ebook img

Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach PDF

366 Pages·2005·11.507 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach

ELECTROMAGNETIC METAMATERIALS ELECTROMAGNETIC METAMATERIALS: TRANSMISSION LINE THEORY AND MICROWAVE APPLICATIONS The Engineering Approach CHRISTOPHE CALOZ E´cole Polytechnique de Montre´al TATSUO ITOH University of California at Los Angeles A JOHN WILEY & SONS, INC., PUBLICATION Copyright2006byJohnWiley&Sons,Inc.Allrightsreserved. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada. Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,photocopying, recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,without eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe appropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers, MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requests tothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley& Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat http://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontact ourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnited Statesat(317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitour websiteatwww.wiley.com. LibraryofCongressCataloging-in-PublicationData: Caloz,Christophe,1969- Electromagneticmetamaterials:transmissionlinetheoryandmicrowaveapplications: theengineeringapproach/ChristopheCaloz,TatsuoItoh. p.cm. “Wiley-Intersciencepublication.” Includesbibliographicalreferencesandindex. ISBN-10:0-471-66985-7(alk.paper) ISBN-13:978-0-471-66985-2 (alk.paper) 1.Magneticmaterials.2.Nanostructuredmaterials.3.Microwavetransmissionlines.I. Itoh,Tatsuo.II.Title. TK454.4.M3C362006 620.1(cid:1)18—dc22 2005048976 PrintedintheUnitedStatesofAmerica. 10987654321 ToDominique, Maxime, andRaphae¨l Christophe CONTENTS Preface xiii Acknowledgments xv Acronyms xvii 1 Introduction 1 1.1 Definition of Metamaterials (MTMs) and Left-Handed (LH) MTMs, 1 1.2 Theoretical Speculation by Viktor Veselago, 3 1.3 Experimental Demonstration of Left-Handedness, 4 1.4 Further Numerical and Experimental Confirmations, 9 1.5 “Conventional” Backward Waves and Novelty of LH MTMs, 10 1.6 Terminology, 12 1.7 Transmission Line (TL) Approach, 12 1.8 Composite Right/Left-Handed (CRLH) MTMs, 16 1.9 MTMs and Photonic Band-Gap (PBG) Structures, 17 1.10 Historical “Germs” of MTMs, 20 References, 22 2 Fundamentals of LH MTMs 27 2.1 Left-Handedness from Maxwell’s Equations, 28 2.2 Entropy Conditions in Dispersive Media, 33 2.3 Boundary Conditions, 38 vii viii CONTENTS 2.4 Reversal of Doppler Effect, 39 2.5 Reversal of Vavilov-C˘erenkov Radiation, 41 2.6 Reversal of Snell’s Law: Negative Refraction, 43 2.7 Focusing by a “Flat LH Lens”, 46 2.8 Fresnel Coefficients, 48 2.9 Reversal of Goos-Ha¨nchen Effect, 50 2.10 Reversal of Convergence and Divergence in Convex and Concave Lenses, 51 2.11 Subwavelength Diffraction, 53 References, 57 3 TL Theory of MTMs 59 3.1 Ideal Homogeneous CRLH TLs, 59 3.1.1 Fundamental TL Characteristics, 60 3.1.2 Equivalent MTM Constitutive Parameters, 67 3.1.3 Balanced and Unbalanced Resonances, 70 3.1.4 Lossy Case, 74 3.2 LC Network Implementation, 79 3.2.1 Principle, 79 3.2.2 Difference with Conventional Filters, 83 3.2.3 Transmission Matrix Analysis, 85 3.2.4 Input Impedance, 100 3.2.5 Cutoff Frequencies, 103 3.2.6 Analytical Dispersion Relation, 106 3.2.7 Bloch Impedance, 113 3.2.8 Effect of Finite Size in the Presence of Imperfect Matching, 115 3.3 Real Distributed 1D CRLH Structures, 119 3.3.1 General Design Guidelines, 120 3.3.2 Microstrip Implementation, 122 3.3.3 Parameters Extraction, 124 3.4 Experimental Transmission Characteristics, 127 3.5 Conversion from Transmission Line to Constitutive Parameters, 131 References, 131 4 Two-Dimensional MTMs 133 4.1 Eigenvalue Problem, 134 4.1.1 General Matrix System, 134 4.1.2 CRLH Particularization, 138 4.1.3 Lattice Choice, Symmetry Points, Brillouin Zone, and 2D Dispersion Representations, 139 4.2 Driven Problem by the Transmission Matrix Method (TMM), 143 4.2.1 Principle of the TMM, 144 4.2.2 Scattering Parameters, 145 CONTENTS ix 4.2.3 Voltage and Current Distributions, 147 4.2.4 Interest and Limitations of the TMM, 154 4.3 Transmission Line Matrix (TLM) Modeling Method, 154 4.3.1 TLM Modeling of the Unloaded TL Host Network, 155 4.3.2 TLM Modeling of the Loaded TL Host Network (CRLH), 158 4.3.3 Relationship between Material Properties and the TLM Model Parameters, 159 4.3.4 Suitability of the TLM Approach for MTMs, 161 4.4 Negative Refractive Index (NRI) Effects, 162 4.4.1 Negative Phase Velocity, 162 4.4.2 Negative Refraction, 163 4.4.3 Negative Focusing, 165 4.4.4 RH-LH Interface Surface Plasmons, 167 4.4.5 Reflectors with Unusual Properties, 169 4.5 Distributed 2D Structures, 170 4.5.1 Description of Possible Structures, 171 4.5.2 Dispersion and Propagation Characteristics, 173 4.5.3 Parameter Extraction, 178 4.5.4 Distributed Implementation of the NRI Slab, 183 References, 190 5 Guided-Wave Applications 192 5.1 Dual-Band Components, 193 5.1.1 Dual-Band Property of CRLH TLs, 193 5.1.2 Quarter-Wavelength TL and Stubs, 197 5.1.3 Passive Component Examples: Quadrature Hybrid and Wilkinson Power Divider, 201 5.1.3.1 Quadrature Hybrid, 201 5.1.3.2 Wilkinson Power Divider, 202 5.1.4 Nonlinear Component Example: Quadrature Subharmonically Pumped Mixer, 205 5.2 Enhanced-Bandwidth Components, 210 5.2.1 Principle of Bandwidth Enhancement, 211 5.2.2 Rat-Race Coupler Example, 215 5.3 Super-compact Multilayer “Vertical” TL, 217 5.3.1 “Vertical” TL Architecture, 219 5.3.2 TL Performances, 221 5.3.3 Diplexer Example, 225 5.4 Tight Edge-Coupled Coupled-Line Couplers (CLCs), 227 5.4.1 Generalities on Coupled-Line Couplers, 228 5.4.1.1 TEM and Quasi-TEM Symmetric Coupled-Line Structures with Small Interspacing: Impedance Coupling (IC), 228 5.4.1.2 Non-TEM Symmetric Coupled-Line Structures with Relatively Large Spacing: Phase Coupling (PC), 232 x CONTENTS 5.4.1.3 Summaryon Symmetric Coupled-Line Structures, 233 5.4.1.4 Asymmetric Coupled-Line Structures, 234 5.4.1.5 Advantages of MTM Couplers, 235 5.4.2 Symmetric Impedance Coupler, 235 5.4.3 Asymmetric Phase Coupler, 245 5.5 Negative and Zeroth-Order Resonator, 249 5.5.1 Principle, 249 5.5.2 LC Network Implementation, 251 5.5.3 Zeroth-Order Resonator Characteristics, 253 5.5.4 Circuit Theory Verification, 256 5.5.5 Microstrip Realization, 258 References, 259 6 Radiated-Wave Applications 261 6.1 Fundamental Aspects of Leaky-Wave Structures, 262 6.1.1 Principle of Leakage Radiation, 262 6.1.2 Uniform and Periodic Leaky-Wave Structures, 266 6.1.2.1 Uniform LW Structures, 266 6.1.2.2 Periodic LW Structures, 268 6.1.3 Metamaterial Leaky-Wave Structures, 269 6.2 Backfire-to-Endfire (BE) Leaky-Wave (LW) Antenna, 270 6.3 Electronically Scanned BE LW Antenna, 275 6.3.1 Electronic Scanning Principle, 276 6.3.2 Electronic Beamwidth Control Principle, 277 6.3.3 Analysis of the Structure and Results, 279 6.4 Reflecto-Directive Systems, 282 6.4.1 Passive Retro-Directive Reflector, 283 6.4.2 Arbitrary-Angle Frequency Tuned Reflector, 286 6.4.3 Arbitrary-Angle Electronically Tuned Reflector, 287 6.5 Two-Dimensional Structures, 290 6.5.1 Two-Dimensional LW Radiation, 290 6.5.2 Conical-Beam Antenna, 292 6.5.3 Full-Space Scanning Antenna, 296 6.6 Zeroth Order Resonating Antenna, 297 6.7 Dual-Band CRLH-TL Resonating Ring Antenna, 300 6.8 Focusing Radiative “Meta-Interfaces”, 304 6.8.1 Heterodyne Phased Array, 305 6.8.2 Nonuniform Leaky-Wave Radiator, 310 References, 313 7 The Future of MTMs 316 7.1 “Real-Artificial” Materials: the Challenge of Homogenization, 316 7.2 Quasi-Optical NRI Lenses and Devices, 319 7.3 Three-Dimensional Isotropic LH MTMs, 323 CONTENTS xi 7.4 Optical MTMs, 328 7.5 “Magnetless” Magnetic MTMs, 329 7.6 Terahertz Magnetic MTMs, 330 7.7 Surface Plasmonic MTMs, 331 7.8 Antenna Radomes and Frequency Selective Surfaces, 338 7.9 Nonlinear MTMs, 339 7.10 Active MTMs, 341 7.11 Other Topics of Interest, 341 References, 342 Index 347 PREFACE This book is essentially the fruit of a research work carried out at University of California, Los Angeles (UCLA), from 2002 to 2004 in the context of a MultidisciplinaryUniversityResearchInitiative(MURI)program.Themainpar- ticipants in this program, in addition to the authors, were John Pendry (Imperial College), David Smith (formerly University of California, San Diego (UCSD), nowDukeUniversity),SheldonSchultz(UCSD),XiangZhang(formerlyUCLA, nowUniversityofCalifornia,Berkeley),GangChen(formerlyUCLA,nowMas- sachusetts Institute of Technology (MIT)), John Joannopoulos (MIT) and Eli Yablonovitch (UCLA). Duringtheseyearsofinfancyformetamaterials(MTMs),whichemergedfrom the first experimental demonstration of a left-handed (LH) structure in 2000, the vast majority of the groups involved in research on MTMs had been focusing on investigating from a physics point of view the fundamental properties of LH media predicted by Veselago in 1967. Not following this trend, the authors adopted an engineering approach, based on a generalized transmission line (TL) theory,withsystematicemphasisondevelopingpracticalapplications,exhibiting unprecedented features in terms of performances or functionalities. This effort resulted in the elaboration of the powerful composite right/left-handed (CRLH) MTM concept, which led to a suite of novel guided-wave, radiated-wave, and refracted-wave devices and structures. This book presents electromagnetic MTMs and their applications in the gen- eral framework of CRLH TL MTMs. Chapter 1 introduces MTMs from a his- torical perspective and points out their novelty compared with conventional periodic backward-wave media. Chapter 2 exposes the fundamentals of ideal1 1“Ideal” designates here perfectly homogeneous and isotropic volumic (left-handedness along the threedirectionsofspace)materials. xiii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.