ebook img

electrochemical promotion of novel catalysts with alkaline conductors for hydrogen production from PDF

272 Pages·2015·6.42 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview electrochemical promotion of novel catalysts with alkaline conductors for hydrogen production from

UNIVERSIDAD DE CASTILLA-LA MANCHA FACULTAD DE CIENCIAS Y TECNOLOGÍAS QUÍMICAS DEPARTAMENTO DE INGENIERÍA QUÍMICA ELECTROCHEMICAL PROMOTION OF NOVEL CATALYSTS WITH ALKALINE CONDUCTORS FOR HYDROGEN PRODUCTION FROM METHANOL Memoria que para optar al grado de Doctor en Ingeniería Química (Doctorado Internacional) presenta JESÚS GONZÁLEZ COBOS Directores: Dr. José Luis Valverde Palomino Dr. Antonio de Lucas Consuegra Ciudad Real, 2015 Nomenclature Acronyms CAD Cathodic arc deposition CE Counter electrode CV Cyclic voltammetry DLC Diamond-like carbon EBE Electron beam evaporation EDX Energy-dispersive X-ray spectroscopy EELS Electron energy loss spectroscopy EPOC Electrochemical promotion of catalysis FCC Face-centered cubic structure FTIR Fourier transform infrared spectroscopy GC Gas chromatograph GLAD Glancing angle deposition GO Graphene oxide HRTEM High-resolution transmission electron microscopy JCPDS Joint committee on powder diffraction standards LSV Linear sweep voltammetry MD Methanol decomposition MEPR Monolithic electrochemically promoted reactor NASICON Sodium super ionic conductor NEMCA Non faradaic electrochemical modification of catalytic activity OAD Oblique angle deposition OC Open circuit PEMFC Proton exchange membrane fuel cell POM Partial oxidation of methanol PVD Physical vapor deposition RE Reference electrode SCY Strontia-ceria-ytterbia SEM Scanning electron microscopy SOFC Solid oxide fuel cell SRM Steam reforming of methanol STEM Scanning transmission electron microscopy TOF Turnover frequency tpb three-phase boundaries TPS Temperature-programmed stabilization XPS X-ray photoelectron spectroscopy XRD X-ray diffraction XRF X-ray fluorescence v Nomenclature WE Working electrode WGS Water-gas shift YSZ Yttria-stabilized zirconia Symbols B Full width at half maximum (FWHM) of a XRD peak D Metal dispersion d Metal particle size F Faraday constant (96485 C) F Molar flow of i compound i I Current i Current density K Half-width Scherrer constant W M Metal atomic weight m N Total surface area N Avogadro number (6.023 x 1023) A N Active surface area G n Charge of the ionic species (1 for K+) Promotion index r Catalytic reaction rate under promoted conditions r Catalytic reaction rate under unpromoted conditions 0 r , r Electrocatalytic reaction rate e K+ t Time V Catalyst potential WR Catalyst potential under open circuit conditions α In OAD, zenithal incident angle β In OAD, zenithal tilt angle of deposited metal columns γ Permanent enhancement ratio θ Bragg angle Promoter coverage λ X-ray wavelength ρ Rate enhancement ratio ρ Metal density m σ Metal atomic surface ϕ Work function Λ Faradaic efficiency vi Table of contents Descripción del trabajo realizado……………………………………………….. 1 A. INTRODUCCIÓN....................................................................................... 2 A.1. El hidrógeno como vector energético………………………………... 2 A.2. El metanol como fuente de hidrógeno……………………………….. 8 A.3. La promoción electroquímica de la catálisis (EPOC)……………….. 10 A.4. Nuevas tendencias y perspectivas de la promoción electroquímica…. 18 A.5. Objetivo de la tesis doctoral…………………………………………. 25 B. MÉTODOS E INSTALACIÓN EXPERIMENTAL……………………… 27 B.1. Preparación de los catalizadores electroquímicos…………………… 27 B.2. Técnicas de caracterización………………………………………….. 29 B.3. Instalación experimental……………………………………………... 31 C. RESULTADOS OBTENIDOS…………………………………………… 33 D. CONCLUSIONES Y RECOMENDACIONES…………………………... 44 E. BIBLIOGRAFÍA………………………………………………………….. 47 Abstract……………. ……………………………………………………………... 55 Chapter 1. Electrochemical promotion of Pt for H production from 2 methanol partial oxidation and steam reforming: A better performance of pysical vapor deposited catalyst films……………………………………………... 63 1.1. INTRODUCTION………………………………………………………... 64 1.2. EXPERIMENTAL……………………………………………………….. 67 1.2.1. Preparation of the electrochemical catalysts……………………... 67 1.2.2. Characterization measurements…………………………………... 69 1.2.3. Catalytic activity measurements………………………………….. 70 1.3. RESULTS AND DISCUSSION…………………………………………. 71 1.3.1. Partial oxidation of methanol…………………………………….. 71 i) Influence of the preparation technique………………………..... 71 ii) Electrochemical promotion mechanism and parameters………. 79 iii) Influence of the reaction conditions……………………………. 83 iv) Stability study…………………………………………………… 87 1.3.2. Steam reforming of methanol…………………………………….. 90 1.4. CONCLUSIONS…………………………………………………………. 94 1.5. REFERENCES…………………………………………………………… 95 Chapter 2. Electrochemical promotion of Pt nanoparticles dispersed in a carbon matrix for methanol conversion: Towards more competitive catalysts of low metal loading.. ……………………………………………………………... 101 2.1. INTRODUCTION………………………………………………………... 102 2.2. EXPERIMENTAL………………………………………………………... 104 2.2.1. Preparation of the electrochemical catalyst………………………. 104 vii Table of contents 2.2.2. Characterization measurements…………………………………... 105 2.2.3. Catalytic activity measurements………………………………….. 106 2.3. RESULTS AND DISCUSSION………………………………………... 106 2.3.1. Development of a catalyst with suitable structural and electrical properties…………………………………………………………. 106 2.3.2. Electrochemical promotion experiments…………………………. 112 2.3.3. Comparison between Pt-DLC and Pt…………………………….. 120 2.4. CONCLUSIONS……………………………………………………….. 123 2.5. REFERENCES…………………………………………………………. 124 Chapter 3. Electrochemical activation of Au nanoparticles dispersed in YSZ for methanol partial oxidation: Electrochemical promotion of a non-conductive catalyst film..……………………………………………………... 131 3.1. INTRODUCTION………………………………………………………... 132 3.2. EXPERIMENTAL……………………………………………………….. 134 3.2.1. Preparation of the electrochemical catalyst………………………. 134 3.2.2. Characterization measurements…………………………………... 135 3.2.3. Catalytic activity measurements………………………………….. 136 3.3. RESULTS AND DISCUSSION…………………………………………. 136 3.3.1. Characterization of the catalyst film and blank experiments…….. 136 3.3.2. Electrochemical promotion via galvanostatic transitions………… 143 3.3.3. Electrochemical promotion via potentiostatic transitions………... 152 3.4. CONCLUSIONS…………………………………………………………. 156 3.5. REFERENCES…………………………………………………………… 157 Chapter 4. Electrochemical promotion of Cu nanocolumns in the partial oxidation of methanol: EPOC with highly porous non-noble metal catalysts…… 163 4.1. INTRODUCTION………………………………………………………... 164 4.2. EXPERIMENTAL……………………………………………………….. 166 4.2.1. Preparation of the electrochemical catalyst………………………. 166 4.2.2. Characterization measurements…………………………………... 167 4.2.3. Catalytic activity measurements………………………………….. 168 4.3. RESULTS AND DISCUSSION…………………………………………. 168 4.3.1. Preliminary characterization of the catalyst film………………… 168 4.3.2. Electrochemical promotion experiments…………………………. 172 4.3.3. Post-reaction characterization of the catalyst film……………….. 180 4.4. CONCLUSIONS…………………………………………………………. 185 4.5. REFERENCES…………………………………………………………… 185 viii Table of contents Chapter 5. Electrochemical promotion of Ni in methanol conversion reactions: Different applications of EPOC on a single catalytic system………….. 191 5.1. INTRODUCTION………………………………………………………... 192 5.2. EXPERIMENTAL……………………………………………………….. 194 5.2.1. Preparation of the electrochemical catalyst………………………. 194 5.2.2. Characterization measurements…………………………………... 195 5.2.3. Catalytic activity measurements………………………………….. 195 5.3. RESULTS AND DISCUSSION…………………………………………. 196 5.3.1. Electrochemical activation of the catalyst………………………... 196 5.3.2. Effect of the electrochemical promotion on the catalyst oxidation state……………………………………………………. 206 5.3.3. Control of the catalyst selectivity via electrochemical promotion………………………………………………………… 210 5.4. CONCLUSIONS…………………………………………………………. 214 5.5. REFERENCES……………………………………………………………. 215 Chapter 6. Electrochemically assisted production and storage of hydrogen: A novel contribution of alkaline electrochemical catalysts………………………... 221 6.1. INTRODUCTION………………………………………………………... 222 6.2. EXPERIMENTAL……………………………………………………….. 224 6.2.1. Preparation of the electrochemical catalyst………………………. 224 6.2.2. Characterization measurements…………………………………... 227 6.2.3. Catalytic activity measurements………………………………….. 228 6.3. RESULTS AND DISCUSSION………………………………………….. 228 6.3.1. Preliminary experiments of H production and storage………….. 228 2 6.3.2. Influence of the applied negative polarization and the reaction atmosphere……………………………………………………….. 234 6.3.3. Investigation of possible surface compounds by catalyst characterization…………………………………………………... 242 6.4. CONCLUSIONS………………………………………………………….. 246 6.5. REFERENCES……………………………………………………………. 247 Chapter 7. General conclusions and recommendations……………………….. 255 7.1. CONCLUSIONS…………………………………………………………. 256 7.2. RECOMMENDATIONS………………………………………………… 258 List of publications and conferences…………………………………………….. 261 ix Table of contents x DESCRIPCIÓN DEL TRABAJO REALIZADO Este trabajo forma parte de un amplio programa de investigación sobre la aplicación de sistemas electrocatalíticos en procesos de interés energético y medioambiental que se está desarrollando durante los últimos años en el Departamento de Ingeniería Química de la Universidad de Castilla-La Mancha (UCLM). En particular, esta Tesis Doctoral tiene como objetivo el estudio del fenómeno de la promoción electroquímica de la catálisis en la producción de hidrógeno a partir de metanol empleando conductores alcalinos. Este trabajo ha sido financiado por el Ministerio de Ciencia e Innovación a través del proyecto del plan Nacional CTQ 2010-16179/PQ, y por el Ministerio de Economía y Competitividad a través del proyecto CTQ 2013-45030-R. Esta tesis doctoral se ha realizado en colaboración con el Instituto de Ciencia de Materiales de Madrid (CSIC), el Institut Jean Lamour de Université de Lorraine (Francia) y el Instituto de Ciencia de Materiales de Sevilla (CSIC). 1 Descripción del trabajo realizado A. INTRODUCCIÓN A.1. El hidrógeno como vector energético El consumo masivo de combustibles fósiles como el petróleo, asociado al fuerte desarrollo tecnológico de las últimas décadas, ha dado lugar a una alarma permanente sobre el irremediable agotamiento de las reservas de estos recursos naturales y el grave deterioro del medioambiente que está ocasionando. Por ello la humanidad se enfrenta actualmente a un triple desafío: satisfacer las necesidades energéticas de la población, buscar alternativas al agotamiento de los combustibles fósiles, y abordar seriamente la amenaza que supone el sobrecalentamiento del planeta debido a la emisión de gases de efecto invernadero como el CO [1]. 2 En este sentido, el hidrógeno se está postulando como una de las alternativas energéticas más prometedoras, llegándose a hablar incluso de una futura “economía del hidrógeno” [2]. Uno de los principales motivos es su gran densidad energética gravimétrica en comparación con el resto de combustibles (Tabla A.1). Tabla A.1. Densidad energética de diferentes combustibles (adaptado de Dutta y col. [3]). Combustible Densidad energética (kWh kg-1) Hidrógeno 33,3 Gas natural licuado 15,1 Propano 13,8 Gasolina de aviación 13,0 Gasolina de automoción 12,9 Gasoil de automoción 12,7 Etanol 8,2 Carbón 7,5 Metanol 5,5 Madera seca 4,5 Además, el H obtenido de forma renovable es considerado mundialmente 2 como un vector energético limpio, puesto que el único subproducto derivado de su combustión con oxígeno es vapor de agua [4]. 2

Description:
silver electrode deposited on yttria-stabilized zirconia electrolyte, Journal of electrochemical promotion of catalysis in hydrogen production processes from .. Cyclic voltammetry (CV) measurements were performed under reaction This explanation is also in good agreement with the observed
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.