ebook img

Electrodeposition of rare earth-transition metal alloy thin films and nanostructures PDF

151 Pages·2017·9.53 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electrodeposition of rare earth-transition metal alloy thin films and nanostructures

LLoouuiissiiaannaa SSttaattee UUnniivveerrssiittyy LLSSUU DDiiggiittaall CCoommmmoonnss LSU Doctoral Dissertations Graduate School 2007 EElleeccttrrooddeeppoossiittiioonn ooff rraarree eeaarrtthh--ttrraannssiittiioonn mmeettaall aallllooyy tthhiinn fifillmmss aanndd nnaannoossttrruuccttuurreess Rohit Mishra Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemical Engineering Commons RReeccoommmmeennddeedd CCiittaattiioonn Mishra, Rohit, "Electrodeposition of rare earth-transition metal alloy thin films and nanostructures" (2007). LSU Doctoral Dissertations. 1694. https://digitalcommons.lsu.edu/gradschool_dissertations/1694 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ELECTRODEPOSITION OF RARE EARTH-TRANSITION METAL ALLOY THIN FILMS AND NANOSTRUCTURES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemical Engineering By Rohit Mishra B.S. Kakatiya University, India, 1999 May, 2007 DEDICATION To my parents…… ii ACKNOWLEDGEMENTS I would like to sincerely thank my advisor, Dr. Elizabeth J. Podlaha, for her guidance and patient support. Without her steadfast commitment, this research would not have been possible. I would also like to show my appreciation to my advisory committee, Dr. Karsten Thompson, Dr. David Young, Dr. John Flake and Dr. Jaye Cable for their time and positive advice towards my research. I would like to thank the Chemical Engineering Department at LSU for giving me this opportunity to be here. A special thanks is due to the chemical engineering staff and the machine shop personnel, especially Paul Rodriguez for their continued help and support. Finally I want to extent my gratitude to Dr. Xiaogang Xie, Ms. Cindy Henk and Dr. Dongmei Cao for their help with SEM, TEM and XPS respectively. I would also like to thank Dr. Monica Moldovan and Amar Karki for their help in measurement of magnetic properties. Last but not the least; I acknowledge the support of my fellow colleagues, Yutong Li, Despina Davis and Maoshi Guan. This work was funded by NSF/NIRT and the Coates Memorial Fellowship at Louisiana State University. iii TABLE OF CONTENTS DEDICATION....................................................................................................................ii TU UT ACKNOWLEDGEMENTS...............................................................................................iii TU UT LIST OF TABLES.............................................................................................................vi TU UT LIST OF FIGURES..........................................................................................................vii TU UT ABSTRACT ...................................................................................................................xii TU UT CHAPTER I. INTRODUCTION......................................................................................1 TU UT TU UT 1.1 References...........................................................................................................4 TU UT TU UT CHAPTER II. ELECTRODEPOSITION OF RARE EARTH-TRANSITION METAL TU THIN FILMS .....................................................................................................................9 UT 2.1 Literature Review................................................................................................9 TU UT TU UT 2.1.1 Aqueous Electrolytes................................................................................10 TU UT TU UT 2.1.2 Organic Electrolytes..................................................................................13 TU UT TU UT 2.1.3 Molten Salt................................................................................................18 TU UT TU UT 2.2 Experimental Setup...........................................................................................19 TU UT TU UT 2.3 Results and Discussion.....................................................................................24 TU UT TU UT 2.3.1 Macro-electrode Analysis.........................................................................24 TU UT TU UT 2.3.2 Microelectrode Analysis...........................................................................38 TU UT TU UT 2.4 Summary...........................................................................................................42 TU UT TU UT 2.5 References.........................................................................................................44 TU UT TU UT CHAPTER III. TEMPLATE DEPOSITION OF RARE EARTH-CO ALLOYS ...........48 TU UT 3.1 Literature Review..............................................................................................48 TU UT TU UT 3.1.1 Introduction to Template Deposition........................................................48 TU UT TU UT 3.1.2 Electrochemical Aspect of Template Deposition.....................................51 TU UT TU UT 3.1.3 Fabrication of Nanotubes..........................................................................52 TU UT TU UT 3.1.4 Applications of Nanowires and Nanotubes...............................................56 TU UT TU UT 3.2 Experimental Setup...........................................................................................58 TU UT TU UT 3.3 Experimental Results........................................................................................61 TU UT TU UT 3.3.1 Composition..............................................................................................62 TU UT TU UT 3.3.2 Morphology...............................................................................................70 TU UT TU UT 3.3.2.1 Effect of pH...........................................................................................74 TU UT TU UT 3.3.2.2 Effect of Deposit Material....................................................................77 TU UT TU UT 3.3.2.3 Effect of Pore Diameter........................................................................79 TU UT TU UT iv 3.3.2.4 Effect of Deposition Time....................................................................80 TU UT TU UT 3.3.2.5 Effect of Duty Cycle.............................................................................82 TU UT TU UT 3.3.3 Characterization........................................................................................86 TU UT TU UT 3.4 Summary...........................................................................................................94 TU UT TU UT 3.5 References.........................................................................................................95 TU UT TU UT CHAPTER IV. SIMULATION OF RARE EARTH-COBALT ALLOY TU ELECTRODEPOSITION...............................................................................................101 UT 4.1 Introduction.....................................................................................................101 TU UT TU UT 4.2 Deposition Mechanism...................................................................................104 TU UT TU UT 4.3 Model Development........................................................................................106 TU UT TU UT 4.4 Results.............................................................................................................114 TU UT TU UT 4.5 Summary.........................................................................................................125 TU UT TU UT 4.6 References.......................................................................................................126 TU UT TU UT CHAPTER V. CONCLUSION.......................................................................................129 TU UT APPENDIX A. LIST OF SYMBOLS............................................................................132 TU UT APPENDIX B. THIN FILM DEPOSITION TECHNIQUES........................................133 TU UT APPENDIX C. CYCLIC VOLTAMMETRY................................................................134 TU UT APPENDIX D. PROPERTIES OF RARE EARTH ELEMENTS.................................135 TU UT APPENDIX E. LETTER OF PERMISSION..................................................................136 TU UT VITA .................................................................................................................137 TU UT v LIST OF TABLES Table 2.1 Composition of the electrolyte........................................................................22 TU UT Table 3.1 Composition of rare earth-transition metal alloys deposited under DC TU UT TU condition in 200 nm polycarbonate membrane...............................................63 UT Table 3.2 Coercivity and squareness ratio of CoGd, CoTb and CoSm nanotubes TU UT TU deposited by pulsed deposition in 200 nm pore diameter polycarbonate membranes......................................................................................................91 UT Table 4.1 Steady state diffusion equations in the boundary layer................................109 TU UT TU UT Table 4.2 Diffusivity values used in the model for the reacting species......................110 TU UT TU UT Table 4.3 Boundary layer boundary conditions............................................................111 TU UT TU UT Table 4.4 Boundary conditions at x=0..........................................................................111 TU UT TU UT Table 4.5 Kinetic rate expressions and the kinetic constants obtained by fitting the TU UT TU experimental data set for 0.2 M Co(II) electrolyte in the model..................112 UT Table D.1 Physical properties of rare earth elements....................................................135 TU UT TU UT vi LIST OF FIGURES Figure 2.1 A typical electrochemical setup...................................................................20 TU UT Figure 2.2 Beaker type electrochemical cell used to deposit rare earth-cobalt alloys..21 UT T U Figure 2.3 Microelectrode used for cyclic voltammetry...............................................22 TU UT TU UT Figure 2.4 EIS of CoTb electrodeposition at -2 V vs. SCE on copper foil...................23 TU UT Figure 2.5 Partial current densities of cobalt, terbium and side reactions during alloy TU UT TU 2+ electrodeposition, at pH 2.15, 0.2 M Co and corrected for ohmic drop: UPU UPU ⎯♦⎯ total current density, --■-- cobalt partial current density, --▲-- terbium partial current density, --●—side reaction partial current density.25 UT Figure 2.6 Composition of the deposited alloy at pH 2.15: ⎯●⎯ 0.3 M Co2+, --▲-- TU 2+ 2+ P P 0.2 M Co , …■… 0.1 M Co ....................................................................26 P P P TP U Figure 2.7 Deposit composition reproducibility for (a) 0.3 M Co (II), (b) 0.2 M Co (II) TU and (c) 0.1 M Co (II) electrolyte at an applied potential of -3 V vs. SCE...27 UT Figure 2.8 Partial current densities of (a) total (b) cobalt (c) terbium and (d) side TU reaction at pH 2.15: ⎯●⎯ 0.3 M Co2+, --▲-- 0.2 M Co2+, …■… 0.1 M 2+ UPU UPU UPU UPU Co ..............................................................................................................29 UPU UTP Figure 2.9 Current efficiency at pH 2.15: ⎯●⎯ 0.3 M Co2+, --▲-- 0.2 M Co2+, …■… TU 2+ UPU UPU UPU UPU 0.1 M Co ...................................................................................................32 UPU UTP Figure 2.10 Comparison of (a) rare earth partial current density and (b) cobalt partial TU current density in cobalt-terbium, cobalt-gadolinium and cobalt-samarium electrodeposition: --∆-- TbCo, …x… GdCo, ⎯o⎯ SmCo.......................33 UT Figure 2.11 Comparison of rare earth content in cobalt-terbium, cobalt-gadolinium and TU cobalt-samarium electrodeposition: ---∆--- TbCo, .…x…. GdCo, ⎯⎯o⎯⎯ SmCo.........................................................................................34 UT Figure 2.12 Comparison of current efficiency in cobalt-terbium, cobalt-gadolinium and TU cobalt-samarium electrodeposition: ---∆--- TbCo, .…x…. GdCo, ⎯⎯o⎯⎯ SmCo.........................................................................................35 UT Figure 2.13 Transient current responses for various applied potentials..........................36 TU UT vii Figure 2.14 Effect of charge on alloy composition with electrolyte pH 2.15 at 0.2 M TU Co2+: --■-- cobalt, ⎯●⎯ terbium.............................................................37 UPU UPU UT 2+ Figure 2.15 Effect of pH on alloy composition at 0.2 M Co , and applied potential -3 V TU UPU UPU (uncorrected for ohmic drop).......................................................................38 UT 2+ Figure 2.16 Cyclic voltammogram for (a) 0.2M Co /0.5M boric acid electrolyte (b) TU UTTU UPU UPU 2+ 3+ 0.2M Co /0.2M Tb /0.5M boric acid electrolyte, pH 2.15.......................39 UPU UPU UPU UPU UT 3+ Figure 2.17 Cyclic voltammogram for (a) 0.5 M boric acid electrolyte (b) 0.2 M Tb /0.5 TU P P M boric acid electrolyte, pH 2.....................................................................41 T U Figure 2.18 XPS result of cobalt terbium alloy prepared at applied potential -3.5 V vs. TU SCE and after 20nm surface sputter.............................................................43 UT Figure 3.1 Outline of nanowire deposition process using template based deposition..50 UT T U Figure 3.2 Typical current transient response for template deposition.........................51 TU UT Figure 3.3 Boundary layer in recessed nanoelectrodes at (a) short time (b) intermediate TU UT TU time (c) long time.........................................................................................52 UT -1/2 Figure 3.4 Current density vs. t showing the three different mass transport regimes53 TU UT TU UPU UPU UT Figure 3.5 Sketch of E-t curves for (a) step potential (b) pulse potential and (c) TU UT TU potential rectangular wave...........................................................................59 UT Figure 3.6 Current response for CoGd alloy deposition in 200 nm polycarbonate TU UT TU membrane at an applied potential of -2.5 V.................................................62 UT Figure 3.7 Effect of duty cycle on composition of cobalt gadolinium deposits prepared TU UT TU in 200 nm pore diameter alumina and polycarbonate templates..................65 UT Figure 3.8 EDS spectrum of the (a) top section and (b) bottom section of cobalt TU UT TU gadolinium nanotubes deposited in 200 nm polycarbonate membrane.......66 UT Figure 3.9 Transient current response in electrodeposition of cobalt-gadolinium alloy in TU UT TU polycarbonate and alumina membranes at a duty cycle of 0.8....................68 UT Figure 3.10 A Cottrell plot for CoGd alloy deposition in 200 nm alumina membrane at TU an applied potential of -2.5 V......................................................................69 UT Figure 3.11 Effect of (a) cobalt (b) gadolinium electrolyte concentration on the TU UT TU composition of cobalt-gadolinium deposit in 200 nm pore diameter viii polycarbonate membrane prepared by pulse deposition at an on-potential of -2.5 V...........................................................................................................69 UT Figure 3.12 SEM micrograph of CoGd nanowires deposited by DC deposition at -2.5 V TU UT TU using 200 nm pore diameter polycarbonate membrane...............................71 UT Figure 3.13 SEM micrograph of CoGd nanotubes deposited by DC deposition at -2.5 V TU UT TU using 200 nm pore diameter polycarbonate membrane...............................72 UT Figure 3.14 SEM micrograph of CoGd nanotubes deposited using 200 nm pore diameter TU UT TU polycarbonate membrane at a duty cycle of 0.8..........................................73 UT Figure 3.15 SEM micrograph of CoGd nanotubes deposited using 200 nm pore diameter TU UT TU polycarbonate membrane at a duty cycle of 0.8..........................................75 UT Figure 3.16 SEM image of Co nanowires deposited by pulse plating at a duty cycle 0.8 TU UTTU in (a) 200 nm polycarbonate membrane and (b) 200 nm alumina membrane.....................................................................................................77 UT Figure 3.17 SEM micrograph of (a) CoTb, and (b) CoSm nanotubes deposited using 200 TU UT TU nm pore diameter polycarbonate membranes at a duty cycle of 0.8............78 UT Figure 3.18 TEM image of CoGd nanowires deposited by pulse plating in (a) 20 nm TU UT TU alumina and (b) 50 nm polycarbonate membrane at a duty cycle of 0.8.....79 UT Figure 3.19 (a) SEM and (b), (c) TEM image of CoGd nanowires/tubes deposited by TU UT TU pulse plating in 200 nm alumina membrane at a duty cycle 0.8 and Q=100 C.......................................................................................................81 UT Figure 3.20 A sketch of deposition time effect on deposit morphology.........................82 TU UT TU UT Figure 3.21 SEM image of CoGd nanowires deposited by pulse plating in 200 nm (a) TU UT TU polycarbonate membrane and (b) alumina membrane at a duty cycle of 0.25..........................................................................................................83 UT Figure 3.22 SEM image of CoGd/Co multilayer in polycarbonate membrane deposited TU UTTU by pulsing plating between -0.85 V for 60 s and -2.5 V for (a) 240 s (b) 15 s.........................................................................................................84 UT Figure 3.23 Thin film growth inhibition in CoGd alloy thin film deposition from TU UT TU aqueous sulfamate bath, pH 1.8 on copper foil............................................86 UT Figure 3.24 Effect of deposition time on current efficiency in CoGd alloy thin film TU UT TU deposition from aqueous sulfamate bath, pH 1.8 on copper foil.................87 UT ix

Description:
TUFigure 2.18 XPS result of cobalt terbium alloy prepared at applied .. Based on the experimental results of rare earth-cobalt alloy deposition on planar .. Cyclic voltammetry of a solutions containing CoClB2B, gadolinium . An electrolyte is an ionic media, which consists of an ionic substance
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.