplications. WehaveincludedanintroductiontoS-parametersbecauseoftheirwidespreaduse Wediscussequaltravel-timemultilayerstructures,developtheforwardandback- inmicrowavemeasurementsandinthedesignofmicrowavecircuits. Wediscusspower wardlatticerecursionsforcomputingthereflectionandtransmissionresponses, and flow,parameterconversions,inputandoutputreflectioncoefficients,stabilitycircles, maketheconnectiontosimilarlatticestructuresinotherfields,suchasinlinearpre- powergaindefinitions(transducer,operating,andavailablegains),powerwavesandgen- diction and speech processing. We apply the equal travel-time analysis to the design eralizedS-parameters,simultaneousconjugatematching,powergainandnoise-figure ofquarter-wavelengthChebyshevreflectionlessmultilayers. Suchdesignsarealsoused circles on the Smith chart and their uses in designing low-noise high-gain microwave laterinmulti-sectionquarter-wavelengthtransmissionlinetransformers. Thedesigns amplifiers. areexactandnotbasedonthesmall-reflection-coefficientapproximationthatisusually Therestofthebookdealswithradiationandantennas. Inchapters13and14,we madeintheliterature. considerthegenerationofradiationfieldsfromchargeandcurrentdistributions. We Inchapterssixandseven,wediscussobliqueincidenceconceptsandapplications, introducetheLorenz-gaugescalarandvectorpotentialsandsolvetheresultinginhomo- suchasSnell’slaws,TEandTMpolarizations,transverseimpedances,transversetrans- geneousHelmholtzequations. Weillustratethevectorpotentialformalismwiththree fermatrices,Fresnelreflectioncoefficients,totalinternalreflectionandBrewsterangles. applications: (a)thefieldsgeneratedbyalinearwireantenna,(b)thenearandfarfields Thereisabriefintroductionofhowgeometricalopticsarisesfromwavepropagation ofelectricandmagneticdipoles,and(c)theEwald-Oseenextinctiontheoremofmolec- inthehigh-frequencylimit. Fermat’sprincipleisappliedtoderivetherayequationsin www.ece.rutgers.edu/∼orfanidi/ewa xvii xviii ElectromagneticWaves&Antennas–S.J.Orfanidis–June21,2004 ular optics. Then, we derive the far-field approximation for the radiation fields and mulas,wedevelopasystematicmethodfordesigningsector-beampatterns—aproblem introducetheradiationvector. equivalenttodesigningabandpassFIRfilter. WeapplytheWoodward-Lawsonmethod Wediscussgeneralcharacteristicsoftransmittingandreceivingantennas,suchas to the design of shaped-beam patterns. We view the problem of designing narrow- energy flux and radiation intensity, directivity, gain, beamwidth, effective area, gain- beamlow-sidelobearraysasequivalenttotheproblemofspectralanalysisofsinusoids. beamwidthproduct,antennaequivalentcircuits,effectivelength,polarizationandload Choosingdifferentwindowfunctions,wearriveatbinomial,Dolph-Chebyshev,andTay- mismatches, communicating antennas and Friis formula, antenna noise temperature, lor arrays. We also discuss multi-beam arrays, Butler matrices and beams, and their systemnoisetemperature,limitsonbitrates,powerbudgetsofsatellitelinks,andthe connectiontotheFFT. radarequation. Inchapters20and21,weundertakeamoreprecisestudyofthecurrentsflowing Chapter15isanintroductiontolinearandloopantennas. StartingwiththeHertzian onalinearantennaanddeveloptheHall´enandPocklingtonintegralequationsforthis dipole,wepresentstanding-waveantennas,thehalf-wavedipole,monopoleantennas, problem. The nature of the sinusoidal current approximation and its generalizations traveling wave antennas, vee and rhombic antennas, circular and square loops, and byKingarediscussed,andcomparedwiththeexactnumericalsolutionsoftheintegral dipoleandquadrupleradiationingeneral. equations. Wediscusscoupledantennas,definethemutualimpedancematrix,anduse Chapters 16 and 17 deal with radiation from apertures. We start with the field ittoobtainsimplesolutionsforseveralexamples,suchasYagi-Udaandotherparasitic equivalenceprincipleandtheequivalentsurfaceelectricandmagneticcurrentsgiven ordrivenarrays. Wealsoconsidertheproblemofsolvingthecoupledintegralequations intermsoftheaperturefields,andextendthefar-fieldapproximationtoincludemag- foranarrayofparalleldipoles,implementitwithMATLAB,andcomparetheexactresults netic current sources, leading eventually to Kottler’s formulas for the fields radiated withthosebasedontheimpedancematrixapproach. fromapertures. Dualitytransformationssimplifythediscussions. Thespecialcasesof OurMATLAB-basednumericalsolutionsarenotmeanttoreplacesophisticatedcom- uniformrectangularandcircularaperturesarediscussedindetail. mercialfieldsolvers. Theinclusionofnumericalmethodsinthisbookwasmotivated Then, we embark on a long justification of the field equivalent principle and the by the desire to provide the reader with some simple tools for self-study and experi- derivationoftheStratton-ChuandKottler-Franzformulas,anddiscussvectordiffrac- mentation. Thestudyofnumericalmethodsinelectromagneticsisasubjectinitself tiontheory. Thismaterialisratherdifficultbutwehavebrokendownthederivations andourtreatmentdoesnotdojusticetoit. However,wefeltthatitwouldbefuntobe intologicalstepsusingseveralvectoranalysisidentitiesfromtheappendix. Oncethe abletoquicklycomputefairlyaccurateradiationpatternsofYagi-Udaandothercoupled ramificationsoftheKottlerformulasarediscussed,weapproximatetheformulaswith antennas,aswellasradiationpatternsofhornandreflectorantennas. theconventionalKirchhoffdiffractionintegralsanddiscussthescalartheoryofdiffrac- Theappendixincludessummariesofphysicalconstants,electromagneticfrequency tion. WeconsiderFresneldiffractionthroughaperturesandknife-edgediffractionand bands,vectoridentities,integraltheorems,Green’sfunctions,coordinatesystems,Fres- presentanintroductiontothegeometricaltheoryofdiffractionthroughSommerfeld’s nelintegrals,andadetailedlistoftheMATLABfunctions. Finally,thereisalarge(but exactsolutionofdiffractionbyaconductinghalf-plane. inevitably incomplete) list of references, arranged by topic area, that we hope could We apply the aperture radiation formulas to various types of aperture antennas, serveasastartingpointforfurtherstudy. suchasopen-endedwaveguides,horns,microstripantennas,andparabolicreflectors. Wepresentacomputationalapproachforthecalculationofhornradiationpatternsand MATLABToolbox optimumhorndesign. Weconsiderparabolicreflectorsinsomedetail,discussingthe aperture-field and current-distribution methods, reflector feeds, gain and beamwidth ThetextmakesextensiveuseofMATLAB.Wehavedevelopedan“ElectromagneticWaves properties, and numerical computations of the radiation patterns. We also discuss &Antennas”toolboxcontaining130MATLABfunctionsforcarryingoutallofthecom- brieflydual-reflectorandlensantennas. putations and simulation examples in the text. Code segments illustrating the usage Chapters18and19discussantennaarrays. Westartwiththeconceptofthearray of these functions are found throughout the book, and serve as a user manual. The factor,whichdeterminestheangularpatternofthearray. Weemphasizetheconnection functionsmaybegroupedintothefollowingcategories: toDSPandviewthearrayfactorasthespatialequivalentofthetransferfunctionofan FIRdigitalfilter. Weintroducebasicarrayconcepts,suchasthevisibleregion,grating 1. Design and analysis of multilayer film structures, including antireflection coat- lobes,directivity,beamwidth,arrayscanningandsteering,anddiscusstheproperties ings,polarizers,omnidirectionalmirrors,narrow-bandtransmissionfilters,bire- of uniform arrays. We present several array design methods for achieving a desired fringentmultilayerfilmsandgiantbirefringentoptics. angular radiation pattern, such as Schelkunoff’s zero-placement method, the Fourier 2. Designofquarter-wavelengthimpedancetransformersandotherimpedancematch- seriesmethodwithwindowing,anditsvariant,theWoodward-Lawsonmethod,known ingmethods,suchasChebyshevtransformers,dual-bandtransformers,stubmatch- inDSPasthefrequency-samplingmethod. ingandL-,Π-andT-sectionreactivematchingnetworks. Theissuesofproperlychoosingawindowfunctiontoachievedesiredpassbandand 3. Designandanalysisoftransmissionlinesandwaveguides,suchasmicrostriplines stopbandcharacteristicsarediscussed. WeemphasizetheuseoftheTaylor-Kaiserwin- anddielectricslabguides. dow,whichallowsthecontrolofthestopbandattenuation. UsingKaiser’sempiricalfor- www.ece.rutgers.edu/∼orfanidi/ewa xix 4. S-parameter functions for gain computations, Smith chart generation, stability, gain,andnoise-figurecircles,simultaneousconjugatematching,andmicrowave amplifierdesign. 