ebook img

Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations PDF

298 Pages·2009·6.813 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations

SpringerSeriesin optical sciences 145 foundedbyH.K.V.Lotsch Editor-in-Chief: W.T.Rhodes,Atlanta EditorialBoard: A.Adibi,Atlanta T.Asakura,Sapporo T.W.Ha¨nsch,Garching T.Kamiya,Tokyo F.Krausz,Garching B.Monemar,Linko¨ping H.Venghaus,Berlin H.Weber,Berlin H.Weinfurter,Mu¨nchen SpringerSeriesin optical sciences TheSpringerSeriesinOpticalSciences,undertheleadershipofEditor-in-ChiefWilliamT.Rhodes,Georgia InstituteofTechnology,USA,providesanexpandingselectionofresearchmonographsinallmajorareasof optics:lasersandquantumoptics,ultrafastphenomena,opticalspectroscopytechniques,optoelectronics, quantuminformation,informationoptics,appliedlasertechnology,industrialapplications,andother topicsofcontemporaryinterest. Withthisbroadcoverageoftopics,theseriesisofusetoallresearchscientistsandengineerswhoneed up-to-datereferencebooks. Theeditorsencourageprospectiveauthorstocorrespondwiththeminadvanceofsubmittingamanu- script.SubmissionofmanuscriptsshouldbemadetotheEditor-in-ChieforoneoftheEditors.Seealso www.springer.com/series/624 Editor-in-Chief WilliamT.Rhodes GeorgiaInstituteofTechnology SchoolofElectricalandComputerEngineering Atlanta,GA30332-0250,USA E-mail:[email protected] EditorialBoard AliAdibi BoMonemar GeorgiaInstituteofTechnology DepartmentofPhysics SchoolofElectricalandComputerEngineering andMeasurementTechnology Atlanta,GA30332-0250,USA MaterialsScienceDivision E-mail:[email protected] Linko¨pingUniversity ToshimitsuAsakura 58183Linko¨ping,Sweden E-mail:[email protected] Hokkai-GakuenUniversity FacultyofEngineering HerbertVenghaus 1-1,Minami-26,Nishi11,Chuo-ku FraunhoferInstitutfu¨rNachrichtentechnik Sapporo,Hokkaido064-0926,Japan Heinrich-Hertz-Institut E-mail:[email protected] Einsteinufer37 TheodorW.Ha¨nsch 10587Berlin,Germany Max-Planck-Institutfu¨rQuantenoptik E-mail:[email protected] Hans-Kopfermann-Straße1 HorstWeber 85748Garching,Germany E-mail:[email protected] TechnischeUniversita¨tBerlin TakeshiKamiya OptischesInstitut Straßedes17.Juni135 MinistryofEducation,Culture,Sports 10623Berlin,Germany ScienceandTechnology E-mail:[email protected] NationalInstitutionforAcademicDegrees 3-29-1Otsuka,Bunkyo-ku HaraldWeinfurter Tokyo112-0012,Japan Ludwig-Maximilians-Universita¨tMu¨nchen E-mail:[email protected] SektionPhysik FerencKrausz Schellingstraße4/III Ludwig-Maximilians-Universita¨tMu¨nchen 80799Mu¨nchen,Germany Lehrstuhlfu¨rExperimentellePhysik E-mail:[email protected] AmCoulombwall1 85748Garching,Germany and Max-Planck-Institutfu¨rQuantenoptik Hans-Kopfermann-Straße1 85748Garching,Germany E-mail:[email protected] PleaseviewavailabletitlesinSpringerSeriesinOpticalSciences onserieshomepagehttp://www.springer.com/series/624 Tom Rother (cid:69)(cid:108)(cid:101)(cid:99)(cid:116)(cid:114)(cid:111)(cid:109)(cid:97)(cid:103)(cid:110)(cid:101)(cid:116)(cid:105)(cid:99) (cid:87)(cid:97)(cid:118)(cid:101)(cid:32)(cid:83)(cid:99)(cid:97)(cid:116)(cid:116)(cid:101)(cid:114)(cid:105)(cid:110)(cid:103)(cid:32)(cid:111)(cid:110)(cid:32) (cid:78)(cid:111)(cid:110)(cid:115)(cid:112)(cid:104)(cid:101)(cid:114)(cid:105)(cid:99)(cid:97)(cid:108)(cid:32)(cid:80)(cid:97)(cid:114)(cid:116)(cid:105)(cid:99)(cid:108)(cid:101)(cid:115) Basic Methodology and Simulations With 69 Figures ABC Dr.Tom Rother (cid:71)(cid:101)(cid:114)(cid:109)(cid:97)(cid:110)(cid:32)(cid:65)(cid:101)(cid:114)(cid:111)(cid:115)(cid:112)(cid:97)(cid:99)(cid:101)(cid:32)(cid:67)(cid:101)(cid:110)(cid:116)(cid:101)(cid:114)(cid:32)(cid:40)(cid:68)(cid:76)(cid:82)(cid:41) (cid:82)(cid:101)(cid:109)(cid:111)(cid:116)(cid:101)(cid:32)(cid:83)(cid:101)(cid:110)(cid:115)(cid:105)(cid:110)(cid:103)(cid:32)(cid:84)(cid:101)(cid:99)(cid:104)(cid:110)(cid:111)(cid:108)(cid:111)(cid:103)(cid:121)(cid:32)(cid:73)(cid:110)(cid:115)(cid:116)(cid:105)(cid:116)(cid:117)(cid:116)(cid:101) (cid:75)(cid:97)(cid:108)(cid:107)(cid:104)(cid:111)(cid:114)(cid:115)(cid:116)(cid:119)(cid:101)(cid:103)(cid:53)(cid:51)(cid:44)(cid:49)(cid:55) (cid:50)(cid:51)(cid:53)(cid:78)(cid:101)(cid:117)(cid:115)(cid:116)(cid:114)(cid:101)(cid:108)(cid:105)(cid:116)(cid:122) (cid:71)(cid:101)(cid:114)(cid:109)(cid:97)(cid:110)(cid:121) E-mail:[email protected] SpringerSeriesinOpticalSciences ISSN0342-4111 e-ISSN1556-1534 ISBN978-3-642-00703-3 e-ISBN978-3-642-00704-0 DOI10.1007/978-3-642-00704-0 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2009929699 (cid:2)c Springer-VerlagBerlinHeidelberg2009 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcast- ing,reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthis publicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawof September9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. ViolationsareliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,even in the absence of a specific statement,that such names are exempt from the relevant protectivelawsandregulationsandthereforefreeforgeneraluse. Cover design:SPi PublisherServices Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) The photo shows a 22-degree Halo phenomenon with sun dogs. It was taken by the author in March 1998 at the DLR site in Neustrelitz. This phenomenon is caused by light scattering on hexagonal ice columns (the 22-degree Halo) and ice plates (the sun dogs) in Cirrus clouds Preface Scatteringofelectromagneticwavesonthree-dimensional,dielectricstructures is a basic interaction process in physics, which is also of great practical im- portance. Most of our visual impressions are caused not by direct but by scattered light, as everybody can experience of looking directly at the sun. Several modern measurement technologies in technical and medical diagnos- tics are also based on this interaction process. Atmospheric remote sensing with lidar and radar as well as nephelometer instruments for measuring sus- pended particulates in a liquid or gas colloid are only a few examples where scattered electromagnetic waves provide us with information concerning the structure and consistence of the objects under consideration. Using the infor- mation of the elastically scattered electromagnetic wave is a common ground of most of those measuring methods. The phrase “elastically scattered” ex- presses the restriction that we consider such interaction processes only where the scattered wave possesses the same wavelength as the primary incident wave. This book addresses this special scattering problem. The methodology part of this book is concerned with the solution of the partial differential equations underlying this scattering process. These are especially the scalar Helmholtz equation and the vector-wave equation. From the mathematical point of view, we are faced with the solution of bound- ary value problems. This becomes especially simple if the boundary values are given along a constant coordinate line in one of the coordinate systems that allow a separation of the partial differential equation. Such problems are sometimes called “separable boundary value problems” in the literature. The applied method is the so-called “Separation of Variables method.” It reduces theprimarypartialdifferentialequationtoasetofordinarydifferentialequa- tionswhoseeigensolutionsserveafterwardsasexpansionfunctionstoapprox- imate the sought solution appropriately. Scattering of light on dielectric and ideal metallic spheres was first solved by this method in 1908 by Gustav Mie. TheMietheory,asitiscallednowadays,formsthebasisinmanyapplications even today. VIII Preface On the other hand, not the least due to the possibilities of modern computers, there can be observed a growing interest in modeling more and more realistic scattering scenarios which goes beyond the conventional Mie theory for spherical scatterers. If the