ebook img

Electromagnetic boundary conditions using differential forms PDF

23 Pages·1.252 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electromagnetic boundary conditions using differential forms

Electromagnetic Boundary Conditions and Di(cid:2)erential Forms Karl F(cid:2) Warnick(cid:3) Richard H(cid:2) Selfridge and David V(cid:2) Arnold Abstract(cid:2)We develop a new representation for electromagnetic boundary con(cid:4) ditions involving a boundary projection operator de(cid:5)ned using the interior and exterior products of the calculus of di(cid:6)erential forms(cid:2) This operator expresses boundary conditions for (cid:5)elds represented by di(cid:6)erentialforms of arbitrary degree(cid:2) Withvectoranalysis(cid:3)the(cid:5)eldintensityboundary conditionsrequirethecrossprod(cid:4) uct(cid:3) whereas the (cid:7)ux boundary conditions use the inner product(cid:2) With di(cid:6)erential forms(cid:3) the (cid:5)eld intensityand (cid:7)ux density boundary conditions are expressed using a single operator(cid:2) This boundary projection operator is readilyapplied in practice(cid:3) so that our work extends the utility of the calculus of di(cid:6)erential forms in applied electromagnetics(cid:2) Warnick(cid:2)et al(cid:2) (cid:3) March (cid:4)(cid:3)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) (cid:8)(cid:2) INTRODUCTION In this paper we derive a new formulation for the boundary conditions at a discontinuity in the electromagnetic(cid:5)eld using di(cid:6)erential forms(cid:2) The utility of the calculus of di(cid:6)erential forms in electromagnetic (cid:5)eld (cid:9)EM(cid:10) theory has been demonstrated by Deschamps (cid:11)(cid:8)(cid:12)(cid:3) Bal(cid:4) domir (cid:11)(cid:13)(cid:12)(cid:3) Schleifer (cid:11)(cid:14)(cid:12)(cid:3) Thirring (cid:11)(cid:15)(cid:12)(cid:3) Burke (cid:11)(cid:16)(cid:3) (cid:17)(cid:12) and others(cid:2) The intent of this paper is to extend the range of engineering problems for which di(cid:6)erential forms are useful by providing a practical means of working with boundary conditions(cid:2) Thirring (cid:11)(cid:15)(cid:12) and Burke (cid:11)(cid:16)(cid:3) (cid:17)(cid:12) treat boundary conditions using the calculus of di(cid:6)erential forms(cid:2) Thirring(cid:18)s approach is similar to ours(cid:3) but we extend his methods by introducing a boundary projection operator to express boundary conditions for forms of arbitrary degree in a space of arbitrary dimension(cid:2) The expressions for junction conditions on (cid:5)eld intensity and (cid:7)ux density(cid:3) for example(cid:3) are identical in form(cid:2) For many electromagnetic quantities(cid:3) the vector representation and the representation as a di(cid:6)erential form are duals(cid:3) so that their components di(cid:6)er only by metrical coe(cid:19)cients(cid:2) This is not the case for the surface current and charge density twisted forms yielded by the boundary projection operator(cid:2) It is simpler to compute(cid:3) for example(cid:3) total current through a path using the surface current twisted (cid:8)(cid:4)form than using the usual surface current vector(cid:2) In Sec(cid:2) (cid:13) we derive an expression for boundary sources at a (cid:5)eld discontinuity using the boundary projection operator(cid:2) In Sec(cid:2) (cid:14) we provide a simple computational example to