5. Functionsforthecomputationofdirectivitiesandgainpatternsoflinearantennas, suchasdipole,vee,rhombic,andtraveling-waveantennas. 6. Aperture antenna functions for open-ended waveguides, horn antenna design, diffractionintegrals,andknife-edgediffractioncoefficients. 7. Antennaarraydesignfunctionsforuniform,binomial,Dolph-Chebyshev,Taylor arrays,sector-beam,multi-beam,Woodward-Lawson,andButlerarrays. Functions forbeamwidthanddirectivitycalculations,andforsteeringandscanningarrays. 8. NumericalmethodsforsolvingtheHall´enandPocklingtonintegralequationsfor singleandcoupledantennasandcomputingselfandmutualimpedances. 9. Severalfunctionsformakingazimuthalandpolarplotsofantennaandarraygain patternsindecibelsandabsoluteunits. 10. TherearealsoseveralMATLABmoviesshowingthepropagationofstepsignals andpulsesonterminatedtransmissionlines;thepropagationoncascadedlines; stepsignalsgettingreflectedfromreactiveterminations; faultlocationbyTDR; crosstalksignalspropagatingoncoupledlines;andthetime-evolutionofthefield linesradiatedbyaHertziandipole. TheMATLABfunctionsaswellasotherinformationaboutthebookmaybedown- loadedfromthewebpage: www.ece.rutgers.edu/~orfanidi/ewa. Acknowledgements SophoclesJ.Orfanidis April2003 viii ElectromagneticWaves&Antennas–S.J.Orfanidis–June21,2004 4 ReflectionandTransmission 86 4.1 PropagationMatrices, 86 4.2 MatchingMatrices, 90 4.3 ReflectedandTransmittedPower, 93 4.4 SingleDielectricSlab, 96 Contents 4.5 ReflectionlessSlab, 99 4.6 Time-DomainReflectionResponse, 107 4.7 TwoDielectricSlabs, 109 4.8 ReflectionbyaMovingBoundary, 111 4.9 Problems, 114 Preface xiv 5 MultilayerStructures 117 5.1 MultipleDielectricSlabs, 117 1 Maxwell’sEquations 1 5.2 AntireflectionCoatings, 119 5.3 DielectricMirrors, 124 1.1 Maxwell’sEquations, 1 5.4 PropagationBandgaps, 135 1.2 LorentzForce, 2 5.5 Narrow-BandTransmissionFilters, 135 1.3 ConstitutiveRelations, 3 5.6 EqualTravel-TimeMultilayerStructures, 140 1.4 BoundaryConditions, 6 5.7 ApplicationsofLayeredStructures, 154 1.5 Currents,Fluxes,andConservationLaws, 8 5.8 ChebyshevDesignofReflectionlessMultilayers, 157 1.6 ChargeConservation, 9 5.9 Problems, 165 1.7 EnergyFluxandEnergyConservation, 10 1.8 HarmonicTimeDependence, 12 6 ObliqueIncidence 168 1.9 SimpleModelsofDielectrics,Conductors,andPlasmas, 13 1.10 Problems, 21 6.1 ObliqueIncidenceandSnell’sLaws, 168 6.2 TransverseImpedance, 170 2 UniformPlaneWaves 25 6.3 PropagationandMatchingofTransverseFields, 173 6.4 FresnelReflectionCoefficients, 175 2.1 UniformPlaneWavesinLosslessMedia, 25 6.5 TotalInternalReflection, 177 2.2 MonochromaticWaves, 31 6.6 BrewsterAngle, 183 2.3 EnergyDensityandFlux, 34 6.7 ComplexWaves, 186 2.4 WaveImpedance, 35 6.8 ObliqueReflectionbyaMovingBoundary, 196 2.5 Polarization, 35 6.9 GeometricalOptics, 199 2.6 UniformPlaneWavesinLossyMedia, 42 6.10 Fermat’sPrinciple, 202 2.7 PropagationinWeaklyLossyDielectrics, 48 6.11 RayTracing, 204 2.8 PropagationinGoodConductors, 49 6.12 Problems, 215 2.9 PropagationinObliqueDirections, 50 2.10 ComplexorInhomogeneousWaves, 53 7 MultilayerFilmApplications 217 2.11 DopplerEffect, 55 2.12 Problems, 59 7.1 MultilayerDielectricStructuresatObliqueIncidence, 217 7.2 LossyMultilayerStructures, 219 3 PropagationinBirefringentMedia 65 7.3 SingleDielectricSlab, 221 7.4 AntireflectionCoatingsatObliqueIncidence, 223 3.1 LinearandCircularBirefringence, 65 7.5 OmnidirectionalDielectricMirrors, 227 3.2 UniaxialandBiaxialMedia, 66 7.6 PolarizingBeamSplitters, 237 3.3 ChiralMedia, 68 7.7 ReflectionandRefractioninBirefringentMedia, 240 3.4 GyrotropicMedia, 71 7.8 BrewsterandCriticalAnglesinBirefringentMedia, 244 3.5 LinearandCircularDichroism, 72 7.9 MultilayerBirefringentStructures, 247 3.6 ObliquePropagationinBirefringentMedia, 73 7.10 GiantBirefringentOptics, 249 3.7 Problems, 80 vii
Description: