Electrodynamic Absorber Theory A Mathematical Study - Dirk - Andre Deckert DoctoralThesis Electrodynamic Absorber Theory A Mathematical Study Dirk-Andre´ Deckert DissertationanderFakulta¨tfu¨rMathematik,InformatikundStatistikder Ludwig-Maximilians-Universita¨tMu¨nchen Theresienstraße39,80333Mu¨nchen,Germany. Submission: October26,2009 Rigorosum: January7,2010 SupervisorandFirstReviewer: Prof. Dr. DetlefDu¨rr MathematischesInstitutderLudwig-Maximilians-Universita¨tMu¨nchen Theresienstraße39,80333Mu¨nchen,Germany. SecondReviewer: Prof. Dr. HerbertSpohn ZentrumMathematik,TechnischeUniversita¨tMu¨nchen Boltzmannstr. 3,85747Garching,Germany. ExternalReviewer: Prof. Dr. GernotBauer FachbereichElektrotechnikundInformatikderFachhochschuleMu¨nster Bismarckstraße11,48565Steinfurt,Germany. Abstract This work treats mathematical questions which arise in classical and quantum electrodynamics whendescribingthephenomenaofradiationreactionandpaircreation. Itconsistsoftwomajor parts: Inthefirstpartclassicaldynamicsarestudiedwhichallowforradiationreaction: Forclassical, non-rotating, rigid charges we give explicit representation formulas of strong solutions to the Maxwell equations, prove global existence and uniqueness of strong solutions to the Maxwell- Lorentz equations in a general setting in which we also allow for a class of infinite energy solutions, negative masses of the charges, and for both cases, Maxwell-Lorentz equations of motionwithself-interaction(ML+SI)andwithout(ML-SI).Weprovethatpossiblesolutionsto theWheeler-Feynmanequationswithboundedaccelerationsandmomentaarealsosolutionsto theML-SIequations. ThisgivesrisetoauniquecharacterizationofWheeler-Feynmansolutions by position, momenta and their Wheeler-Feynman fields at one instant of time. Moreover, we give a reformulation of Wheeler-Feynman electrodynamics for rigid and non-rotating charges in terms of an initial value problem for Newtonian Cauchy data. With it we prove existence ofWheeler-FeynmansolutionsonfinitetimeintervalscorrespondingtotheNewtonianCauchy data. We discuss how this method could yield global existence of solution to the Wheeler- Feynmanequations. In the second part quantum dynamics are studied for systems of an infinite number of Dirac electrons which interact only with a prescribed external field that allows for pair creation: We construct the time-evolution for the second quantized Dirac equation subject to a smooth and compactly supported, time-dependent electrodynamic four-vector field. Earlier works on this (Ruijsenaars) observed the Shale-Stinespring condition and showed that the one-particle time- evolutioncanbeliftedtoFockspaceifandonlyiftheexternalfieldhaszeromagneticcompo- nents. ThebasicobstacleintheconstructionisthatthereisneitheradistinguishedDiracsea,i.e. Fockspacevacuum,noradistinguishedpolarization. Therefore,thekeyidea(suggestedalready byFierzandScharf)istoimplementthistime-evolutionbetweentime-varyingFockspaces. We show that this implementation is unique up to a phase. All induced transition amplitudes are uniqueandfinite. In a last part we give a brief outlook on our perspective of a divergence free, electrodynamical theory for point-like charges which accounts for both phenomena, radiation reaction as well as paircreation. ItisbasedontheideathattheDiracsearepresentstheabsorbermediumproposed by Wheeler and Feynman. The presented mathematical results can be considered as first steps towardsit. Keywords: Absorber Electrodynamics, Radiation Reaction, Pair Creation, Wheeler-Feynman