illustrate the method(cid:2) Due to the unfamilarity of most engineers with di(cid:6)erential forms and associated notation(cid:3) our treatment is more elementary than is usual(cid:2) Accordingly(cid:3) we also providean introductionto theinteriorproduct and twistedformsinan Appendix(cid:2) This work shows that the calculus of di(cid:6)erential forms is useful for practical EM problems involving boundary conditions(cid:2) (cid:13)(cid:2) BOUNDARY CONDITIONS In this section we derive an expression for sources on a boundary where the electromag(cid:4) Warnick(cid:2)et al(cid:2) (cid:4) March (cid:4)(cid:3)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) netic (cid:5)eld is discontinuous(cid:2) We (cid:5)nd that generalized boundary conditions can be given using a boundary projection operator(cid:2) We then discuss the resulting boundary conditions for magnetic (cid:5)eld intensity and electric (cid:7)ux density(cid:2) (cid:13)(cid:2)(cid:8) Representing Surfaces With (cid:8)(cid:4)forms In an n(cid:4)dimensional space(cid:3) a (cid:8)(cid:4)form is represented graphically by (cid:9)n(cid:4)(cid:8)(cid:10)(cid:4)dimensional hy(cid:4) persurfaces(cid:2) In n(cid:4)space(cid:3) a boundary is also an (cid:9)n(cid:4)(cid:8)(cid:10)(cid:4)dimensional hypersurface(cid:2) Thus(cid:3) we can use (cid:8)(cid:4)forms to represent boundaries(cid:2) If a continuous function f(cid:9)x(cid:0)(cid:2)(cid:3)(cid:3)(cid:3)(cid:2)xn(cid:10) vanishes (cid:9)or is constant(cid:10) along a boundary(cid:3) then the (cid:8)(cid:4)form df graphically has a surface that lies on the boundary(cid:2) The surface of a paraboloid re(cid:7)ector antenna(cid:3) for example(cid:3) is given by (cid:2) (cid:2) x y (cid:20)az (cid:21) (cid:22)(cid:3) so that the unnormalized boundary (cid:8)(cid:4)form is (cid:13)xdx (cid:13)ydy (cid:20)adz(cid:2) A (cid:0) (cid:0) (cid:0) (cid:0) randomly rough surface is written h(cid:9)x(cid:2)y(cid:10)(cid:20)z (cid:21) (cid:22)(cid:3) giving the boundary (cid:8)(cid:4)form dh(cid:20) dz(cid:2) (cid:0) (cid:0) For the remainder of this paper we will use the notation df df n (cid:21) (cid:9)(cid:8)(cid:10) (cid:2) df df df j j q where is the interior product(cid:3) which is discussed in the Appendix(cid:2) The (cid:8)(cid:4)form n is dual to the usual surface normal vector n(cid:23)(cid:2) (cid:13)(cid:2)(cid:13) Derivation of the Boundary Projection Operator Inthreedimensions(cid:3)letE betheelectric(cid:5)eldintensity(cid:8)(cid:4)form(cid:3)H themagnetic(cid:5)eldintensity (cid:8)(cid:4)form(cid:3) D the electric(cid:7)ux density (cid:13)(cid:4)form(cid:3) B the magnetic(cid:7)ux density (cid:13)(cid:4)form(cid:3) J the electric current density (cid:13)(cid:4)form and (cid:4) the charge density (cid:14)(cid:4)form(cid:2) Then Maxwell(cid:18)s laws are (cid:5) dE (cid:21) B (cid:0)(cid:5)t (cid:5) dH (cid:21) D(cid:20)J (cid:9)(cid:13)(cid:10) (cid:5)t dD (cid:21) (cid:4) dB (cid:21) (cid:22)(cid:3) Each equation equates the exterior derivative of a di(cid:6)erential form to the sum of a source and a nonsingular (cid:5)eld term(cid:3) of which one or both may vanish(cid:2) Recognizing that Maxwell(cid:18)s Warnick(cid:2)et al(cid:2) (cid:7) March (cid:4)(cid:3)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) laws have a common form(cid:3) we can derive an expression for the boundary sources that is the same for both (cid:5)eld intensity (cid:9)(cid:8)(cid:4)forms(cid:10) and (cid:7)ux density (cid:9)(cid:13)(cid:4)forms(cid:10)(cid:2) Let (cid:6) be a p(cid:4)form with p (cid:7) n (cid:9)where n is the dimension of space(cid:10) that represents a (cid:5)eld with a (cid:9)p(cid:20)(cid:8)(cid:10)(cid:4)form (cid:8) as a source(cid:3) so that d(cid:6) (cid:21) (cid:9) (cid:20)(cid:8) (cid:9)(cid:14)(cid:10) (cid:0) where (cid:9) is nonsingular(cid:2) Let f (cid:21) (cid:22) represent a boundary(cid:3) where f is C and vanishes only along the boundary(cid:2) Let (cid:6) equal (cid:6)(cid:2) for f (cid:10) (cid:22) and (cid:6)(cid:0) for f (cid:7) (cid:22)(cid:2) We can write (cid:6) (cid:21) (cid:9)(cid:6)(cid:2) (cid:6)(cid:0)(cid:10)(cid:11)(cid:9)f(cid:10)(cid:20)(cid:6)(cid:0)(cid:3) where (cid:11) is the unit step function(cid:2) Then (cid:0) (cid:9) (cid:20)(cid:8) (cid:21) d (cid:9)(cid:6)(cid:2) (cid:6)(cid:0)(cid:10)(cid:11)(cid:9)f(cid:10)(cid:20)(cid:6)(cid:0) f (cid:0) g (cid:21) (cid:12)(cid:9)f(cid:10)df (cid:9)(cid:6)(cid:2) (cid:6)(cid:0)(cid:10)(cid:20)(cid:11)(cid:9)f(cid:10)d(cid:9)(cid:6)(cid:2) (cid:6)(cid:0)(cid:10)(cid:20)d(cid:6)(cid:0)(cid:3) (cid:9)(cid:15)(cid:10) (cid:3) (cid:0) (cid:0) (cid:21) (cid:12)(cid:24)(cid:9)f(cid:10)n (cid:9)(cid:6)(cid:2) (cid:6)(cid:0)(cid:10)(cid:20)(cid:11)(cid:9)f(cid:10)d(cid:9)(cid:6)(cid:2) (cid:6)(cid:0)(cid:10)(cid:20)d(cid:6)(cid:0) (cid:3) (cid:0) (cid:0) where (cid:12) is the Dirac delta function and (cid:12)(cid:24)(cid:9)f(cid:10) is (cid:12)(cid:9)x(cid:0) x(cid:0)(cid:3)(cid:10) (cid:12)(cid:9)xn xn(cid:3)(cid:10) such that the point (cid:0) (cid:4)(cid:4)(cid:4) (cid:0) (cid:0) n (cid:2)(cid:4)(cid:5)f(cid:6) (cid:9)x(cid:3)(cid:2)(cid:3)(cid:3)(cid:3)(cid:2)x(cid:3)(cid:10) lies on the boundary and (cid:12)(cid:9)f(cid:10) (cid:21) (cid:2) The singular parts of both sides of (cid:9)(cid:15)(cid:10) df df must be equal(cid:3) so that q (cid:0) (cid:8) (cid:21) (cid:12)(cid:24)(cid:9)f(cid:10)n (cid:9)(cid:6)(cid:2) (cid:6)(cid:0)(cid:10) (cid:9)(cid:16)(cid:10) (cid:3) (cid:0) (cid:0) where (cid:8) is the singular part of (cid:8)(cid:3) representing the boundary source along f (cid:21) (cid:22)(cid:2) Since the (cid:0) source (cid:8) is con(cid:5)ned to the boundary(cid:3) it can be written (cid:11)(cid:15)(cid:12) (cid:0) (cid:8) (cid:21) (cid:12)(cid:24)(cid:9)f(cid:10)n (cid:8)s (cid:9)(cid:17)(cid:10) (cid:3) (cid:0) where (cid:8)s is a p(cid:4)form(cid:3) the restriction of (cid:8) to the boundary(cid:2) Integrating (cid:9)(cid:16)(cid:10) and (cid:9)(cid:17)(cid:10) over a region containing the boundary shows that the equality n (cid:8)s (cid:21) n (cid:9)(cid:6)(cid:2) (cid:6)(cid:0)(cid:10)(cid:3) (cid:9)(cid:25)(cid:10) (cid:3) (cid:3) (cid:0) must hold on the boundary(cid:2) We then take the interior product of both sides of (cid:9)(cid:25)(cid:10) by n and apply the identity (cid:9)(cid:14)(cid:22)(cid:10) to obtain n (cid:9)n (cid:9)(cid:6)(cid:2) (cid:6)(cid:0)(cid:10)(cid:10) (cid:21) n (cid:9)n (cid:8)s(cid:10) (cid:3) (cid:0) (cid:3) (cid:21) (cid:9)n n(cid:10) (cid:8)s n n (cid:8)s(cid:3) (cid:9)(cid:26)(cid:10) (cid:3) (cid:0) (cid:3) Warnick(cid:2)et al(cid:2) (cid:8) March (cid:4)(cid:3)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) Because n is normalized(cid:3) n n (cid:21) (cid:8)(cid:2) Since (cid:8)s is by de(cid:5)nition con(cid:5)ned to the boundary(cid:3) n (cid:8)s (cid:21) (cid:22)(cid:2) Graphically(cid:3) the surfaces of (cid:8)s are perpendicular to the boundary because (cid:8)s can contain no factor proportional to n(cid:2) Applying n (cid:8)s (cid:21) (cid:22) to (cid:9)(cid:26)(cid:10)(cid:3) we have (cid:8)s (cid:21) n (cid:9)n (cid:9)(cid:6)(cid:2) (cid:6)(cid:0)(cid:10)(cid:10) (cid:9)(cid:27)(cid:10) (cid:3) (cid:0) which is the central result of this paper(cid:2) Eq(cid:2) (cid:9)(cid:27)(cid:10) applies to both nontwisted and twisted forms(cid:2) As noted below(cid:3) electromagnetic sources are conveniently represented by twisted forms(cid:2) If (cid:8)s is a twisted form(cid:3) we must provide an outer orientation (cid:9)see Appendix A and Burke (cid:11)(cid:17)(cid:12)(cid:10) for (cid:8)s(cid:2) The orientation is given by (cid:9)(cid:8)s(cid:2)(cid:28)s(cid:10) n (cid:8)s (cid:21) (cid:28) (cid:9)(cid:8)(cid:22)(cid:10) f g(cid:3) (cid:3) where (cid:9)(cid:8)s(cid:2)(cid:28)s(cid:10) is a nontwisted (cid:9)n p (cid:8)(cid:10)(cid:4)form specifying the outer orientation of (cid:8)s and f g (cid:0) (cid:0) (cid:28) is a volume element (cid:9)n(cid:4)form(cid:10) serving as an orientation for the surrounding n(cid:4)space(cid:2) (cid:28)s is a volume element in the boundary(cid:3) but need not be found in order to obtain the outer orientation of (cid:8)s(cid:2) Given any boundary(cid:3) there are two possible choices for n(cid:2) The orientation speci(cid:5)ed by(cid:9)(cid:8)(cid:22)(cid:10) is easily seen to be independentof that choice(cid:2) In right(cid:4)handed coordinates(cid:3) an equivalence can be made between inner and outer orientations(cid:3) and the orientation of (cid:8)s can be taken as that of the (cid:9)p(cid:20)(cid:8)(cid:10)(cid:4)form n (cid:8)s(cid:2) (cid:3) In Sections (cid:13)(cid:2)(cid:15) and (cid:13)(cid:2)(cid:16)(cid:3) where (cid:9)(cid:27)(cid:10) is specialized to surface current and surface charge densities(cid:3) we provide a simpler means for orienting surface sources(cid:2) We (cid:5)nd that the need for an orientation for (cid:8)s corresponds precisely to conventions used with the vector calculus when integrating Js and the scalar surface charge density qs(cid:2) Since (cid:9)(cid:27)(cid:10) applies to any situation for which a law of the form (cid:9)(cid:14)(cid:10) is valid(cid:3) we can use Maxwell(cid:18)s laws (cid:9)(cid:13)(cid:10) to write at a boundary f (cid:21) (cid:22)(cid:3) n (cid:9)n (cid:9)E(cid:2) E(cid:0)(cid:10)(cid:10) (cid:21) (cid:22) (cid:3) (cid:0) n (cid:9)n (cid:9)H(cid:2) H(cid:0)(cid:10)(cid:10) (cid:21) Js (cid:3) (cid:0) n (cid:9)n (cid:9)D(cid:2) D(cid:0)(cid:10)(cid:10) (cid:21) (cid:4)s (cid:9)(cid:8)(cid:8)(cid:10) (cid:3) (cid:0) n (cid:9)n (cid:9)B(cid:2) B(cid:0)(cid:10)(cid:10) (cid:21) (cid:22) (cid:3) (cid:0) where Js is the surface current twisted (cid:8)(cid:4)form and (cid:4)s is the surface charge twisted (cid:13)(cid:4)form(cid:2) In four(cid:4)space we have dF (cid:21) (cid:22) and d(cid:13)F (cid:21) j(cid:3) where F (cid:21) B(cid:20)E dt(cid:3) (cid:13)F (cid:21) D H dt and (cid:3) (cid:0) (cid:3) Warnick(cid:2)et al(cid:2) (cid:6) March (cid:4)(cid:3)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) j (cid:21) (cid:4) J dt(cid:2) We can express all four boundary conditions as (cid:0) (cid:3) n (cid:9)n (cid:9)F(cid:2) F(cid:0)(cid:10)(cid:10) (cid:21) (cid:22) (cid:3) (cid:0) n (cid:9)n (cid:9)(cid:13)F(cid:2) (cid:13)F(cid:0)(cid:10)(cid:10) (cid:21) js (cid:9)(cid:8)(cid:13)(cid:10) (cid:3) (cid:0) where js (cid:21) (cid:4)s Js dt and units are suitably normalized(cid:2) (cid:0) (cid:3) The operator n n might be termed the boundary projection operator(cid:2) Graphically(cid:3) this (cid:3) operator removes the component of a form with surfaces parallel to the boundary(cid:2) The boundary projection of a (cid:8)(cid:4)form has surfaces perpendicular to the boundary(cid:2) The boundary projection of a (cid:13)(cid:4)form has tubes perpendicular to the surface at every point(cid:2) (cid:13)(cid:2)(cid:14) Decomposition of Forms at a Boundary Any form (cid:14) of degree less than the dimension of the space we are working in can be decom(cid:4) (cid:2)(cid:0) posed using the boundary projection operator and its complementaryoperation (cid:13) n n (cid:13)(cid:3) (cid:3) so that (cid:2)(cid:0) (cid:14) (cid:21) n (cid:9)n (cid:14)(cid:10)(cid:20)(cid:13) (cid:11)n (cid:9)n (cid:13)(cid:14)(cid:10)(cid:12) (cid:9)(cid:8)(cid:14)(cid:10) (cid:3) (cid:3) where the second termon the right(cid:4)hand side is the component of (cid:14) with surfaces parallel to the boundary(cid:2) This identity can be proved by expressing (cid:14) in terms of orthonormal (cid:8)(cid:4)forms i i i dx at a point(cid:3) verifying (cid:9)(cid:8)(cid:14)(cid:10) for n (cid:21) dx and extending to the general case n (cid:21) nidx (cid:3) (cid:2) where i(cid:9)ni(cid:10) (cid:21) (cid:8) using the linearity of the exterior and interior products(cid:2) The operator (cid:13)(cid:2)(cid:0)n nP (cid:13) can be used to obtain the arbitrary part of a (cid:5)eld at a boundary(cid:2) (cid:3) We discuss special cases of the boundary projection operator for (cid:8)(cid:4)forms and (cid:13)(cid:4)forms below(cid:2) (cid:13)(cid:2)(cid:15) Surface Current Surface current is represented by a twisted (cid:8)(cid:4)form(cid:2) Fig(cid:2) (cid:8) shows how this (cid:8)(cid:4)form is obtained fromthemagnetic(cid:5)eldintensityataboundary (cid:9)Fig(cid:2)(cid:8)a(cid:10)(cid:2) Fig(cid:2)(cid:8)bshowsthe(cid:8)(cid:4)form(cid:9)H(cid:2) H(cid:0)(cid:10)(cid:2) (cid:0) (cid:9)Note that the (cid:8)(cid:4)forms H(cid:2) and H(cid:0) are both de(cid:5)ned above and below the boundary even though each represents the (cid:5)eld on one side of the boundary only(cid:2) Thus(cid:3) we can consider Warnick(cid:2)et al(cid:2) (cid:9) March (cid:4)(cid:3)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) H(cid:2) H(cid:0) as being de(cid:5)ned for all space(cid:3) even though only its value on the boundary is of (cid:0) interest(cid:2)(cid:10) Fig(cid:2) (cid:8)c shows n (cid:9)n (cid:9)H(cid:2) H(cid:0)(cid:10)(cid:10)(cid:2) Fig(cid:2) (cid:8)d is the restriction of this (cid:8)(cid:4)form to the (cid:3) (cid:0) boundary(cid:3) along with the corresponding vector Js(cid:2) Graphically(cid:3) the boundary projection operator removes any component of H(cid:2) H(cid:0) with (cid:0) surfacesparalleltotheboundary(cid:2) Physically(cid:3)thisexpressesboththerequirementthatsurface current can only (cid:7)ow along the boundary and the arbitrariness of the normal component of H(cid:2) H(cid:0) at the boundary(cid:2) (cid:0) Most forms in EM theory(cid:3) such as E(cid:3) H(cid:3) D and B(cid:3) are dual to the corresponding vector quantity(cid:3)so that components di(cid:6)er only by metricalcoe(cid:19)cients(cid:2) The twisted surface current (cid:8)(cid:4)form Js(cid:3) however(cid:3) is not the dual of the vector Js(cid:2) The nontwisted (cid:8)(cid:4)form with the same components as Js does not satisfy the simple de(cid:5)nition given below in (cid:9)(cid:8)(cid:15)(cid:10)(cid:2) The surface current (cid:8)(cid:4)form Js can be de(cid:5)ned in terms of the (cid:7)ow vector v of a surface charge distribution (cid:4)s(cid:2) The current density(cid:13)(cid:4)formJ is J (cid:21) v (cid:4)(cid:2) The surface currentdensity is Js (cid:21) v (cid:4)s(cid:2) If (cid:4)s (cid:21) qdxdy and the (cid:7)ow (cid:5)eld v (cid:21) vy(cid:23)(cid:3) then Js (cid:21) vy(cid:23) qdxdy (cid:21) qvdx(cid:2) (cid:0) (cid:0) The (cid:8)(cid:4)form dual to Js would be qvdy(cid:2) The integral of the surface current density over a path should yield the total current through thepath(cid:2) The(cid:8)(cid:4)formJs as obtainedusing theboundary projectionoperator satis(cid:5)es this de(cid:5)nition(cid:29) I (cid:21) Js (cid:9)(cid:8)(cid:15)(cid:10) P Z where P is a path(cid:2) The sense of I is with respect to the direction of the (cid:13)(cid:4)form n s(cid:3) (cid:3) where s is the (cid:8)(cid:4)form dual to the tangent vector s of P (cid:9)so that s is a (cid:8)(cid:4)form with surfaces perpendicular to the path P and oriented in the direction of integration(cid:10)(cid:2) The simple integral in (cid:9)(cid:8)(cid:15)(cid:10) replaces a much more cumbersome vector expression(cid:2) The total current through P using the usual surface current vector is I (cid:21) Js (cid:9)n(cid:23) ds(cid:10) (cid:9)(cid:8)(cid:16)(cid:10) P (cid:4) (cid:5) Z where the sense of I is relative to the direction of n(cid:23) ds(cid:2) Note that this is the same as the (cid:5) reference direction n s of (cid:9)(cid:8)(cid:15)(cid:10)(cid:2) (cid:3) The integral in (cid:9)(cid:8)(cid:15)(cid:10) is evaluated in practice by the method of pullback(cid:2) If a surface S is parameterized by x (cid:21) (cid:6)(cid:0)(cid:9)u(cid:2)v(cid:10)(cid:3) y (cid:21) (cid:6)(cid:2)(cid:9)u(cid:2)v(cid:10)(cid:3) z (cid:21) (cid:6)(cid:7)(cid:9)u(cid:2)v(cid:10) where u and v range over some Warnick(cid:2)et al(cid:2) (cid:10) March (cid:4)(cid:3)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) subsetT oftheu(cid:30)v plane(cid:3)thentheintegralof(cid:14) (cid:21) (cid:14)(cid:0)(cid:9)x(cid:2)y(cid:2)z(cid:10)dx(cid:20)(cid:14)(cid:2)(cid:9)x(cid:2)y(cid:2)z(cid:10)dy(cid:20)(cid:14)(cid:7)(cid:9)x(cid:2)y(cid:2)z(cid:10)dz over S is (cid:3) (cid:14) (cid:21) (cid:6) (cid:14) S T Z Z (cid:21) (cid:14)(cid:0)(cid:9)(cid:6)(cid:0)(cid:2)(cid:6)(cid:2)(cid:2)(cid:6)(cid:7)(cid:10)d(cid:6)(cid:0) (cid:20)(cid:14)(cid:2)(cid:9)(cid:6)(cid:0)(cid:2)(cid:6)(cid:2)(cid:2)(cid:6)(cid:7)(cid:10)d(cid:6)(cid:2) (cid:20)(cid:14)(cid:7)(cid:9)(cid:6)(cid:0)(cid:2)(cid:6)(cid:2)(cid:2)(cid:6)(cid:7)(cid:10)d(cid:6)(cid:7) (cid:9)(cid:8)(cid:17)(cid:10) T Z where the superscript denotes the pullback operation(cid:2) After pullback(cid:3) the integrand be(cid:4) (cid:6) comes a (cid:8)(cid:4)form in du and dv(cid:2) Partial derivatives of the coordinate transformation enter naturally via the exterior derivatives of (cid:6)(cid:0)(cid:3) (cid:6)(cid:2) and (cid:6)(cid:7)(cid:2) Eq(cid:2) (cid:9)(cid:8)(cid:17)(cid:10) is easily generalized to integrals of (cid:13)(cid:4)forms(cid:2) (cid:13)(cid:2)(cid:16) Surface Charge Surface charge densitydue to discontinuouselectric(cid:7)ux densityat a boundary is represented by the twisted (cid:13)(cid:4)form (cid:4)s (cid:21) n (cid:9)n (cid:9)D(cid:2) D(cid:0)(cid:10)(cid:10)(cid:2) The boundary projection operator removes (cid:3) (cid:0) any component of D(cid:2) D(cid:0) with tubes parallel to the boundary(cid:3) as shown in Fig(cid:2) (cid:13)(cid:2) (cid:0) The (cid:13)(cid:4)form (cid:4)s obtained using the boundary projection operator di(cid:6)ers from the usual value qs (cid:21) n(cid:23) (cid:9)D(cid:2) D(cid:3)(cid:10) because (cid:4)s is a (cid:13)(cid:4)form(cid:3) whereas qs is a scalar(cid:2) The total charge on (cid:4) (cid:0) an area A of a boundary with surface charge (cid:4)s is Q (cid:21) (cid:4)s(cid:3) (cid:9)(cid:8)(cid:25)(cid:10) A Z Q is positive for positive surface charge if the (cid:13)(cid:4)form (cid:14) that satis(cid:5)es n (cid:14) (cid:21) (cid:28) also satis(cid:5)es (cid:3) A(cid:14) (cid:10) (cid:22)(cid:3) where (cid:28) is the standard volumeelement(cid:3) dxdydz in rectangular coordinates(cid:2) This R corresponds exactly to the convention of choosing dS in Q (cid:21) AqsdS (cid:9)where qs is the usual R surface charge density scalar(cid:10) such that AdS is positive(cid:2) The sign of the charge represented nR(cid:4)(cid:3)s by (cid:4)s can also be found by computing (cid:2) (cid:8) (cid:13)(cid:2)(cid:17) Comparison to Burke(cid:18)s Pullback Method Burke (cid:11)(cid:17)(cid:12) derives an expression for boundary sources using the method of pullback(cid:2) In his notation(cid:3) boundary conditions have the form (cid:11)H(cid:12) (cid:21) Js and (cid:11)D(cid:12) (cid:21) (cid:4)s(cid:2) The square brackets Warnick(cid:2)et al(cid:2) (cid:11) March (cid:4)(cid:3)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) denote the sum of the pullback of H above the boundary to the boundary and the pullback of H below the boundary to the boundary(cid:3) so that (cid:3) (cid:3) Js (cid:21) (cid:11)H(cid:12) (cid:6)(cid:2)H(cid:2) (cid:20)(cid:6)(cid:0)H(cid:0) (cid:9)(cid:8)(cid:26)(cid:10) (cid:2) where (cid:6)(cid:2) and (cid:6)(cid:0) are functions of the space above and below the boundary into theboundary(cid:2) The pullback method has a concise and elegant proof in (cid:11)(cid:17)(cid:12)(cid:2) By transforming to a coordi(cid:4) (cid:0) n (cid:0) nate systemx (cid:2)(cid:3)(cid:3)(cid:3)(cid:2)x such that a boundary is given byx (cid:21) (cid:22)(cid:3) it can be shown that Burke(cid:18)s (cid:0) formulation is equivalent to n n for n (cid:21) dx (cid:2) Although the pullback boundary conditions (cid:3) are mathematically very natural(cid:3) the boundary projection operator has the advantage that (cid:9)as with the usual vector formulation(cid:10) the boundary sources are always expressed in the same coordinates as the (cid:5)elds(cid:2) (cid:14)(cid:2) EXAMPLE Aconductingboundary liesalongthesurfacez (cid:21) cosy(cid:2) Abovetheboundary themagnetic (cid:5)eld is H(cid:2) (cid:21) H dx(cid:2) Below the (cid:5)eld is zero(cid:2) This is shown in Fig(cid:2) (cid:14)a(cid:2) We can represent the surface by