ebook img

Electromagnetic Radiation from QCD Matter: Theory Overview PDF

0.78 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electromagnetic Radiation from QCD Matter: Theory Overview

Nuclear Physics A NuclearPhysicsA00(2016)1–9 www.elsevier.com/locate/procedia TheXXVthInternationalConferenceonUltrarelativisticNucleus-Nucleus Collisions Electromagnetic Radiation from QCD Matter: Theory 6 Overview 1 0 2 n Chun Shen a J DepartmentofPhysics,McGillUniversity,3600UniversityStreet,Montreal,QC,H3A2T8,Canada 1 1 ] h t - Abstract l c Recent theory developments in electromagnetic radiation from relativistic heavy-ion collisions are re- u n viewed.Electromagneticobservablescanserveasathermometer,aviscometer,andtomographicprobesto [ thecollisionsystem.Thecurrentstatusofthe“directphotonflowpuzzle”ishighlighted. 1 Keywords: Directphotons;dileptons;quark-gluonplasma;electromagnetictomography v 3 6 1. Introduction 5 2 Relativisticheavy-ioncollisionexperimentsconductedattheRelativisticHeavy-IonCollider 0 (RHIC)andtheLargeHadronCollider(LHC)createanenvironmentatatemperatureofatril- 1. lion degrees, to study the property of dense nuclear matter. Electromagnetic probes, such as 0 direct photons and dileptons (e+e− and µ+µ− pairs) are recognized as valuable messengers in 6 suchcollisions. Becausephotonsanddileptonsinteractonlyelectromagnetically, theyareable 1 topenetratethemediumandcarryalmostundistorteddynamicalinformationandreportoncon- : v ditions existing at their production point. Such probes are sensitive to the early stages of the i collision system, to thermal and transport properties of the quark-gluon plasma (QGP), and to X thedynamicalevolutionproceedingfromthecross-overregionstothehadronicphase. There- r a centdirectphotonmeasurementsshowlargeyieldsofphotonsandlargemomentumanisotropies for p < 4GeV[1,2,3,4]. Theoreticalcalculationsstillunderestimatethesechallengingmea- T surements: thistensionhasbeendubbedthe“directphotonflowpuzzle”. In this proceeding, I review recent theoretical developments which demonstrate that elec- tromagnetic probes can provide us with important information, complementary to that carried ChunShen/NuclearPhysicsA00(2016)1–9 2 by the majority of hadronic observables. The progress in theory towards resolving the “direct photonflowpuzzle”isalsodiscussed. 2. Thermometer Realandvirtualphotonsareregardedasusefultoolsforexperimentallyaccessingthetem- peratureoftheQGPcreatedinheavy-ioncollisions[5,6]. Theslopesofthephotonanddilepton spectraencodetemperatureinformationofthecollisionsystem. Direct photon spectra have been measured by the PHENIX, STAR, and ALICE Collabora- tions in heavy-ion collisions at the top RHIC and LHC energies[1, 2]. The low p part of the T spectracanbewellcharacterizedbytheirinverselogarithmicslopeTeff. TheP√HENIXCollabo- rationreportedTeff =(239±25stat±7sys)MeVfor0-20%Au+Aucollisionsat sNN =200GeV [1]andth√eALICECollaborationfoundTeff =(304±11stat±40sys)MeVin0-20%Pb+Pbcolli- sionsat s =2.76TeV[2].Quantitivestudies[7,8]haveshownthatthermalphotonsemitted NN fromT <250MeVreceivedasignificantblue-shiftfromhydrodynamicflow,asillustratedinthe leftpanelofFig.1. Asolidextractionoftheinitialtemperatureofthecollisionsystemrequires 400 Central AA Collisions 350 300 V)250 e M200 T (150 Tpc 100 T (M=1.5-2.5 GeV) s 50 T i 0 10 100 1/2 s (GeV) Fig.1. LeftPanel: Theinverseslopeofthermalphotonspectrumemittedfromhydrodynamicfluidcellsasafunction ofthelocaltemperature. TheplotistakenfromRef.[8]. RightPanel: Temperatures(Ts)extractedfromtheslopeof thermaldileptoninvariantmassspectrumintherangeM=1.5−2.5GeV,comparedwiththeinitialtemperatureofthe fireballTiatthedifferentcollisionenergies.ThefigureistakenfromRef.[9]. detailedcomparisonsbetweenexperimentaldataanddynamicalmodelsimulations. Ontheotherhand,thermaldileptoninvariant-massspectraarefreefromtheblue-shiftcon- tamination. The authors in Ref.[9] demonstrated that the slope of dilepton spectrum in the in- termediatemassregion(IMR),1.5GeV< M < 2.5GeV,couldprovidecleantemperatureinfor- mation about the collision system. The extracted averaged temperature was about 30% lower thanthecorrespondinginitialoneatthetopRHICenergy(seerightpanelofFig.1). Thisdiffer- enceshrankasthecollisionenergydecreased. Thermaldileptoninvariantmassspectraprovide model-independent information about the collision system. In addition, Refs.[9, 10, 11, 12] showed that dilepton invariant mass spectra were valuable tools to probe the properties of the baryon-richfireballintheRHICBeamEnergyScan(BES)program[13,14]. Finally, dilepton invariant mass spectrum can help us to study the in-medium modification of the vector meson (ρ-meson)spectralfunction,whichhasadirectconnectiontochiralrestorationduringthephase transition[15]. ChunShen/NuclearPhysicsA00(2016)1–9 3 3. Viscometer Inrelativisticheavy-ioncollisions,themediumdoesnotstayinthermalequilibriumduringits evolution.Out-of-equilibriumdynamicscanthereforeinfluencetheelectromagneticobservables. Effects on thermal photon emission owing to locally anisotropic particle distributions were firstinvestigatedinRef.[16,17]. Morecompletecalculationsoftheshearviscouscorrectionsto thephotonproductionrateswereperformedinRef.[18,19,20],andtherelatedphenomenologi- calimpactswerestudiedinRef.[18,21,22]. Theviscoushydrodynamicevolutionbyitselfwas foundtoincreasethenetphotonellipticflow[22],becausetheinitialtemperatureofthesystem is lower with non-zero specific shear viscosity in order to compensate for the entropy produc- tion during the evolution. This reduced early stage QGP photon emission at high p , which T then increased the relative weight of photons from later stages which carry a large momentum anisotropy. Similar effects were also found in Ref.[23]. The further inclusion of the viscous correctionstothephotonemissionratesreducedthethermalphotonv [18,21]. n Effects from bulk viscosity were recently studied in Ref.[24, 25]. The inclusion of a non- vanishingbulkviscositynearthephasetransitionwasrecentlyfoundtobeessentialtoprovidea gooddescriptionofidentifiedhadronmean-p measurements[24].Theextraentropyproduction T from bulk viscosity increases the space-time volume in the late hadronic phase by about 50%, which allows more thermal photon radiation. Another consequence of the inclusion of bulk viscosityistoreducethehydrodynamicalradialflowby∼10%atthelatestageoftheevolution: this transport coefficient slows down the fireball expansion and weakens the blue shift of the thermalphotonspectrum. Botheffectstogetherincreasethethermalphotonyieldsinthelow p T regionsandshiftthepeakofthedirectphotonv (p )towardsthelow p regions[25]. 2 T T Finally,virtualphotons,measuredasleptonpairs,havealsobeenshowntobeacleanandsen- sitiveprobeoftheout-of-equilibriumdynamicsofthesystem. Recentstudieshavedemonstrated that, compared to hadronic observables, the thermal dilepton spectrum and its flow anisotropy show a larger sensitivity to the early time dynamics, to the system’s shear stress tensor πµν, to thetemperaturedependenceofshearviscosityη/s(T),andeventothechoiceofthesecondorder transportcoefficientτ [26,27]. π 4. Statusofresolvingthe“directphotonflowpuzzle” EversincetheunexpectedlylargedirectphotonellipticflowreportedbythePHENIXCol- laboration in Au+Au collisions at RHIC[28], the tension with the experimental measurements hasgeneratedconsiderabletheoreticalefforttoresolvethe“directphotonflowpuzzle”. Fig.2capturesthecurrentsituationofmodel-datacomparisonsfordirectphotonspectraand theiranisotropicflowcoefficients.1 Withrespecttosomeearliercalculations[33,34],thetension betweenexperimentalmeasurementsandtheoryisnowconsiderablyreduced. Calculationswith different hydrodynamic evolution [25, 29] give similar results for direct photon spectrum and ellipticflowcoefficientfor p >1GeV.Themajorimprovementscommontothesecalculations T were the inclusion of a more complete set of hadronic emission channels, namely the contri- butions from ρ-spectral function[35, 36], ππ bremsstrahlung[37, 38], πρω channels[39], and short-lived resonances feed-down[29, 34]. The remaining difference below 1 GeV originates 1Please see Ref.[32] for a recent detailed review about the theoretical efforts to resolve the “direct photon flow puzzle”. ChunShen/NuclearPhysicsA00(2016)1–9 4 102 (a) 0.2 ccoanlovreimrseiotenr (b) 1102..00 (d) 0-20% Pb+aPrXbi v@:1 520.97.066 T7e38V 0.15 ALICE data 101 0-20% Au+Au @ RHIC 8.0 v2 0.1 γRAA 6.0 2eV)−100 0.05 4.0 (Gπdypdp)TT10-1 00..01 (c) 028...000 (e) 20-40% Pb+PbA L@IC E2 d.7a6ta TeV N/(210-2 0.08 6.0 d v30.06 γRAA 10-3 PHSD 0.04 4.0 TAMU (with ideal hydro) McGill (IP-Glasma shear+bulk) 0.02 2.0 PHENIX data 10-4 0.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 pT (GeV) pT (GeV) pT (GeV) Fig.2. Panels(a)-(c): Theoreticalcalculationsofdirectphotonspectra√andtheirflowanisotropyv2(pT)andv3(pT) comparedwiththePHENIXmeasurementsin0-20%Au+Aucollisionsat sNN=200GeV[1,3].Theuncertaintyband intheTAMUresultspresentedtwochoicesofthepromptsources[29].ThePHSDresultsweretakenfromRef.[30].The errorbandisdominatedbytheuncertaintyinthemodelingofthecrosssections. Statisticalerrorswereindicatedasa bandintheMcGillresults[25].Thelegendin(a)appliestoPanels(b)and(c).Panels(d),(e):Thenuclearmodification √ factorofdirectphotonRγAAin0-20%and20-40%Pb+Pbcollisionsat sNN=2.76TeV[2,31]. from different extrapolations procedures for the prompt photon source. The McGill group ex- trapolatedthepQCDpromptphotonsourcetolow p usingresultsfromdifferentfragmentation T scales[25], while the TAMU group suppressed soft prompt photon production with formation timeslongerthanthethermalizationtimeofthecollisionsystem[29,36]. Byconsideringevent- by-event fluctuations as well as both shear and bulk viscous effects on the photon production mechanisms,theresultspresentedinRef.[25]achievegoodagreementwithexperimentaldata, andalsoanmakestatementsonthetriangularflowofdirectphotons. Finally,theoreticaluncer- taintiesinthephotonemissionrelatedtononperturbativephysicswereinvestigatedinRef.[25], byconsideringtheSemi-QGPscenario[40,41,42]andanalternativehadronicemissionrate[43] (alsoseediscussionsinRef.[32]). Adoptingthose,thevariationinthefinalresultissmallerthan currentdatasystematicerrors. Moreaccuratemeasurementscouldhoweverdistinguishbetween thosedifferenttechniquesandthereforesetconstraintsonphotonemissionrates. Consideringalternativestohydrodynamicapproaches,directphotonswerestudiedusingmi- croscopic transport simulations[30]. The PHSD model provides a level of agreement with the experimentalmeasurementin0-20%Au+AucollisionsshowninFig.2a. Thecentralitydepen- dence of direct photon observables in semi-peripheral collisions were better reproduced in the PHSDmodelowingtolargerhadronicbremsstrahlungcontributions[30]. Achannel-by-channel comparisonbetweenthetransportandhydrodynamicapproacheswaspresentedinRef.[32].One foundasimilarQGPphotonemissionfromthetwoapproaches,butaratherdifferentcontribution fromhadronicbremsstrahlungprocesses. ThePHSDmodeladditionallyincludesmeson-baryon bremsstrahlung,usinganimprovedsoftphotonapproximation[30]. Forππbremsstrahlung,the PHSD model produced ∼4 times more photons than in hydrodynamic calculations[32]. This might suggestadditional sourcesfrom thedilute hadronicphase, whichare not currentlymod- elled in the hydrodynamic framework. A closer look at the space-time structure of hadronic photon emission will elucidate the origin(s) of the difference between the two models. Com- parisonswithrecentphotoncalculationsusingacoarse-grainedUrQMDmedium[44,45]inthe ChunShen/NuclearPhysicsA00(2016)1–9 5 hadronicphasewillalsoshedlightonthisissue. 5. Event-by-eventtomography Thermalphotonscanalsoserveasatomographicprobewhichreportsonthedynamicsand property of the interior of the fireball, in analogy with the now common medical CT scan. A space-timeanalysisofthermalphotonproductionin0-20%Au+AucollisionsisshowninFig.3a. A two-wave structure of thermal photon emission was found [21]. The first wave is from high thermal photons thermal photons thermal photons before weighting before weighting after weighting by their yields by their yields by their yields (a) (b) (b) (c) Fig.3.ColorcontourplotsforthermalphotonyieldPanel(a)anditsellipticflowcoefficientPanels(b)and(c)withand withoutmultiplicityweightsasfunctionoflocaltemperatureandpropertimeofthefluidcells. temperature regions during the early stage of the evolution and the second wave sits near the cross-overregionandisconnectedwithalargespace-timevolume[21,29]. Thedevelopmentof thermalphotonellipticflowineveryfluidcellisillustratedinFig.3b. Thermalphotonsemitted atthelatestageofthecollisionscarrylargeellipticflow. Afterweightingwiththephotonyield ineveryfluidcell,weobservethatthemostoftheellipticflowsignaliscomingfromthecross- over region between τ = 3−8 fm/c shown in Fig.3c. In contrast to charged hadrons, whose momentum distributions only freeze-out below T = 120MeV, thermal photons indeed carry dec directdynamicalinformationfromthehighertemperatureregionsandfromearliertime. Furthermore, color tomographic probes, such as energetic quarks, will lose some of their energy and radiate soft photons when penetrating the QGP medium. Photons from these jet- medium interactions were shown as an important source in the direct photon spectra for 2 < p < 4GeV[46]. Recently,anewphotonproductionprocessduringthejet-mediuminteraction T wascomputedinRef.[47].Theinvestigationofitsimportanceinphenomenologicalstudieswith realistic event-by-event hydrodynamic medium is an active and ongoing research subject. Ad- ditionally,photonproductionduringthehadronizationstageisproposedinRef.[48,49]. These processesprobedifferentspace-timeregionsoftheevolvingmedium. Theirrelativeimportance in the final direct photon signal requires a quantitative calculation of their absolute yield, and a comparison with the dominant thermal sources. The current state-of-the-art hydrodynamic framework[25,50]willprovideanexcellenttestgroundforthesenewideas. Finally,arecentwork[51]studiedthedirectphotonproductioninsmallcollisionsystemsat theRHICandLHCenergies. Fig.4(a-d)presentstheorypredictionsofthedirectphotonnuclear modificationfactorRγ forthesecases. A∼50%thermalenhancementoverthepromptpQCD AA contribution in the direct photon yield was found for p < 3GeV in minimum bias collisions. T Eventhoughtheoverallstrengthofthesignalissmallwhencomparedtothethermalenhance- ment in Pb+Pb collisions shown in Figs.2d and 2e, such a measurement can serve to support ChunShen/NuclearPhysicsA00(2016)1–9 6 2.0 pQCD 2.0 PHENIX Pb1.5 min. bias Au1.5 Rp1.0 Rd1.0 0.5 (a) p+Pb @ 5.02 TeV 0.5 (c) d+Au @ 200 GeV 0.0 0.0 2.0 2.0 RpAu11..05 3HeAu11..05 R 0.5 (b) p+Au @ 200 GeV 0.5 (d) 3He+Au @ 200 GeV 0.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 1.0 2.0 3.0 4.0 5.0 6.0 p (GeV) p (GeV) T T Fig.4.ThenuclearmodificationfactorRγ ofdirectphotonsinsmallcollisionsystems[51].Minimumbiascalculation AA ind+Aucollisionsat200GeViscomparedwiththePHENIXmeasurement[52]. theexistenceofathermalizedQGPinsmallsystemsatRHICandtheLHC,thereforeactingto complementtheevidencecarriedbyhadronicobservables. Theexistingdataind+Aucollisions atthetopRHICenergystillcarrylargeuncertaintiesandcanthisnotbeusedtodrawdecisive conclusionontheexistenceofathermalcomponent[52]. Futureelectromagneticmeasurements with improved accuracy and for different collision systems (p+Au, 3He+Au, and p+Pb) will guideourunderstandingofthedynamicsandofthepropertiesofsmallQGPdroplets. 6. Conclusionandoutlook Modeling electromagnetic observables is a double-edged sword, as it is sensitive to every aspectoftherelativisticheavy-ioncollisions: out-of-equilibriumdynamicsofthecollisionsys- tems;thermalandtransportpropertiesoftheQGPmatter;andnon-perturbativeaspectsnearthe cross-over region. For the very same reasons, a well-calibrated calculation can turn the elec- tromagneticprobesintovaluablemessengersofthefleetingmedium. Thermaldileptonspectra have the potential to offer a direct access to the thermal property of the fireball. Direct photon observablesareintimatelyconnectedwiththedynamicalevolutionofthebulkmedium,andcan beutilizedasaviscometerandasatomographicprobe. Electromagneticprobesshouldcontinue toplayanactiveroleinthefutureRHIC(BES)programphaseII,andinexperimentsatFAIR. Yesterday’spuzzlestimulatedtoday’seffortsandwillbecometomorrow’sbackground. The recenttheoreticalworkhasincreasedtherelativeweightoflatehadronicphotonemissioninthe directphotonsignal. Thisproducesalargersoftphotonemission,accompaniedbylargerdirect photon anisotropic flow coefficients. The net effect is to greatly reduced the tension between theoryandtheexperimentalmeasurements. Indeed,themodel-datacomparisonshavetransited fromaqualitativedescriptiontoamorequantitativeextractionofthephotonemissionratesand andamoreprecisedeterminationofthemediumproperties. Currenttheoreticalcalculationsarelimitedbyuncertaintieslinkedtonon-perturbativephysics; theinputfromexperimentscanguideandinformfuturecalculations. Firstly,theoryneedsmea- surementsofthelowmomentum(p < 1GeV)photonspectrainppcollisionsatthetopRHIC T and LHC energies. They can reduce the (considerable) theoretical uncertainties in extrapolat- ing the pQCD prompt source to low p , and provide a reliable baseline for measurements in T alllargercollisionsystems. Secondly,areductionofthesystematicuncertaintiesinthecurrent direct photon measurements can set stronger constraints on our current knowledge of the pho- ton emission rates and on the dynamical evolution of the collision systems. Finally, it will be usefulandevenimportanttohavedirectphotonanddileptonmeasurementsinvariouscollisions ChunShen/NuclearPhysicsA00(2016)1–9 7 systems,e.g. (p,d,3He,Al,Cu)+Au,Au+AuandPb+Pbcollisionsatdifferentenergies: every collisionsystemhasitsuniquespace-timeevolutionstructure. Acollectionofcollisionsystems willprovidetheimportantandcomplementarydiagnosticmeasurementsnecessarytoprobehot anddensenuclearmatterinthedifferentregionsoftheQCDphasediagram. Acknowledgement: IthankGabrielDenicol,CharlesGale,SangyongJeon,andJean-Franc¸ois Paquetfortheircollaboration,andElenaBratkovskaya,WolfgangCassing,OlenaLinnyk,Hen- drikvanHees,MinHe,andRalfRappforprovidingthetheoreticalcalculationsinFig.2,andfor usefuldiscussions. ThisworkwassupportedbytheNaturalSciencesandEngineeringResearch CouncilofCanada. References √ [1] A.Adare,etal.,Centralitydependenceoflow-momentumdirect-photonproductioninAu+Aucollisionsat s = NN 200GeV,Phys.Rev.C91(6)(2015)064904.arXiv:1405.3940,doi:10.1103/PhysRevC.91.064904. √ [2] J.Adam,etal.,DirectphotonproductioninPb-Pbcollisionsat sNN=2.76TeV,arXiv:1509.07324. [3] A. Adare, et al., Azimuthally anisotropic emission of low-momentum direct photons in Au+Au collisions at √ s =200GeV,arXiv:1509.07758. NN [4] R.Chatterjee,E.S.Frodermann,U.W.Heinz,D.K.Srivastava,Ellipticflowofthermalphotonsinrelativisticnu- clearcollisions,Phys.Rev.Lett.96(2006)202302. arXiv:nucl-th/0511079,doi:10.1103/PhysRevLett. 96.202302. [5] E.V.Shuryak,Quark-GluonPlasmaandHadronicProductionofLeptons,PhotonsandPsions,Phys.Lett.B78 (1978)150,[Yad.Fiz.28,796(1978)].doi:10.1016/0370-2693(78)90370-2. [6] R.C.Hwa,K.Kajantie,DiagnosingQuarkMatterbyMeasuringtheTotalEntropyandthePhotonOrDilepton EmissionRates,Phys.Rev.D32(1985)1109.doi:10.1103/PhysRevD.32.1109. [7] H.vanHees,C.Gale,R.Rapp,ThermalPhotonsandCollectiveFlowattheRelativisticHeavy-IonCollider,Phys. Rev.C84(2011)054906.arXiv:1108.2131,doi:10.1103/PhysRevC.84.054906. [8] C.Shen,U.W.Heinz,J.-F.Paquet,C.Gale,Thermalphotonsasaquark-gluonplasmathermometerreexamined, Phys.Rev.C89(4)(2014)044910.arXiv:1308.2440,doi:10.1103/PhysRevC.89.044910. [9] R.Rapp,H.vanHees,ThermalDileptonsasFireballThermometerandChronometer,Phys.Lett.Binpress,arXiv: 1411.4612. [10] R.Rapp,DileptonProductioninHeavy-IonCollisions,PoSCPOD2013(2013)008.arXiv:1306.6394. [11] E.L.Bratkovskaya,W.Cassing,V.P.Konchakovski,O.Linnyk,Parton-Hadron-StringDynamicsatRelativistic ColliderEnergies,Nucl.Phys.A856(2011)162–182. [12] G.Vujanovic,G.S.Denicol,C.Shen,M.Luzum,B.Schenke,S.Jeon,C.Gale,Dileptonemissioninhigh-energy heavy-ioncollisionswithdissipativehydrodynamics,2015.arXiv:1510.00441. [13] N.Xu,AnOverviewofSTARExperimentalResults,Nucl.Phys.A931(2014)1–12. √ [14] L.Adamczyk,etal.,MeasurementsofDielectronProductioninAu+AuCollisionsat sNN=200GeVfromthe STARExperiment,Phys.Rev.C92(2)(2015)024912. [15] P.M.Hohler, R.Rapp, MassiveYang-MillsforVectorandAxial-VectorSpectralFunctionsatFiniteTempera- ture,arXiv:1510.00454. [16] B.Schenke,M.Strickland,Photonproductionfromananisotropicquark-gluonplasma,Phys.Rev.D76(2007) 025023.arXiv:hep-ph/0611332,doi:10.1103/PhysRevD.76.025023. [17] K.Dusling,Photonsasaviscometerofheavyioncollisions,Nucl.Phys.A839(2010)70–77.arXiv:0903.1764, doi:10.1016/j.nuclphysa.2010.04.001. [18] M.Dion,J.-F.Paquet,B.Schenke,C.Young,S.Jeon,C.Gale,Viscousphotonsinrelativisticheavyioncollisions, Phys.Rev.C84(2011)064901.arXiv:1109.4405,doi:10.1103/PhysRevC.84.064901. [19] C.Shen,J.-F.Paquet,U.Heinz,C.Gale,PhotonEmissionfromaMomentumAnisotropicQuark-GluonPlasma, Phys.Rev.C91(1)(2015)014908.arXiv:1410.3404,doi:10.1103/PhysRevC.91.014908. [20] C.Shen,Thestandardmodelforrelativisticheavy-ioncollisionsandelectromagnetictomography,Ph.D.thesis, TheOhioStateUniversity(2014). [21] C.Shen,U.W.Heinz,J.-F.Paquet,I.Kozlov,C.Gale,Anisotropicflowofthermalphotonsasaquark-gluonplasma viscometer,Phys.Rev.C91(2)(2015)024908.arXiv:1308.2111,doi:10.1103/PhysRevC.91.024908. [22] C.Shen,U.Heinz,J.-F.Paquet,C.Gale,Thermalphotonanisotropicflowservesasaquark-gluonplasmaviscome- ter,Nucl.Phys.A932(2014)184–188.arXiv:1403.7558,doi:10.1016/j.nuclphysa.2014.07.042. ChunShen/NuclearPhysicsA00(2016)1–9 8 [23] L.Bhattacharya, R.Ryblewski, M.Strickland, Photonproductionfromanon-equilibriumquark-gluonplasma, arXiv:1507.06605. [24] S.Ryu,J.F.Paquet,C.Shen,G.S.Denicol,B.Schenke,S.Jeon,C.Gale,ImportanceoftheBulkViscosityof QCDinUltrarelativisticHeavy-IonCollisions,Phys.Rev.Lett.115(13)(2015)132301.arXiv:1502.01675. [25] J.-F.Paquet, C.Shen, G.S.Denicol, M.Luzum, B.Schenke, S.Jeon, C.Gale, Theproductionofphotonsin relativisticheavy-ioncollisions,arXiv:1509.06738. [26] R. Ryblewski, M. Strickland, Dilepton production from the quark-gluon plasma using (3+1)-dimensional anisotropicdissipativehydrodynamics,Phys.Rev.D92(2)(2015)025026. [27] G.Vujanovic,J.-F.Paquet,G.S.Denicol,M.Luzum,B.Schenke,S.Jeon,C.Gale,Probingthenon-equilibrium dynamicsofhotanddenseQCDwithdileptons,Nucl.Phys.A931(2014)701–705. √ [28] A.Adare,etal.,Observationofdirect-photoncollectiveflowin sNN =200GeVAu+Aucollisions,Phys.Rev. Lett.109(2012)122302.arXiv:1105.4126,doi:10.1103/PhysRevLett.109.122302. [29] H.vanHees,M.He,R.Rapp,Pseudo-CriticalEnhancementofThermalPhotonsinRelativisticHeavy-IonColli- sions,Nucl.Phys.A933(2015)256–271.arXiv:1404.2846,doi:10.1016/j.nuclphysa.2014.09.009. [30] O.Linnyk,V.Konchakovski,T.Steinert,W.Cassing,E.L.Bratkovskaya,Hadronicandpartonicsourcesofdirect photonsinrelativisticheavy-ioncollisions,Phys.Rev.C92(5)(2015)054914.arXiv:1504.05699. √ [31] B.Sahlmueller,DirectphotonmeasurementinPb-Pbcollisionsat sNN=2.76TeVwithALICE,2015. arXiv: 1512.04230. [32] C.Shen,Recentdevelopmentsinthetheoryofelectromagneticprobesinrelativisticheavy-ioncollisions.arXiv: 1511.07708. [33] R.Chatterjee,H.Holopainen,I.Helenius,T.Renk,K.J.Eskola,Ellipticflowofthermalphotonsfromevent-by- eventhydrodynamicmodel,Phys.Rev.C88(2013)034901. arXiv:1305.6443,doi:10.1103/PhysRevC.88. 034901. [34] C.Shen, J.-F.Paquet, J.Liu, G.Denicol, U.Heinz, C.Gale, Event-by-eventdirectphotonanisotropicflowin relativisticheavy-ioncollisions,Nucl.Phys.A931(2014)675–680.arXiv:1407.8533. [35] R.Rapp,J.Wambach,Chiralsymmetryrestorationanddileptonsinrelativisticheavyioncollisions,Adv.Nucl. Phys.25(2000)1.arXiv:hep-ph/9909229,doi:10.1007/0-306-47101-9\_1. [36] S.Turbide,R.Rapp,C.Gale,Hadronicproductionofthermalphotons,Phys.Rev.C69(2004)014903. arXiv: hep-ph/0308085,doi:10.1103/PhysRevC.69.014903. [37] W.Liu,R.Rapp,Low-energythermalphotonsfrommeson-mesonbremsstrahlung,Nucl.Phys.A796(2007)101– 121.arXiv:nucl-th/0604031,doi:10.1016/j.nuclphysa.2007.08.014. [38] M.Heffernan,P.Hohler,R.Rapp,UniversalParametrizationofThermalPhotonRatesinHadronicMatter,Phys. Rev.C91(2)(2015)027902.arXiv:1411.7012,doi:10.1103/PhysRevC.91.027902. [39] N.P.M.Holt,P.M.Hohler,R.Rapp,Thermalphotonemissionfromthe system,Nucl.Phys.A945(2016)1–20. arXiv:1506.09205,doi:10.1016/j.nuclphysa.2015.09.008. [40] Y.Hidaka,S.Lin,R.D.Pisarski,D.Satow,DileptonandphotonproductioninthepresenceofanontrivialPolyakov loop,JHEP10(2015)005.arXiv:1504.01770,doi:10.1007/JHEP10(2015)005. [41] D.Satow,W.Weise,Chiralsymmetrybreakingandconfinementeffectsondileptonandphotonproductionaround Tc,Phys.Rev.D92(5)(2015)056001.arXiv:1505.03869,doi:10.1103/PhysRevD.92.056001. [42] C.Gale,Y.Hidaka,S.Jeon,S.Lin,J.-F.Paquet,R.D.Pisarski,D.Satow,V.V.Skokov,G.Vujanovic,Production andEllipticFlowofDileptonsandPhotonsinaMatrixModeloftheQuark-GluonPlasma,Phys.Rev.Lett.114 (2015)072301.arXiv:1409.4778,doi:10.1103/PhysRevLett.114.072301. [43] K.Dusling,I.Zahed,Thermalphotonsfromheavyioncollisions: Aspectralfunctionapproach,Phys.Rev.C82 (2010)054909.arXiv:0911.2426,doi:10.1103/PhysRevC.82.054909. [44] S.Endres,H.vanHees,J.Weil,M.Bleicher,Coarse-grainingapproachfordileptonproductionatenergiesavailable attheCERNSuperProtonSynchrotron,Phys.Rev.C91(5)(2015)054911.arXiv:1412.1965. [45] S. Endres, H. van Hees, M. Bleicher, Photon and dilepton production at FAIR and RHIC-BES energies using coarse-grainedmicroscopictransportsimulationsarXiv:1512.06549. [46] G.-Y.Qin,J.Ruppert,C.Gale,S.Jeon,G.D.Moore,Jetenergyloss,photonproduction,andphoton-hadroncor- relationsatRHIC,Phys.Rev.C80(2009)054909.arXiv:0906.3280,doi:10.1103/PhysRevC.80.054909. [47] G.-Y.Qin,A.Majumder,Jettransportandphotonbremsstrahlungvialongitudinalandtransversescattering,Phys. Rev.C91(4)(2015)044906.arXiv:1411.5642,doi:10.1103/PhysRevC.91.044906. [48] S. Campbell, Photon production from gluon-mediated quarkanti-quark annihilation at confinement, Phys. Rev. C92(1)(2015)014907.arXiv:1504.01654,doi:10.1103/PhysRevC.92.014907. [49] C.Young, S.Pratt, Electromagneticrecombinationspectraatthequark-hadronphasetransition, arXiv:1511. 03147. [50] C.Shen,Z.Qiu,H.Song,J.Bernhard,S.Bass,U.Heinz,TheiEBE-VISHNUcodepackageforrelativisticheavy- ioncollisions,arXiv:1409.8164. [51] C.Shen,J.F.Paquet,G.S.Denicol,S.Jeon,C.Gale,Thermalphotonradiationinhighmultiplicityp+Pbcollisions ChunShen/NuclearPhysicsA00(2016)1–9 9 attheLargeHadronCollider,arXiv:1504.07989. √ [52] A.Adare,etal.,Directphotonproductionind+Aucollisionsat sNN=200GeV,Phys.Rev.C87(2013)054907. arXiv:1208.1234,doi:10.1103/PhysRevC.87.054907.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.