ebook img

Electromagnetic Green Functions Using Differential Forms PDF

17 Pages·1.252 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electromagnetic Green Functions Using Differential Forms

Electromagnetic Green Functions Using Di(cid:2)erential Forms Karl F(cid:2) Warnick and David V(cid:2) Arnold Short Title(cid:3) Electromagnetic Green Forms Department of Electrical and Computer Engineering (cid:4)(cid:5)(cid:6) Clyde Building Brigham Young University Provo(cid:7) UT(cid:7) (cid:8)(cid:4)(cid:9)(cid:10)(cid:11) Warnick(cid:2) et al(cid:2) (cid:3) September (cid:3)(cid:4)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) Abstract(cid:2) In this paper we redevelop the scalar and dyadic Green functions of electromagnetic theory using di(cid:12)erential forms(cid:2) The Green dyadic becomes a dou(cid:13) ble form(cid:7) which is adi(cid:12)erential form in one space with coe(cid:14)cients thatare forms in another space(cid:7) or a di(cid:12)erential form(cid:13)valued form(cid:2) The results presented here corre(cid:13) spond closely with the usual dyadic treatment(cid:7) but are clearer and more intuitive(cid:2) Many of the usual expressions using green functions in vector notation require a surface normal(cid:15) with the Green forms the surface normal is unnecessary(cid:2) We illus(cid:13) trate the formalism by computing scattering from a randomly rough conducting surface and deriving the Green form for a dielectric half(cid:13)space(cid:2) We also de(cid:16)ne the interior derivative(cid:7) which is equivalent to the coderivative but for a constant met(cid:13) ric has a computational rule dual to that of the exterior derivative and simpli(cid:16)es calculation in coordinates(cid:2) This work makes available some of the tools that have not yet been presented in the language of di(cid:12)erential forms but are essential in applied electromagnetics(cid:2) Warnick(cid:2) et al(cid:2) (cid:7) September (cid:3)(cid:4)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) (cid:17)(cid:2) INTRODUCTION In this paper we treat Green function methods in electromagnetic (cid:18)EM(cid:19) (cid:16)eld theory using the calculus of di(cid:12)erential forms(cid:2) The calculus of di(cid:12)erential forms has been applied to EM theory by Deschamps (cid:20)(cid:17)(cid:21)(cid:7) Baldomir (cid:20)(cid:11)(cid:21)(cid:7) Schleifer (cid:20)(cid:22)(cid:21)(cid:7) Thirring (cid:20)(cid:4)(cid:21)(cid:7) Burke (cid:20)(cid:5)(cid:7) (cid:9)(cid:21)(cid:7) Bamberg (cid:20)(cid:23)(cid:21)(cid:7) Ingarden and Jamio(cid:24)lkowksi (cid:20)(cid:8)(cid:21)(cid:7) Parrott (cid:20)(cid:6)(cid:21) and others(cid:2) Several authors have advocated the use of the calculus of forms in engineering EM theory(cid:7) but some important tools for applied problems have not been developed(cid:2) In (cid:20)(cid:17)(cid:10)(cid:21) the authors presented a representation of EM boundary conditions using di(cid:12)erential forms(cid:2) In this work we develop another tool well suited for practical use(cid:7) the Green form in the (cid:18)(cid:22)(cid:25)(cid:17)(cid:19) representation(cid:2) As proposed by Thirring (cid:20)(cid:4)(cid:21)(cid:7) the EM Green function becomes a double form(cid:2) Double forms are de(cid:16)ned by de Rham in (cid:20)(cid:17)(cid:17)(cid:21)(cid:2) Green forms are treated in the mathematics literature (cid:18)see (cid:20)(cid:17)(cid:11)(cid:21) and its references(cid:19)(cid:7) and Thirring gives the time(cid:13)dependent Green form for electro(cid:13) dynamics in Minkowski spacetime(cid:2) Our Green form has the same components as the Green dyadic in Kong (cid:20)(cid:17)(cid:22)(cid:21) and therefore is easily related to the usual methods in applied electro(cid:13) magnetics(cid:2) We derive expressions for the Green double form in terms of the scalar Green function(cid:7) the electric (cid:16)eld due to a surface current density and the Stratton(cid:13)Chu formula(cid:2) The use of di(cid:12)erential forms makes the results presented here clearer in certain ways than the usual vector and dyadic treatment(cid:2) In obtaining expressions for observed (cid:16)elds in terms of the Green forms(cid:7) the product rule for the exterior derivative takes the place of several vector identities(cid:2) This makes the derivation much cleaner(cid:2) The dyadic expression for observed (cid:16)elds due to tangential (cid:16)elds along the surface of an observation region using the Green dyadic includes a surface normal(cid:2) With the corresponding expression using the Green form(cid:7) the surface normal is unnecessary(cid:2) In this paper we also de(cid:16)ne the interior derivative(cid:7) which is equivalent to the standard coderivative (cid:20)(cid:23)(cid:21)(cid:7) but simpli(cid:16)es calculations in coordinates when the metric is constant(cid:2) The computational rule which we propose is dual to that of the exterior derivative(cid:2) In Sec(cid:2) (cid:11) we review operations on forms and treat double forms brie(cid:26)y(cid:2) In Sec(cid:2) (cid:22) we solve Maxwell(cid:27)s laws of electromagnetics in terms of the Green double form and the scalar Green Warnick(cid:2) et al(cid:2) (cid:8) September (cid:3)(cid:4)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) function(cid:2) Finally(cid:7) in Sec(cid:2) (cid:4) we illustrate the method by computing scattered (cid:16)elds from a rough conducting surface and deriving the Green form for a dielectric half(cid:13)space(cid:2) This work shows that the calculus of di(cid:12)erential forms can be used in all applications to which Green functions and dyadics are suited(cid:2) (cid:11)(cid:2) DEFINITIONS In this section we give de(cid:16)nitions and notation to be used in Sec(cid:2) (cid:22) to derive the Green forms(cid:2) We de(cid:16)ne the interior and exterior derivatives(cid:7) the interior and exterior products and the Laplace(cid:13)de Rham operator(cid:2) Double (cid:17)(cid:13)forms are also introduced in this section(cid:2) (cid:11)(cid:2)(cid:17) Operators The exterior derivative d is de(cid:16)ned in (cid:20)(cid:23)(cid:21) and elsewhere(cid:2) It can be represented formally as (cid:2) i d (cid:0) dx (cid:2) (cid:18)(cid:17)(cid:19) i (cid:2)x (cid:0) n where x (cid:3)(cid:3)(cid:3)x are coordinates on an n(cid:13)dimensional space and the summation convention is i j used(cid:2) The exterior product (cid:2) is the antisymmetrized tensor product(cid:7) so that dx (cid:2) dx (cid:28) j i i i (cid:3)dx (cid:2) dx and dx (cid:2) dx (cid:28) (cid:10)(cid:2) (cid:18)Often the wedge between di(cid:12)erentials is dropped(cid:15) there is an impliedwedgebetweenthedi(cid:12)erentialsintheintegrandofanymultipleintegral(cid:2)(cid:19) Thepartial (cid:2) (cid:2) (cid:2)f (cid:2)f derivatives (cid:2)xi actonthecoe(cid:14)cientsofaform(cid:7)sothatinR (cid:7)d(cid:18)f dx(cid:19) (cid:28) (cid:2)y dy(cid:2)dx(cid:25)(cid:2)z dz(cid:2)dx since dx(cid:2) dx (cid:28) (cid:10)(cid:2) We de(cid:16)ne the interior derivative in the euclidean metric similarly(cid:7) (cid:2) i d (cid:0) dx (cid:18)(cid:11)(cid:19) i (cid:2)x (cid:2) (cid:2)f where is the interior product de(cid:16)ned in (cid:20)(cid:17)(cid:10)(cid:21)(cid:2) In R we have d (cid:18)f dx(cid:19) (cid:28) (cid:2)x since dx dx (cid:28) (cid:17) and dy dx (cid:28) dz dx (cid:28) (cid:10)(cid:2) The interior product is de(cid:16)ned to be the contraction of a vector with a k(cid:13)form (cid:18)which is (cid:3) a totally antisymmetric (cid:18)k(cid:19) tensor(cid:19)(cid:2) In this paper we use the euclidean metric(cid:7) so we can extend this de(cid:16)nition to the interior product of a (cid:17)(cid:13)form and k(cid:13)form easily since vectors and ij i(cid:0) ik (cid:17)(cid:13)forms have the same components(cid:2) The interior product of dx and dx (cid:2)(cid:4)(cid:4)(cid:4)(cid:2) dx is zero Warnick(cid:2) et al(cid:2) (cid:4) September (cid:3)(cid:4)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) j(cid:0)(cid:0) i(cid:0) ij(cid:0)(cid:0) ij(cid:2)(cid:0) ik for ij not equal to any of i(cid:0)(cid:3)(cid:3)(cid:3)ik(cid:7) otherwise it is (cid:18)(cid:3)(cid:17)(cid:19) dx (cid:2)(cid:4)(cid:4)(cid:4)(cid:2)dx (cid:2)dx (cid:2)(cid:4)(cid:4)(cid:4)(cid:2) dx for (cid:17) (cid:5) j (cid:5) k(cid:2) Thus(cid:7) by (cid:18)(cid:11)(cid:19) the interior derivative of a form is computed by moving each di(cid:12)erential in turn to the leftmost position by alternating the sign of the form each time two di(cid:12)erentials are swapped(cid:7) removing that di(cid:12)erential and taking the corresponding partial derivative(cid:2) (cid:0) The interior derivative is equivalent up to a sign to the coderivative de(cid:16)ned in (cid:20)(cid:4)(cid:7) (cid:23)(cid:21) and elsewhere(cid:7) k(cid:4)(cid:0) (cid:0)(cid:0) d (cid:4) (cid:28) (cid:18)(cid:3)(cid:17)(cid:19) (cid:5) d(cid:5)(cid:4) (cid:18)(cid:22)(cid:19) (cid:2) where k is the degree of (cid:4) and (cid:5) is the Hodge star operator(cid:2) In R with the euclidean metric(cid:7) (cid:0)(cid:0) (cid:5)(cid:17) (cid:28) dxdydz(cid:7) (cid:5)dx (cid:28) dy (cid:2) dz(cid:7) (cid:5)dy (cid:28) dz (cid:2) dx(cid:7) (cid:5)dz (cid:28) dx(cid:2) dy and (cid:5) (cid:28) (cid:5)(cid:2) Note that k(cid:4)(cid:0) the interior derivative contains the sign (cid:18)(cid:3)(cid:17)(cid:19) naturally(cid:2) For a nonconstant metric(cid:7) such as would arise in curvilinear coordinates(cid:7) (cid:18)(cid:22)(cid:19) replaces (cid:18)(cid:11)(cid:19) as the de(cid:16)nition of the interior derivative(cid:2) The interior derivative is easier to compute with than the coderivative(cid:7) as illustrated by the following example(cid:2) We (cid:16)rst use the coderivative to (cid:16)nd (cid:3)(cid:5)d(cid:5)(cid:18)D(cid:0)dydz (cid:25)D(cid:5)dzdx(cid:25)D(cid:2)dxdy(cid:19) (cid:2) (cid:2) (cid:2) (cid:28) (cid:3)(cid:5)(cid:18) dx(cid:25) dy(cid:25) dz(cid:19)(cid:2)(cid:18)D(cid:0)dx(cid:25)D(cid:5)dy(cid:25)D(cid:2)dz(cid:19) (cid:2)x (cid:2)y (cid:2)z (cid:28) (cid:3)(cid:5)(cid:18)D(cid:0)xdx(cid:2) dx(cid:25)D(cid:0)ydy(cid:2) dx(cid:25)D(cid:0)zdz (cid:2) dx (cid:25) D(cid:5)xdx(cid:2) dy(cid:25)D(cid:5)ydy(cid:2) dy(cid:25)D(cid:5)zdz (cid:2) dy (cid:25) D(cid:2)xdx(cid:2) dz (cid:25)D(cid:2)ydy (cid:2) dz (cid:25)D(cid:2)zdz (cid:2) dz(cid:19) (cid:28) (cid:18)D(cid:5)z (cid:3)D(cid:2)y(cid:19)dx(cid:25)(cid:18)D(cid:2)x (cid:3)D(cid:0)z(cid:19)dy(cid:25)(cid:18)D(cid:0)y (cid:3)D(cid:5)x(cid:19)dz(cid:3) Using the de(cid:16)nition of the interior derivative we compute the same result immediately(cid:7) d (cid:18)D(cid:0)dydz (cid:25)D(cid:5)dzdx(cid:25)D(cid:2)dxdy(cid:19) (cid:28) D(cid:0)ydz (cid:3)D(cid:0)zdy (cid:25)D(cid:5)zdx(cid:3)D(cid:5)xdz (cid:25)D(cid:2)xdy(cid:3)D(cid:2)ydx where we have removed each di(cid:12)erential in turn(cid:7) after it moving to the left if necessary using the antisymmetry of the exterior product(cid:7) and taken the corresponding partial derivative(cid:2) The Laplace(cid:13)de Rham operator (cid:29) is (cid:29) (cid:28) d d(cid:25)dd (cid:18)(cid:4)(cid:19) Warnick(cid:2) et al(cid:2) (cid:6) September (cid:3)(cid:4)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) (cid:5) which is a generalization of the vector operator r (cid:2) With the euclidean metric(cid:7) (cid:29) becomes (cid:2)(cid:3) (cid:18)(cid:29)(cid:4)(cid:19)i (cid:28) j (cid:2)x(cid:3)j(cid:4)i where the subscript i indexes components of (cid:4)(cid:2) On (cid:17)(cid:13)forms(cid:7) (cid:18)(cid:4)(cid:19) is equiv(cid:13) P (cid:5) alent to the euclidean vector identity r (cid:28) (cid:3)r(cid:6)r(cid:6)(cid:25)rr(cid:2) The generalized Stokes theorem is d(cid:4) (cid:28) (cid:4) (cid:18)(cid:5)(cid:19) ZV Z(cid:2)V where (cid:4) is a p(cid:13)form and V is a p(cid:25)(cid:17) dimensional region with (cid:2)V as its boundary(cid:2) Also(cid:7) the interior product of two arbitrary forms a and b satis(cid:16)es a b (cid:28) (cid:5)(cid:18)(cid:5)b(cid:2)a(cid:19) (cid:18)(cid:9)(cid:19) where (cid:5) is the Hodge star operator(cid:2) (cid:11)(cid:2)(cid:11) Double Forms A double form (cid:20)(cid:17)(cid:17)(cid:21) is a di(cid:12)erential form in one space with coe(cid:14)cients that are forms in (cid:2) (cid:2)(cid:2) another space(cid:2) The double forms that we will use in this paper are associated with R (cid:6)R (cid:2) (cid:2)(cid:2) where R is the observation space and R is the source space(cid:2) We will use (cid:17)(cid:13)form valued (cid:17)(cid:13)forms(cid:7) or double (cid:17)(cid:13)forms(cid:7) which can be written in general (cid:2) (cid:2) (cid:2) G (cid:28) G(cid:0)(cid:0)dxdx (cid:25)G(cid:0)(cid:5)dxdy (cid:25)G(cid:0)(cid:2)dxdz (cid:2) (cid:2) (cid:2) (cid:25) G(cid:5)(cid:0)dydx (cid:25)G(cid:5)(cid:5)dydy (cid:25)G(cid:5)(cid:2)dydz (cid:2) (cid:2) (cid:2) (cid:25) G(cid:2)(cid:0)dzdx (cid:25)G(cid:2)(cid:5)dzdy (cid:25)G(cid:2)(cid:2)dzdz (cid:3) Between the primed and unprimed di(cid:12)erentials there is an implied tensor product rather than an exterior product(cid:2) The coe(cid:14)cients are functions Gij(cid:18)r(cid:6)r(cid:2)(cid:19) of both the observation and source coordinates(cid:2) A double form can be used as a transformation kernel (cid:18)if its coe(cid:14)cients vanish su(cid:14)ciently (cid:2)(cid:2) (cid:2) quickly at in(cid:16)nity(cid:19)(cid:2) If we (cid:16)x a double (cid:17)(cid:13)form G(cid:7) we have the transformation from R to R given by the volume integral (cid:2) (cid:4) (cid:28) G(cid:2)(cid:5)(cid:4) (cid:18)(cid:23)(cid:19) Z (cid:2) (cid:2) where (cid:4) is a (cid:17)(cid:13)form and (cid:4) is the transform of (cid:4) due to the kernel G(cid:2) The exterior product Warnick(cid:2) et al(cid:2) (cid:9) September (cid:3)(cid:4)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) (cid:2) (cid:2) (cid:2) (cid:2)(cid:2) yields a (cid:22)(cid:13)form in dx dy dz which is integrated over R (cid:2) The unprimed di(cid:12)erentials remain(cid:7) resulting in the (cid:17)(cid:13)form (cid:4) in the observation space(cid:2) i j Componentsofadyadic areoftheformx(cid:30) x(cid:30) withnoprime(cid:7) whichdoesnotshow explicitly the relationship the dyadic can provide to the source and observation spaces(cid:2) The action of a double form G as a kernel from the source to the observation space is clearly re(cid:26)ected in i j(cid:2) the product dx dx of primed and unprimed di(cid:12)erentials in each component(cid:2) We introduce the identity kernel (cid:7)I where I is the double form (cid:2) (cid:2) (cid:2) dxdx (cid:25) dydy (cid:25) dzdz (cid:18)(cid:8)(cid:19) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) or dr dr (cid:25)rd(cid:8) r d(cid:8) (cid:25)rsin(cid:8)d(cid:9) r sin(cid:8) d(cid:9) inspherical coordinates(cid:2) (cid:7) isthe three(cid:13)dimensional (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) Dirac delta function (cid:7)(cid:18)x(cid:3)x(cid:19)(cid:7)(cid:18)y(cid:3)y (cid:19)(cid:7)(cid:18)z(cid:3)z (cid:19)(cid:2) Using this kernel(cid:7) (cid:7)I(cid:2)(cid:5)(cid:4) (cid:28) (cid:4) j(cid:6)x(cid:3)y(cid:3)z(cid:7) (cid:28) (cid:4)(cid:7) R (cid:2) so that the transformation takes (cid:4) from source to observation space without otherwise changing its components(cid:2) (cid:22)(cid:2) THE EM GREEN FORMS In this section we derive expressions for the electric (cid:16)eld (cid:17)(cid:13)form at an observation point (cid:0)i(cid:4)t due to applied sources and (cid:16)elds using the Green forms(cid:2) We consider time(cid:13)harmonic (cid:18)e (cid:19) (cid:16)elds in an isotropic medium of permittivity (cid:10) and permeability (cid:11)(cid:2) We write Faraday(cid:27)s and Ampere(cid:27)s laws as dE (cid:28) i(cid:4)B (cid:18)(cid:6)(cid:19) d B (cid:28) i(cid:4)(cid:10)(cid:11)E (cid:3)(cid:11)(cid:5)J (cid:18)(cid:17)(cid:10)(cid:19) where E is the electric (cid:16)eld intensity (cid:17)(cid:13)form(cid:7) B is the magnetic (cid:26)ux density (cid:11)(cid:13)form and J is the electric current density (cid:11)(cid:13)form(cid:2) The constitutive relations are D (cid:28) (cid:10)(cid:5)E and B (cid:28) (cid:11)(cid:5)H(cid:7) where D is the electric (cid:26)ux density (cid:11)(cid:13)form and H is the magnetic (cid:16)eld intensity (cid:17)(cid:13)form(cid:2) By taking the interior derivative of (cid:18)(cid:6)(cid:19) and substituting (cid:18)(cid:17)(cid:10)(cid:19)(cid:7) we obtain (cid:5) (cid:18)d d(cid:25)k (cid:19)E (cid:28) (cid:3)i(cid:4)(cid:11)(cid:5)J (cid:18)(cid:17)(cid:17)(cid:19) Warnick(cid:2) et al(cid:2) (cid:10) September (cid:3)(cid:4)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) (cid:5) (cid:5) where k (cid:28) (cid:4) (cid:11)(cid:10)(cid:2) The Green double (cid:17)(cid:13)form G for Eq(cid:2) (cid:18)(cid:17)(cid:17)(cid:19) then satis(cid:16)es (cid:5) (cid:18)d d(cid:25)k (cid:19)G (cid:28) (cid:3)(cid:7)I(cid:3) (cid:18)(cid:17)(cid:11)(cid:19) Here and below(cid:7) all derivatives will act on primed coordinates unless otherwise noted(cid:7) but to avoid clutter(cid:7) the derivatives will remain unprimed(cid:2) (cid:2) (cid:2) (cid:2) Let V be a volume containing source current density given by the (cid:11)(cid:13)form J (cid:2) Outside V (cid:7) the electric (cid:16)eld due to the sources is E(cid:7) a (cid:17)(cid:13)form in the observation space(cid:2) Using the unit kernel (cid:7)I we can write (cid:2) E (cid:28) (cid:7)I (cid:2)(cid:5)E (cid:18)(cid:17)(cid:22)(cid:19) ZV(cid:2) Substituting Eq(cid:2) (cid:18)(cid:17)(cid:11)(cid:19) into (cid:18)(cid:17)(cid:22)(cid:19)(cid:7) we obtain (cid:2) (cid:5) (cid:2) E (cid:28) (cid:20)d(cid:5)dG(cid:2)E (cid:3)k G(cid:2)(cid:5)E (cid:21) (cid:18)(cid:17)(cid:4)(cid:19) ZV(cid:2) (cid:0) where we have used d dG (cid:28) (cid:18)(cid:3)(cid:17)(cid:19) (cid:5)d(cid:5)dG and moved a (cid:5) across the exterior product (cid:18)if (cid:12) and (cid:13) are both p(cid:13)forms(cid:7) then (cid:5)(cid:12) (cid:2) (cid:13) (cid:28) (cid:12)(cid:2) (cid:5)(cid:13)(cid:7) as can be veri(cid:16)ed easily in coordinates(cid:19)(cid:2) deg(cid:5) Using the product rule for the exterior derivative(cid:7) d(cid:18)(cid:14)(cid:2)(cid:15)(cid:19) (cid:28) d(cid:14)(cid:2)(cid:15) (cid:25)(cid:18)(cid:3)(cid:17)(cid:19) (cid:14)(cid:2)d(cid:15)(cid:7) Eq(cid:2) (cid:18)(cid:17)(cid:4)(cid:19) becomes (cid:2) (cid:5) (cid:2) (cid:2) (cid:2) E (cid:28) (cid:20)G(cid:2)(cid:18)d(cid:5)dE (cid:3)k (cid:5)E (cid:19)(cid:25)d(cid:18)(cid:5)dG(cid:2)E (cid:25)G(cid:2)(cid:5)dE (cid:19)(cid:21)(cid:3) (cid:18)(cid:17)(cid:5)(cid:19) ZV(cid:2) AfterapplyingthestaroperatortoEq(cid:2) (cid:18)(cid:17)(cid:17)(cid:19)andusingthede(cid:16)nitionoftheinteriorderivative(cid:7) (cid:2) we can insert J into (cid:18)(cid:17)(cid:5)(cid:19)(cid:7) (cid:2) (cid:2) (cid:2) E (cid:28) (cid:20)i(cid:4)(cid:11)G(cid:2)J (cid:25)d(cid:18)(cid:5)dG(cid:2)E (cid:25)G(cid:2)(cid:5)dE (cid:19)(cid:21)(cid:3) (cid:18)(cid:17)(cid:9)(cid:19) ZV(cid:2) Applying the generalized Stokes theorem and using Faraday(cid:27)s law(cid:7) we (cid:16)nd that (cid:2) (cid:2) (cid:2) E (cid:28) i(cid:4)(cid:11) G(cid:2)J (cid:25) (cid:18)i(cid:4)(cid:11)G(cid:2)H (cid:25)(cid:5)dG(cid:2)E (cid:19) (cid:18)(cid:17)(cid:23)(cid:19) ZV(cid:2) Z(cid:2)V(cid:2) (cid:2) where the second term takes into account (cid:16)elds on the surface (cid:2)V due to sources outside of (cid:2) V (cid:2) The integrals in (cid:18)(cid:17)(cid:23)(cid:19)(cid:7) like all integrals of di(cid:12)erential forms(cid:7) can be integrated by the method of pullback (cid:20)(cid:23)(cid:21)(cid:2) This method is completely general and allows forms to be integrated conveniently over parameterized regions(cid:2) Warnick(cid:2) et al(cid:2) (cid:11) September (cid:3)(cid:4)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) The expression corresponding to (cid:18)(cid:17)(cid:23)(cid:19) using the dyadic Green function G is E (cid:28) i(cid:4)(cid:11) G(cid:4)J(cid:2)dv(cid:2) (cid:3) (cid:18)i(cid:4)(cid:11)G(cid:4)(cid:20)n(cid:30) (cid:6)H(cid:2)(cid:21)(cid:25)r(cid:6)G(cid:4)(cid:20)n(cid:30) (cid:6)E(cid:2)(cid:21)(cid:19)ds(cid:2) ZV(cid:2) Z(cid:2)V(cid:2) (cid:2) (cid:2) where n(cid:30) is an outward surface normal(cid:2) Because E and H are (cid:17)(cid:13)forms rather than (cid:11)(cid:13) (cid:2) forms(cid:7) their exterior product with G behaves di(cid:12)erently than the exterior product G(cid:2)J (cid:2) (cid:2) (cid:2) (cid:2) Components of E and H tangent to (cid:2)V naturally do not contribute to the surface integral in (cid:18)(cid:17)(cid:23)(cid:19)(cid:2) Thus(cid:7) the surface normal is eliminated and a simpler expression results(cid:2) Also(cid:7) Green(cid:27)s theorem is used in deriving the dyadic result(cid:2) Green(cid:27)s theorem on forms is an immediate consequence of the product rule for the exterior derivative and the generalized Stokes theorem(cid:2) (cid:22)(cid:2)(cid:17) The Scalar Green Function The scalar Green function g satis(cid:16)es the wave equation for an elementary source (cid:3)(cid:7)(cid:7) (cid:5) (cid:18)(cid:29)(cid:25)k (cid:19)g (cid:28) (cid:3)(cid:7) (cid:18)(cid:17)(cid:8)(cid:19) It can easily be shown that gI satis(cid:16)es Eq(cid:2) (cid:18)(cid:17)(cid:8)(cid:19) for the source (cid:3)(cid:7)I(cid:2) Substituting gI for g and (cid:3)(cid:7)I for (cid:3)(cid:7) in (cid:18)(cid:17)(cid:8)(cid:19)(cid:7) expanding the Laplace(cid:13)de Rham operator and rearranging gives (cid:5) (cid:17) d d(cid:18)gI(cid:19)(cid:25)k (cid:18)gI (cid:25) dd gI(cid:19) (cid:28) (cid:3)(cid:7)I(cid:3) (cid:18)(cid:17)(cid:6)(cid:19) (cid:5) k Since dd (cid:28) (cid:10)(cid:7) this can be rewritten as (cid:17) (cid:5) (cid:17) d d(cid:18)gI (cid:25) dd gI(cid:19)(cid:25)k (cid:18)gI (cid:25) dd gI(cid:19) (cid:28) (cid:3)(cid:7)I(cid:3) (cid:18)(cid:11)(cid:10)(cid:19) (cid:5) (cid:5) k k By comparison with Eq(cid:2) (cid:18)(cid:17)(cid:11)(cid:19)(cid:7) we see that (cid:17) G (cid:28) (cid:18)(cid:17)(cid:25) dd (cid:19)gI (cid:18)(cid:11)(cid:17)(cid:19) (cid:5) k (cid:5) up to a solution of (cid:18)d d(cid:25)k (cid:19)H (cid:28) (cid:10) where H is a double (cid:17)(cid:13)form(cid:2) This freedom is used to satisfy boundary conditions(cid:2) The double (cid:17)(cid:13)form I could be included in the de(cid:16)nition of g(cid:7) but we prefer to leave it out so that g is the usual scalar Green function(cid:2) By pullback we can transform Eq(cid:2) (cid:18)(cid:17)(cid:8)(cid:19) to the spherical coordinate system(cid:2) Noting that g(cid:3) in free space is spherically symmetric(cid:7) we (cid:16)nd that (cid:5) (cid:17) d (cid:5) rg(cid:3) (cid:25)k g(cid:3) (cid:28) (cid:3)(cid:7)(cid:18)r(cid:19)(cid:3) (cid:18)(cid:11)(cid:11)(cid:19) (cid:5) rdr Warnick(cid:2) et al(cid:2) (cid:5) September (cid:3)(cid:4)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) The solution of this di(cid:12)erential equation is the usual result ikr e g(cid:3) (cid:28) (cid:3) (cid:18)(cid:11)(cid:22)(cid:19) (cid:4)(cid:16)r From this we can compute G(cid:3)(cid:7) (cid:5) (cid:17) (cid:2) g(cid:3) (cid:2) G(cid:3) (cid:28) g(cid:3)I (cid:25) (cid:5) (cid:5) drdr (cid:18)(cid:11)(cid:4)(cid:19) k (cid:2)r (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) which becomes g(cid:3)(cid:18)rd(cid:8) r d(cid:8) (cid:25)rsin(cid:8)d(cid:9) r sin(cid:8) d(cid:9)(cid:19) in the far (cid:16)eld(cid:2) It is easily veri(cid:16)ed that if g is symmetric in r and r(cid:2) (cid:18)as is the case for reciprocal media(cid:19)(cid:7) the derivatives in the (cid:16)rst term of Eq(cid:2) (cid:18)(cid:11)(cid:17)(cid:19) can be taken to act on umprimed rather than (cid:2) primed coordinates(cid:2) Thus(cid:7) we can write using (cid:18)(cid:17)(cid:23)(cid:19) after neglecting sources outside of V (cid:7) (cid:17) E (cid:28) i(cid:4)(cid:11)(cid:18)(cid:17)(cid:25) dd (cid:19) gI (cid:2)J (cid:18)(cid:11)(cid:5)(cid:19) k(cid:5) ZV(cid:2) where the derivatives act on unprimed coordinates(cid:2) The Lorentz gauge is d A (cid:28) i(cid:4)(cid:10)(cid:11)(cid:9)(cid:7) where (cid:9) is the scalar electric potential and A is the magnetic vector potential (cid:17)(cid:13)form(cid:2) In the Lorentz gauge(cid:7) E (cid:28) i(cid:4)A(cid:3)d(cid:9) together with (cid:18)(cid:11)(cid:5)(cid:19) imply that A (cid:28) (cid:11) V(cid:2)gI (cid:2)J(cid:2) R (cid:2) For a region V containing no sources(cid:7) Eq(cid:2) (cid:18)(cid:17)(cid:23)(cid:19) becomes (cid:2) (cid:2) E (cid:28) (cid:18)i(cid:4)(cid:11)G(cid:2)H (cid:25)(cid:5)dG(cid:2)E (cid:19)(cid:3) (cid:18)(cid:11)(cid:9)(cid:19) Z(cid:2)V(cid:2) Substituting (cid:18)(cid:11)(cid:17)(cid:19) and using dd (cid:28) (cid:10) gives (cid:2) i(cid:4)(cid:11) (cid:2) (cid:2) E (cid:28) (cid:18)i(cid:4)(cid:11)gI (cid:2)H (cid:25) dd gI (cid:2)H (cid:25)(cid:5)dgI (cid:2)E (cid:19)(cid:3) (cid:18)(cid:11)(cid:23)(cid:19) Z(cid:2)V(cid:2) k(cid:5) Using the product rule for the exterior derivative(cid:7) (cid:18)(cid:11)(cid:23)(cid:19) can be rewritten as (cid:2) i(cid:4)(cid:11) (cid:2) (cid:2) (cid:2) E (cid:28) (cid:18)i(cid:4)(cid:11)gI (cid:2)H (cid:25) (cid:20)d(cid:18)d gI (cid:2)H (cid:19)(cid:3)d gI (cid:2)dH (cid:21)(cid:25)(cid:5)dgI (cid:2)E (cid:19)(cid:3) (cid:18)(cid:11)(cid:8)(cid:19) Z(cid:2)V(cid:2) k(cid:5) The second term vanishes by the generalized Stokes theorem(cid:2) Using Ampere(cid:27)s law(cid:7) we obtain the Stratton(cid:13)Chu formula(cid:7) (cid:2) (cid:2) (cid:2) E (cid:28) Z(cid:2)V(cid:2)(cid:20)i(cid:4)(cid:11)gI (cid:2)H (cid:25)(cid:18)(cid:5)dgI(cid:19)(cid:2)E (cid:3)(cid:18)d gI(cid:19)(cid:2)(cid:5)E (cid:21) (cid:18)(cid:11)(cid:6)(cid:19) which again eliminates the dot and cross products with a surface normal found in the usual vector expression (cid:20)(cid:17)(cid:22)(cid:21)(cid:2) Warnick(cid:2) et al(cid:2) (cid:3)(cid:12) September (cid:3)(cid:4)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.