f(cid:9)x(cid:2)y(cid:2)z(cid:10) (cid:21) z cosy (cid:21) (cid:22)(cid:2) Computing the normalized (cid:0) exterior derivative of this function(cid:3) d(cid:9) cosy(cid:20)z(cid:10) n (cid:21) (cid:0) d(cid:9) cosy(cid:20)z(cid:10) j (cid:0) j sinydy (cid:20) dz (cid:21) (cid:3) (cid:9)(cid:8)(cid:27)(cid:10) (cid:2) (cid:8)(cid:20)sin y q The boundary projection of H(cid:2) is Js (cid:21) n n H(cid:2) (cid:3) H (cid:21) (cid:2) (cid:9)sinydy (cid:20) dz(cid:10) (cid:9)sinydydx(cid:20) dzdx(cid:10) (cid:8)(cid:20)sin y H (cid:2) (cid:21) (cid:2) (cid:9)dx(cid:20)sin ydx(cid:10) (cid:8)(cid:20)sin y (cid:21) H dx(cid:3) (cid:9)(cid:13)(cid:22)(cid:10) Fig(cid:2) (cid:14)c shows the (cid:8)(cid:4)form Js (cid:21) Hdx restricted to the boundary(cid:2) The direction of the arrow along the lines of H dx is the orientation of the (cid:13)(cid:4)form n Js(cid:2) (cid:3) Warnick(cid:2)et al(cid:2) (cid:5) March (cid:4)(cid:3)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6) Compare the (cid:5)nal expression for Js in (cid:9)(cid:13)(cid:22)(cid:10) to the vector surface current obtained for H the same (cid:5)eld and boundary(cid:3) Js (cid:21) (cid:0) (cid:9)y(cid:23) sinyz(cid:23)(cid:10)(cid:2) The di(cid:6)erential form Js (cid:21) H dx p(cid:0)(cid:9)sin y (cid:0) indicates clearly that the total current crossing a path in the boundary is simply the extent of the path in the x direction scaled by the factor H(cid:2) This is not obvious from the vector expression(cid:2) (cid:15)(cid:2) CONCLUSION The boundary projection operator allows one to express electromagnetic boundary con(cid:4) ditions using di(cid:6)erential forms(cid:3) using the same operator for both (cid:5)eld intensity and (cid:7)ux density(cid:2) The di(cid:6)erent appearances of the (cid:5)eld intensity and (cid:7)ux density boundary condi(cid:4) tions expressed using vector analysis is merely an artifact of the mathematical language(cid:2) The di(cid:6)erential forms for boundary sources obtained via the boundary projection operator di(cid:6)er from the vectors obtained by standard methods(cid:2) The surface current (cid:8)(cid:4)form Js(cid:3) for example(cid:3)has a more natural de(cid:5)nition than the usual surface current vector Js(cid:2) This (cid:8)(cid:4)form is readilyintegrated to yieldtotal current over a path(cid:3) whereas a vector perpendicular to the path and tangent to the boundary is required to evaluate the integral for total current using the surface current vector(cid:2) The surface current vector also obscures intuitive properties of the boundary source that are clearly evident when the source is represented by the (cid:8)(cid:4)form Js(cid:2) Graphically(cid:3) a source form is the intersection of the (cid:5)eld forms with the boundary(cid:3) for both the (cid:5)eld intensity and (cid:7)ux density cases(cid:2) This methodfor representingboundary conditions can be easilyapplied in practicalprob(cid:4) lems(cid:3) and so helps to open the way for the use of di(cid:6)erential forms on a regular basis in engineering electromagnetics(cid:2) Acknowlegements(cid:3) This material is based in part upon work supported under a National Science Foundation Graduate Fellowship to KFW(cid:2) Warnick(cid:2)et al(cid:2) (cid:3)(cid:12) March (cid:4)(cid:3)(cid:2) (cid:3)(cid:5)(cid:5)(cid:6)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.