geometry of the scatterer differs only slightlyfromthatofaseparablegeometrysimplerperturbationmethodsmay be applied successfully. But more often the deviation from such a separable geometry is much stronger so that we are forced to apply more rigorous nu- merical methods to solve the problem. A large variety of such methods have beendevelopedinthepast.Differinginconceptandexecutionthesemethods start from the common assumption that it is no longer possible to apply the Separation of Variables method. A critical discussion of this assumption is a major objective of this book. The Green functions are of special importance forthisdiscussion.Basedonthesefunctions,wewillshowthattherecanbees- tablished a formalism which provides a common methodological background for a variety of different numerical methods. But the so-called “T-matrix” method is within the focus of our interest. This special solution method was developed by Waterman at the end of the 1960s and beginning of the 1970s of the twentieth century. It has been proved to be very successful in many applications. This book at hand is restricted to the relatively simple case of model- ingelectromagneticwavescatteringonsingle,homogeneous,butnonspherical particlesinsphericalcoordinates.Neverthelessitprovidesasoundbasistode- velopthemethodsformorecomplexsituationsaswehave,ifscatteringonan ensemble of objects or on inhomogeneous objects (like multilayered particles, for example) is considered. Thebasicmethodologicalconsiderationsofthisbookarecomplementedin the second last chapter with numerical simulations of a few typical scattering scenarios. For these simulations we have developed a specific T-matrix code whichcanbefoundintheenclosedCD.Itsstructureandusageispresentedin detail. Thisprogramwillenablethereaderwhoismoreinterestedintangible calculations, to perform quickly his own numerical simulations, and, most important, to estimate the accuracy and usefulness of the obtained results. But this software can also be used in university lectures to demonstrate the principal aspects of light scattering. Some parts of this book began as notes of a special lecture given by the author at the Meteorological Institute of the University Leipzig. The considerations in the second to last chapter should reveal some of the numerical problems which must be solved if one tries to develop a certain T-matrix code. Naturally, this book is not the result of only my efforts. For the multitude of (partly very heavily) discussions over the years I sincerely thank my two colleagues at the Remote Sensing Technology Institute, Dr. K. Schmidt and Dr. J. Wauer. Special thanks are due to Dr. J. Wauer for his numerical work on the Rayleigh hypothesis as discussed in Chap.6, and for his work on the software package mieschka and the database. Special thanks are due also to the German Aerospace Center (DLR) for the confidence in my work over the Preface IX years,andforthefinancialaswellastheadministrativesupportwhichcannot be taken for granted nowadays. C. Ascheron at Springer deserves a word of thanks for his continuous interest,support,andencouragementafterthemanuscriptappearedviae-mail for the first time suddenly in his office. My gratitude is deepest, however, to my parents, who supported me in manifold ways and pushed me into the direction of science, and to my wife Doreen, who helped me without complaint through the nearly 7 years of writing this book. She also carefully read the manuscript and wiped out a lot of needless “m”-dashes – thus demonstrating that a musician and a physicist can really benefit from each other. Neustrelitz, Germany T. Rother June 2009 Contents 1 Scattering as a Boundary Value Problem .................. 1 1.1 Introduction ............................................ 1 1.2 Formulation of the Boundary Value Problems ............... 5 1.3 Solving the Boundary Value Problems with the Rayleigh Method ................................ 