Solutions,MaxwellSolutions,Lie´nard-WiechertFields,Maxwell-LorentzSolutions,Functional DifferentialEquations,InfiniteWedgeSpaces,Second-QuantizedDiracTime-Evolution,Quan- tumElectrodynamics,QuantumWheeler-FeynmanInteraction Zusammenfassung (Translation of the Abstract) Diese Arbeit behandelt mathematische Fragen, die im Zusammenhang mit der Strahlungsru¨ck- wirkungundderPaarerzeugunginderklassischenFeldtheoriesowieinderQuantenfeldtheorie stehen.SiebestehtauszweiHauptteilen: Im ersten Teil werden klassische Dynamiken studiert, die es ermo¨glichen den Effekt der Strah- lungsru¨ckwirkungzubeschreiben:Fu¨rklassische,nicht-rotierende,starreKo¨rpergebenwirex- pliziteDarstellungsformelnfu¨rstarkeLo¨sungenderMaxwellGleichungenanundbeweisendie globale Existenz und Eindeutigkeit von starken Lo¨sungen der Maxwell-Lorentz Gleichungen in einem allgemeinen Rahmen. Dieser erlaubt es eine Klasse von Lo¨sungen unendlicher Ener- gien, negativen Massen der Ladungen, sowie beide Fa¨lle, Maxwell-Lorentz Gleichungen mit Selbstwechselwirkung (ML+SI) und ohne (ML-SI) zu behandeln. Wir beweisen weiter, dass mo¨glicheWheeler-FeynmanLo¨sungenmitbeschra¨nktenBeschleunigungenundImpulsenauch Lo¨sungenderML-SIGleichungendarstellen.Diesermo¨glichteineeindeutigeCharakterisierung der Wheeler-Feynman Lo¨sungen anhand von Ort, Impuls, und ihrer Wheeler-Feynman Felder zueinembestimmtenZeitpunkt.ZudemgebenwireineUmformulierungderWheeler-Feynman Elektrodynamikfu¨rstarreundnicht-rotierendeLadungenineinAnfangswertproblemfu¨rNew- tonsche Cauchy Daten an und beweisen damit die Existenz von Wheeler-Feynman Lo¨sungen aufendlichenZeitintervallenentsprechendNewtonscherCauchyDaten.Wirdiskutierenwiemit HilfedieserVorgehensweisedieglobaleExistenzvonLo¨sungenzudenWheeler-FeynmanGlei- chungengezeigtwerdenko¨nnte. ImzweitenTeilstudierenwirQuantendynamikenfu¨rSystememitunendlichvielenDiracElek- tronen, die nur mit einem vorgeschriebenen a¨ußeren Feld wechselwirken, welches Paarerzeu- gung ermo¨glicht: Wir konstruieren die Zeitentwicklung fu¨r die zweitquantisierte Dirac Glei- chunginAbha¨ngigkeitvoneinemglattenundkompakten,zeitabha¨ngigen,elektrodynamischen Viervektorfeld. In fru¨heren Arbeiten auf diesem Gebiet (Ruijsenaars) wurde die Shale- Stinespring Bedingung beru¨cksichtigt, und es wurde gezeigt, dass die Einteilchenzeitentwick- lung genau dann auf den Fock Raum gehoben werden kann, wenn die magnetischen Kompo- nentendesa¨ußerenFeldesnullsind.DaswesentlicheHindernisbeidieserKonstruktionist,dass eswedereinenausgezeichnetenDiracSee,d.h.FockRaumVakuum,nocheineausgezeichnete Polarisationgibt.AusdiesemGrundistdieSchlu¨sselidee(wiebereitsvonFierzundScharfvor- geschlagen), diese Zeitentwicklung zwischen zeitlich variierenden Fock Ra¨umen umzusetzen. Wir zeigen, dass diese Umsetzung bis auf eine Phase eindeutig ist. Alle sich dadurch ergeben- denU¨bergangsratensindeindeutigundendlich. IneinemletztenTeilgebenwirausunseremBlickwinkeleinenkurzenAusblickaufeinediver- genzfreie, elektrodynamische Theorie u¨ber Punktladungen, welche beide Pha¨nomene, sowohl Strahlungsru¨ckwirkungalsauchPaarerzeugungbeschreibt.SiebasiertaufderIdee,dassderDi- racSeedasvonWheelerundFeynmaneingefu¨hrteAbsorbermediumdarstellt.Diepra¨sentierten mathematischenResultateko¨nntenalsersteSchritteindieseRichtungangesehenwerden. Acknowledgements This work would not have been possible without the help of many people who contributed in manyandvariousways. Itisapleasuretospelloutmygratitude. Myfirstthanksbelongtomyparents,Rolf-RainerDeckertandWaltraud-EmmaGo¨hde-Deckert, who never missed a chance to spark my interest in nature. This