8 1.3.1 The Outer Dirichlet Problem ....................... 10 1.3.2 The Outer Transmission Problem.................... 12 2 Filling the Mathematical Tool Box......................... 17 2.1 Introduction ............................................ 17 2.2 Approximation of Functions and Fields at the Scatterer Surface .................................. 18 2.2.1 Approximation by Finite Series Expansions........... 19 2.2.2 Best Approximation ............................... 21 2.2.3 The Transformation Character of the T-Matrix ....... 24 2.3 Eigensolutions of the Scalar Helmholtz Equation in Spherical Coordinates ................................. 29 2.3.1 The Eigensolutions ................................ 30 2.3.2 The Combined Summation Index.................... 36 2.3.3 Properties of the Scalar Eigensolutions ............... 36 2.3.4 Expansion of a Scalar Plane Wave ................... 38 2.4 Eigensolutions of the Vector-Wave Equation in Spherical Coordinates ................................. 41 2.4.1 The Vectorial Eigensolutions........................ 41 2.4.2 Properties of the Vectorial Eigensolutions ............ 46 2.4.3 Expansion of a Linearly Polarized Plane Wave ........ 51 2.5 Green Theorems and Green Functions Related to the Scalar Boundary Value Problems .................... 57 2.5.1 The Green Theorems .............................. 58 2.5.2 The Free-Space Green Function ..................... 59 XII Contents 2.5.3 The Green Functions Related to the Outer Dirichlet and Transmission Problem.......................... 65 2.6 Green Theorems and Green Functions Related to the Vectorial Boundary Value Problems.................. 67 2.6.1 Dyadics .......................................... 67 2.6.2 The Green Theorems .............................. 70 2.6.3 The Dyadic Free-Space Green Function .............. 71 2.6.4 The Dyadic Green Functions Related to the Outer Dirichlet and Transmission Problem ................. 74 3 First Approach to the Green Functions: The Rayleigh Method ..................................... 77 3.1 Introduction ............................................ 77 3.2 The Scalar Delta Distribution at the Scatterer Surface ....... 79 3.3 The Scalar Green Functions Related to the Helmholtz Equation ............................................... 79 3.3.1 The Outer Dirichlet Problem ....................... 79 3.3.2 The Outer Transmission Problem.................... 87 3.4 The Dyadic Delta Distribution at the Scatterer Surface....... 89 3.5 The Dyadic Green Functions Related to the Vector-Wave Equation ............................................... 91 3.5.1 The Outer Dirichlet Problem ....................... 91 3.5.2 The Outer Transmission Problem.................... 97 4 Second Approach to the Green Functions: The Self-Consistent Way................................... 99 4.1 Introduction ............................................ 99 4.2 The Scalar Green Functions Related to the Helmholtz Equation................................100 4.2.1 The Outer Dirichlet Problem .......................100 4.2.2 The Outer Transmission Problem....................103 4.3 The Dyadic Green Functions Related to the Vector-Wave Equation .............................105 4.3.1 The Outer Dirichlet Problem .......................105 4.3.2 The Outer Transmission Problem....................107 4.4 Symmetry and Unitarity .................................109 4.4.1 Symmetry ........................................110 4.4.2 Unitarity.........................................113 5 Other Solution Methods ...................................123 5.1 Introduction ............................................123 5.2 T-Matrix Methods.......................................124 5.2.1 The Extended Boundary Condition Method ..........124 5.2.2 Point Matching Methods ...........................130

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.