together with their loving and alsofinancialsupportpavedmywaytophysics. MyverynextthanksareduetoProf. Dr. DetlefDu¨rrwhohasbeenmypatientteacherinphysics andmathematicsoverthelasttenyears. DuringthistimehehasbeenalighthouseontheGreek coastline guiding through the shallow waters of modern natural philosophy. I am very grateful heintroducedmetoWheeler-Feynmanelectrodynamicsaswellasforhisuntiringlysupervision. TheGermanwordDoktorvaterexpressesverywellwhathemeanstome. At this place I also want to thank Michaela Shakina Changazi for her love and her enduring encouragement. Duringthelastfiveyearsshecreatedtheenvironmentthatallowedmetofocus onmyworkwhileshewasproofreadingallofit. PartIofthisworkwasco-supervisedbyProf. Dr. GernotBauerwhogavetheideaofreformu- lating Wheeler-Feynman electrodynamics as an initial value problem. Numerous enlightening discussionswithhim,hiscommentsandcriticismandhismanyinvitationstoMu¨nsterprovided thebackboneofthispartofthework, whichIthereforeconsideracollaborationwithProf. Dr. GernotBauerandProf. Dr. DetlefDu¨rr. AtthisplaceIneedtothankalsoDr. MartinKolbfor manyvaluablediscussionsaboutfunctionaldifferentialequations,weightedfunctionspacesand forproofreadingtheseparts. The mathematical results of Part II of this work emerged from a collaboration with Prof. Dr. Detlef Du¨rr, Prof. Dr. Franz Merkl and Prof. Dr. Martin Schottenloher. In this regard I espe- ciallyneedtothankProf. Dr. FranzMerklforourregularcomputationsessionsonWednesday afternoons. ThanksalsotoSo¨renPetratandTorbenKru¨gerfordiscussionsandforproofreading. Furthermore, I am very grateful to Prof. Dr. Herbert Spohn for valuable discussions about classical and quantum field theory and his support during the last five years, as well as to Prof. Martin Faessler and Dr. Reiner Geyer for a wonderful and enlightening stay at CERN in the COMPASSgroup. Many thanks go also to: BayEFG of the Universita¨t Bayern for partly funding, Maaneli Der- akhshani for pointing out to me Barut’s works on quantum electrodynamics and its similarities to Wheeler-Feynman electrodynamics, Veronika Du¨rr for tender care while Prof. Dr. Du¨rr and IwereworkingtogetherinLandsbergandforhercompanyduringtheMu¨nstervisits,Matthias Jungeforbeinganextraordinarygoodhighschoolteacherinphysicsandmathematics(intimes of little appreciation for non-profit use of mathematics) and also for providing the motivation for my studies, and finally our work group here in Munich (roughly time-ordered): My former room mate Dr. Tilo Moser, the master of counterexamples, for great times and joint discov- eries of well-known facts in the big world of mathematics, Dr. Angelo Bassi for our past and present collaborations, for being a friend and his great Italian dinners, Dr. Peter Pickl, the Mr. Sunshine and our former senior officer, for our past and present collaborations and for creating a cheerful group atmosphere (Losinj!), Dr. Martin Kolb, the living bibliography, for being a fantasticcolleague,forpresentcollaborationandmanyinvaluablemathematicalinsights,Sarah Ro¨mer for her steady chocolate supply during hard times, Nicola Vona for his plenty ideas on Wheeler-Feynmanelectrodynamics(nowadaysweareknownasthedynamicduo!) andkeeping ourroomsotidy, RobertGrummtforourdiscussionsandhisgreatcompanyontheconference inDresden, andfinallyChristianBeck, NiklasBoers, DustinLazarovici, TorbenKru¨ger, So¨ren PetratandGeorgVolkertforinterestingdiscussionsandforbeinggreatfellowstudents. Style of Writing Althoughthisdoctoralthesisiswrittenbyonlyoneauthor,thechosenformofwritingemploys theuseoffirstpersonpluralthroughouttheworkfortworeasons: First,researchisneverdoneby asinglepersonalone. Inthissensephraseslike“weconclude”areusedtorecallallpeoplewho contributed to a “conclusion” in one way or another. Second, for an interested reader phrases like“weprove”arealsomeantinthesensethattheauthorandthereadergothrougha“proof” togethertocheckifitiscorrect. Contents 1 Preface 1 1.1 InteractionbetweenLightandMatter. . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ScopeofthisWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 I RadiationReaction 5 2 CompleteAbsorptionandRadiationReaction 7 3 Maxwell-LorentzequationsofMotion 15 3.1 ChapterOverviewandResults . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 SolutionstotheMaxwell-LorentzequationsofMotion . . . . . . . . . . . . . 18 3.3 AGlobalExistenceandUniquenessResultonBanachSpaces . . . . . . . . . 21 3.4 TheSpacesofWeightedSquareIntegrableFunctions . . . . . . . . . . . . . . 25 3.5 ProofofMainTheoremandRegularity. . . . . . . . . . . . . . . . . . . . . . 30 3.6 ConclusionandOutlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 Wheeler-FeynmanEquationsofMotion 43 4.1 ChapterOverviewandResults . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 FunctionalDifferentialEquations . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.1 Wheeler-FeynmanToyModel . . . . . . . . . . . . . . . . . . . . . . 53 4.2.2 ReformulationinTermsofanInitialValueProblem . . . . . . . . . . . 55 4.3 Wheeler-FeynmanInitialFields . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3.1 SolutionstotheMaxwellequations . . . . . . . . . . . . . . . . . . . 60 4.3.2 UniqueIdentificationofWheeler-FeynmanSolutions . . . . . . . . . . 70 4.4 ExistenceofWheeler-FeynmanInitialFields . . . . . . . . . . . . . . . . . . 73 4.4.1 TheMaxwellFieldsoftheMaxwell-LorentzDynamics . . . . . . . . . 73 4.4.2 NewtonianCauchyData: Wheeler-FeynmanInteractionforFiniteTimes 75 4.5 ConclusionandOutlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5 AppendixforPartI 95 5.1 EquationsofMotioninaSpecialReferenceFrame . . . . . . . . . . . . . . . 95 5.2 MissingProofsandComputationsforSection3.2 . . . . . . . . . . . . . . . . 97 5.3 MissingComputationforSection4.3.1 . . . . . . . . . . . . . . . . . . . . . . 97 5.4 MissingLemmasandProofsforSection4.4.2 . . . . . . . . . . . . . . . . . . 100 II PairCreation 103 6 AbsorberSubsystemsandEffectiveFields 105 7 Time-EvolutionofDiracSeasinanExternalField 111 7.1 ChapterOverviewandResults . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.2 ExplicitConstructionoftheAbsorber . . . . . . . . . . . . . . . . . . . . . . 116 7.2.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.2.2 OperationsfromtheLeftandfromtheRight . . . . . . . . . . . . . . 125 7.2.3 LiftCondition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.3 TheTime-EvolutionofDiracSeas . . . . . . . . . . . . . . . . . . . . . . . . 130 7.3.1 One-ParticleTime-Evolution . . . . . . . . . . . . . . . . . . . . . . . 130 7.3.2 IdentificationofPolarizationClasses. . . . . . . . . . . . . . . . . . . 144 7.3.3 TheSecondQuantizedTime-Evolution . . . . . . . . . . . . . . . . . 150 7.4 PairCreationProbabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.5 GaugeTransformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.6 ConclusionandOutlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 III Outlook 157 8 ElectrodynamicAbsorberTheory 159 8.1 ShortReviewofStepsTowardsanAbsorberQuantumElectrodynamics . . . . 159 Notation 167 Bibliography 171
Description: