ebook img

Electrochemical Characterization of a Polymer Inclusion Membrane Made of Cellulose Triacetate PDF

12 Pages·2017·1.63 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electrochemical Characterization of a Polymer Inclusion Membrane Made of Cellulose Triacetate

separations Article Electrochemical Characterization of a Polymer Inclusion Membrane Made of Cellulose Triacetate and Aliquat 336 and Its Application to Sulfonamides Separation JuanaBenavente1,*,VirginiaRomero1,MaríaIsabelVázquez1,EnriquetaAnticó2and ClàudiaFontàs2 1 DepartamentodeFísicaAplicadaI,FacultaddeCiencias,UniversidaddeMálaga,E-29071Málaga,Spain; [email protected](V.R.);[email protected](M.I.V.) 2 DepartmentofChemistry,UniversityofGirona,C/M.AurèliaCapmany69,17003Girona,Spain; [email protected](E.A.);[email protected](C.F.) * Correspondence:[email protected];Tel.:+34-952-131929 Received:23November2017;Accepted:20December2017;Published:15January2018 Abstract: Anelectrochemicalcharacterizationofapolymerinclusionmembrane(PIM)fabricated with the ionic liquid (IL) Aliquat 336 (26%) and the polymer cellulose triacetate (CTA) (76%) is presented. Considering the use of PIMs in separation systems to remove pollutants from water,thecharacterizationwasperformedwithNaClsolutionsbymeasuringmembranepotential, electrochemicalimpedancespectroscopy,andsaltdiffusionandresultswerecomparedwiththose obtainedfromdrymembranes. Resultsshowedasignificantreductioninthemembranediffusive permeabilityandelectricalconductivityaswellasthetransportnumberofcationNa+ acrossthe PIMwhencomparedwithsolutionvalues, whichcouldbemainlyrelatedtothedensecharacter ofthemembrane. Membraneapplicationintheseparationofdifferentsulfonamides(sulfathiazole, sulfapyridine,sulfamethazine,andsulfamethoxazole)fromwater,with1MNaClsolutionasstriping phase, was also considered. These results indicated that the different chemical characteristics of thecompounds, aswellasthecompactstructureofthePIM,limitedthetransportoftheorganic moleculesthoughit. Keywords: polymer inclusion membrane; Aliquat 336; membrane potential; impedance spectroscopy;sulfonamides 1. Introduction As it is well known, ionic liquids (ILs) are salts composed of an organic cation and an inorganic/organicanionwithverylowvaporpressure,lowsolubility,goodelectricalconductivity, andthermalstability[1],whichallowtheiruseinalargenumberofdifferentapplicationssuchas solventsfororganicreactionsandcatalysis,energy,electro-deposition,greenchemistry,separation processes or CO capture, among others [2–9]. Moreover, ILs can be used as extractants in 2 the preparation of polymer inclusion membranes (PIMs). PIMs basically consist of a polymeric matrix, normally made of cellulose triacetate (CTA) or poly(vinyl chloride) (PVC) [10,11] and an extractant (named carrier), which is responsible for transport across the membrane. Usually the addition of a plasticizer or some modifiers is needed to obtain adequate elastic characteristics of the membranes [12]. However, the use of ILs as carriers favors the flexibility and mechanical strength of PIMs avoiding the need of the addition of other components, and their high viscosity helpstoretaintheminthepolymergel-likenetwork. DifferentcommercialILssuchasCyphos101 (trihexyl(tetradecyl)phosphoniumchloride),Cyphos102(trihexyl(tetradecyl)phosphoniumbromide), Separations2018,5,5;doi:10.3390/separations5010005 www.mdpi.com/journal/separations Separations2018,5,5 2of12 Cyphos104(trihexyl(tetradecyl)phosphoniumbis-2,4,4-(trimethylpentyl)phosphinate),orAliquat336 (trioctylmethylammoniumchloride)havebeenreportedascarriersinPIMsusedintheseparationof metalspeciessuchasCd,Cu,orIn,organiccompoundssuchasantibioticsorwaterpollutants[13–17]. In previous works, different physicochemical characteristics of PIMs (contact angle, Youngmodulus,conductivity,ordielectricconstant)wereanalyzedformembranescontainingdifferent Aliquat336(AlqCl)percentagesinbothCTAorPVCpolymers[18],aswellasforPIMswherethe counter-anion of Alq was modified (AlqCl, AlqNO or AlqSCN) [19]. However, information on 3 other electrochemical characteristic parameters, such as ion transport numbers or ionic diffusion coefficients [20,21], determined from measurements carried out with PIMs in contact with saline solutionsseemstobealsoofinterestfortheirapplications. Thus, in this study an electrochemical characterization of an Aliquat 336/CTA PIM (26% AlqCl/74% CTA) is presented performed by membrane potential and impedance spectroscopy measurements using a typical model electrolyte (NaCl) at different solution concentrations. A comparison of other physicochemical parameters depending on the PIM state (dry or wet) is alsoindicatedtohaveamoreadequatepictureofthemembranebehaviorinusualworkingconditions forwatertreatment. Separation abilities of the characterized PIM are studied using a mixture of four common antibiotics, belonging to the sulfonamides family, which can be found in natural waters due to theirwideuseandincompleteeliminationthroughsewagetreatment. 2. ResultsandDiscussion Taking into account that PIMs are aimed to transport and separate compounds of interest in aqueoussolution,itisimportanttodeterminetheirphysicochemicalcharacteristicsinawetmediaand tocomparethemwithrespecttodrymembranes. ItisimportanttobearinmindthatPIMscanlose partoftheILincorporatedinthepolymericnetworkwhenmembranesareimmersedindistilledwater oraqueouselectrolytesolutions[22,23]. ThismasslossisassociatedwithboththenatureoftheILand thepolymer. Inparticular,Kagayaetal.[23]foundarelativemasslossofaround20%foranAliquat 336/PVCmembraneafter48himmersionindistilledwater. However,themasslossdiminishedto2% whenimmersedinaNaClsolution. Inthisstudy,chemicalsurfacedifferencesbetweenawetPIM(sample26%AlqCl/74%CTA-w, w indicating ‘wet state’, that is, after 48 h immersed in distilled water) and a dry PIM (sample 26%Alq336/74%CTA-d,dindicating‘drystate’)wasdeterminedbyanalyzingX-rayphotoelectron spectroscopy (XPS) spectra. XPS is a well-known technique able to give information on chemical changes on membrane surfaces since it provides elemental identification, relative composition, and chemical state of the elements present in a surface region [24]. Consequently, differences in theatomicconcentrationpercentages(A.C.%)determinedfortheelementsfoundonthesurfacesof wetanddrymembranesamplesshouldbeanindicationofAliquat336modification/lost. Table1 showstheA.C.%oftheelementspresentonthesurfacesofthePIMs(C,O,N,Cl,andSi)indryand wetstates(samples26%AlqCl/74%CTA-dand26%AlqCl/74%CTA-w),whichweredetermined byanalyzingtheXPSspectra. Moreover,A.C.%oftheelementsfoundonthesurfaceofaCTAfilm in dry and wet states (CTA-d and CTA-w samples, respectively) are also indicated in Table 1 for comparisonreasons. Asexpected,bothCTA-filmsdonotshowanyClcontentsincethiselementis associatedtoAliquat336. However,Si,anon-characteristicmembrane/filmelement,isdetectedin allsamples. Thisfactcanbeattributedtoamanufacturecontamination,anditshigherpercentage in wet samples might be related to element surface reorganization associated to the hydrophobic characterofsilica[25,26]. Infact,surfacereorganizationofmorehydrophobicorganicmatterandN impuritiescouldbeoneofthereasonsfordifferencesbetweendryandwetsamples. Inthiscontext, itshouldalsobeindicatedthatthetotalN(%)obtainedfordryandwetPIMsamplesalsoseemsto includecontaminationcontribution,whilethespecificAliquat336-Ncontribution(bindingenergy at402.2eV[27])isindicatedinbrackets. Inthatcase,theN/Clratioissimilartothetheoreticalone Separations2018,5,5 3of12 Separations 2018, 5, 5 3 of 11 ((N/Cl)T =1). Consequently,thecomparisonoftheresultsobtainedforwetanddryPIMsamples sinh otwhes paerrecdeunctatigoens inoft hCel panerdc eNn taasgseoscoiaftCedl atnod ANliqaussaot c3ia3t6e dint othAe lwiqeuta sta3m36pilne (tahreowunetds 2a5m%p)l.e T(ahrios ufancdt 2se5e%m).s Ttoh iisnfdaicctastee eam psartotiainl ldoiscsa toef athpea IrLti afrlolmos sthoef mtheemILbrfaronme stuhrefamcee,m bubrt atnhee esuffrefcatc oef, beluetmthenete sffuercftaocef ereleomrgeanntizsuatrifoance dreepoerngdaninizga otino nthdeierp heingdhienrg/loownethr ehiyrdhriogphhero/bliocw chearrhaycdterro mphigohbti caclshoa braec itnevromlvigehdt. also beinvolved. Table 1. Atomic concentration percentages of the elements found * on the surfaces of wet (X-w) and Tdarby l(eX1-d.A) PtoIMm iocrc ConTcAe nfitlrmat.i onpercentagesoftheelementsfound*onthesurfacesofwet(X-w)and dry(X-d)PIMorCTAfilm. PIM C (%) O (%) N (%) Cl (%) Si (%) 26% AlqCl/74% CTA-w 72.6 23.7 1.6 (0.38) 0.31 1.6 PIM C(%) O(%) N(%) Cl(%) Si(%) 26% AlqCl/74% CTA-d a 66.7 29.6 0.89 (0.50) 0.44 0.3 26%AlqCl/74%CTA-w 72.6 23.7 1.6(0.38) 0.31 1.6 CTA-w 73.7 24.1 0.65 n.d. 1.6 26%AlqCl/74%CTA-da 66.7 29.6 0.89(0.50) 0.44 0.3 CTA-d 66.6 32.3 n.d. n.d. 0.9 CTA-w 73.7 24.1 0.65 n.d. 1.6 * Other elemCeTnAts -wdith A.C. % < 0.3 a6r6e. n6ot indicate3d2;. 3a values fronm.d r.eference [1n8.d].. n.d. = not d0e.9tected. *OtherelementswithA.C.%<0.3arenotindicated;avaluesfromreference[18].n.d.=notdetected. Wet PIMs also exhibit different elastic behavior than dry ones, as can clearly be observed in Figure 1, where a comparison of the strain-stress/elongation curves for wet and dry PIM samples is Wet PIMs also exhibit different elastic behavior than dry ones, as can clearly be observed in presented. Wet PIM sample shows a more plastic character, with a significant increase in the Figure1,whereacomparisonofthestrain-stress/elongationcurvesforwetanddryPIMsamplesis elongation at break (around eight times higher) and lower Young modulus (40% reduction), which presented. WetPIMsampleshowsamoreplasticcharacter,withasignificantincreaseintheelongation is determined from the slope of the linear relationship obtained at low strain-stress values (insert in atbreak(aroundeighttimeshigher)andlowerYoungmodulus(40%reduction),whichisdetermined Figure 1). These changes are attributed to the plasticizer character of water, as it was previously from the slope of the linear relationship obtained at low strain-stress values (insert in Figure 1). obtained for regenerated cellulose membranes [28]. This fact should be considered in the selection of Thesechangesareattributedtotheplasticizercharacterofwater,asitwaspreviouslyobtainedfor the Aliquat 336 content used for PIM manufacture, since it can play an important role on the regeneratedcellulosemembranes[28]. ThisfactshouldbeconsideredintheselectionoftheAliquat mechanical behavior (high plasticity or brittle) of the membranes, according to the significant 336contentusedforPIMmanufacture,sinceitcanplayanimportantroleonthemechanicalbehavior reduction in Young modulus associated to Aliquat 336 content in dry AlqCl/CTA membranes [18]. (highplasticityorbrittle)ofthemembranes,accordingtothesignificantreductioninYoungmodulus associatedtoAliquat336contentindryAlqCl/CTAmembranes[18]. Figure1. Strain-stressvs. elongationcurvesforwet((cid:3))anddry((cid:4))samplesofthe26%AlqCl/74% Figure 1. Strain-stress vs. elongation curves for wet (□) and dry (■) samples of the 26% AlqCl/74% CTAPIM. CTA PIM. Iontransportacrossamembraneisusuallycharacterizedbytheionicdiffusioncoefficients(D) Ion transport across a membrane is usually characterized by the ionic diffusion coefficients (Dii) ortheionictransportnumbers(t),whicharerelatedbythefollowingexpression: t =zD/ΣizD, i i i i i i or the ionic transport numbers (ti), which are related by the following expression: ti = ziDi/ΣiziDi, or orti=Di/(D++D−)inthecaseof1:1singleelectrolytesolutions[29], beingzi thevalenceofioni. Itoi n= tDrai/n(sDp+o r+t Dnu−)m ibne trhser ecparsees eonf t1t:h1 esifnragcltei oenleocftrtohleytteo tsaollcuutriorennst [(2I9]), tbraeninsgp ozrit ethdef ovraolenneceio onf (iton= Ii. /IoIn) T i i T transport numbers represent the fraction of the total current (IT) transported for one ion (ti = Ii/IT) and, consequently, in the case of single 1:1 electrolytes they should fulfil that t+ + t− = 1. Ion transport numbers are usually determined from membrane potential (∆Φmbr) values by [20,30] ∆Φmbr = (RT/F)(1 − 2t−)ln(a1/a2) = (RT/F)(1 − 2t−)ln(c1/c2) (1) Separations2018,5,5 4of12 and,consequently,inthecaseofsingle1:1electrolytestheyshouldfulfilthatt++t− =1. Iontransport nSuepmarbateiornssa 2r0e18u, s5,u 5a llydeterminedfrommembranepotential(∆Φ )valuesby[20,30] 4 of 11 mbr where R and F are ∆thΦem gbars= a(nRdT F/aFr)a(1da−y 2cto−n)slnta(na1ts/,a T2 )r=ep(rReTse/nFt)s( 1th−e 2tetm−)plne(rca1t/ucr2e) of the system, wh(1il)e a and a are the activities of the NaCl solutions at both membrane sides, which can be replaced by 1 2 wshoeluretioRna ncodnFceanretrtahteiogna s(ca1 nadndFa cr2a)d iany tchoen sctaasnet so,fT drieluptreedse nsotsluthtieontesm. Fpiegruartue r2e oshfothwess ythstee mva,rwiahtiiolena o1f amndema2braarneet hpeotaecnttiivailtsi ewsiothf tthhee sNolauCtilosno cluotnicoennstraattiboont hfomr tehme b2r6a%n eAslqidCels/7,4w%h CicThAc amnebmebrreapnlea,c aesd wbeyll saoslu tthioen ccaolcnucleantetrda tsioonlu(tcio1na nddiffcu2)siionnt hpeotceansteiaolf vdailluuetesd (∆soΦludiftoi o=n s(.RFTi/gFu)(r2et+2o s−h o1)wlns(cth1/ec2v))a, rwiahtieorne otf+o membranepotentialswiththesolutionconcentrationforthe26%AlqCl/74%CTAmembrane,aswell represents the Na+ transport number in solution, that is, when there is not any membrane separating asthecalculatedsolutiondiffusionpotentialvalues(∆Φ o=(RT/F)(2t o −1)ln(c /c )),wheret o the electrolyte solutions (dot-dashed line) [29]. For comdpifarison reasons+, membran1e p2otentials fo+r a representstheNa+transportnumberinsolution,thatis,whenthereisnotanymembraneseparating commercial positively charged ion-exchange membrane (AR204-SZRA-412 by Ionics) are also drawn theelectrolytesolutions(dot-dashedline)[29]. Forcomparisonreasons,membranepotentialsfora in Figure 2. commercialpositivelychargedion-exchangemembrane(AR204-SZRA-412byIonics)arealsodrawn inFigure2. Figure2.MembranepotentialasafunctionofNaClsolutionconcentration:(♦)26%AlqCl/74%CTA mFeigmubrrea n2.e ,M((cid:78)em)iborna-nexec phoatnegnetriaAl Ras2 0a4 f-uSZncRtAio-n4 1o2f mNeamClb sraonluet.iSoonl ucotinocnednitfrfautsioionn: (p◊o)t 2e6n%tia Al:ldqaCslh/7d4o%t lCinTeA. membrane, (▲) ion-exchanger AR204-SZRA-412 membrane. Solution diffusion potential: dash dot Alisneit. canbeobservedinFigure2,∆Φ valuesfor26%AlqCl/74%CTAandAR204-SZRA-412 mbr membranesarerathersimilar,beingthosecorrespondingtotheion-exchangesampleslightlymore negatiAvse .itM caonre boev eorb,sienrbvoedth inca Fsiegsu,r∆eΦ 2, ∆Φvmalbure vsadluifefesr fosirg 2n6ifi%c aAnltqlCylf/r7o4m% tChTosAe acnordr eAsRpo20n4d-iSnZgRtAo-t4h1e2 mbr NmaeCmlsborlauntieosn a,rwe hriacthheisr asniminildairc,a btieoinngo fththoesec ocnotrrroelsopfobnodtihngm teom tbhrea nioens-oenxcihonansgtrea nsasmpoprlte. Isolingthrtalnys mpoorrte nnuemgabteirvsea. cMroosrseothveerP,I iMn bwoethre cdaesteesr, m∆Φinmedbrb yvamlueeasn dsiofffeErq suigantiiofinca(1n)t,lya nfrdotmhe thfoolsloe wcoinrrgesapvoernadgiengv atolu tehse wNeareCol bstoaliunteido:nt,− w=h0ic.9h1 i±s 0a.n0 3inanddicat+tio=n0 .0o9f 0th±e 0c.0o0n3t.roClo nofs ebqoutehn tmly,etmhebrdainffeuss iovne tiroannss ptorartnospfocartti. oInosn atcrraonsssptohret sntuudmibederPs IaMcrsoesesm thset oPbIMep wraecrteic daleltyeremxcilnuedde db.yI nmfeaacnt,s toakf eEnqiunattoioanc c(o1u),n atnthde trheel aftoiollnoswhiinpg baevtwereaegne ivoanluteras nwspeorer tonbutaminbeedrs: ta−n =d 0d.9if1f u±s i0o.n03c oaenfdfi cti+e n= ts0.[02990] ,±w 0e.0o0b3.t aCino:nts−eq/ut+en=tlDy,− t/hDe +di=ffu10si.v1;e thtraatnmspeoarnts ,oCf lc−atsieoenms satcoromsso vthe1e0 sttiumdeisedh igPhIMer tsheaenmNs ato+ ibnet hperaPcItMic.aIlolyn etrxacnluspdoedrt. nIunm fabcetr, vtaaklueens ianrteo raatchcoerusnitm thilea rrteolatthioonseshriepp obrettewdebeyn oiothne rtraauntshpoorrst fnourmPIbMersso abntadi ndeidffufosriodni fcfeoreefnfitciIeLnst[s2 [02]9.], we obtain: t−/t+ E= lDec−t/rDo+c h=e 1m0.i1c;a lthimatp medeaanncse, Cspl−e scetreomscso tpoy m(EoIvSe)1m0 etiamsuerse hmigehnetsr athlsaonp Nroav+ iidne tvhael uPaIMbl.e Iionnfo trrmanastpioonrt onnuemlebcterri cvaallcuheasr aacrete rraistthicesr osfimmielamr btora tnheoss.eF irgeuproert3esdh boyw sotthheerN ayuqthuoisrts pfloort P(−IMZsim ogbvtasi.nZerdea lf,oFr idguifrfeer3ean)t aInLds t[h2e0]B. odeplot(−Zimgvs. frequency,Figure3b)obtainedforthe26%Alq336/74%CTAmembrane separaEtliencgtrtowchoem0.0ic3alM imNpaeCdalnscoelu stpioecntsr.osTcwopoys (eEpIaSr)a mteedascuornetmriebnuttsi oanlssoa psrsoovciidatee vdatluoatbhlee imnfeomrmbraatnioen (forneq euleecntcriycarla cnhgairnagctbeeritswtieces nof1 m0ekmHbzraanneds. 1F0i0g0urkeH 3z s)haonwds tthhee Nelyeqcturioslty ptelosto (l−uZtiimogn vsp.l aZcreeadl, Fbiegtuwree e3na) thanedm theme Bboradnee plaontd (−tZhiemg evlse.c ftrroeqdueesn(cfyre, qFuigeunrcey 3>b) 1o0b0t0ainkeHdz f)ocr atnheb 2e6%ob Aselrqv3e3d6/7in4%F iCgTuAre m3,emwbhriacnhe csoerpreasrpaotinndg ttowaod 0e.p0r3e sMse dNsaeCml iscoirlculteio(mnse. mTbwraon see)paanrdataedse cmoinctirricbleut(ieolencst raoslsyotecisaoteludt itoon )t.hTe hmisekminbdraonfe im(frpeeqduaennccey cruarnvgeinisg tbyeptiwcaeleonf 1c0o mkHpzo sainteds 1y0s0te0m ksH,zin) apnadrt itchuel aerleicttirsolsyimtei lsaorlutotiothna ptleaxchedib ibteetdwbeyenlo twhe membrane and the electrodes (frequency > 1000 kHz) can be observed in Figure 3, which correspond to a depressed semicircle (membrane) and a semicircle (electrolyte solution). This kind of impedance curve is typical of composite systems, in particular it is similar to that exhibited by low permeability systems such as dense non-swollen membranes [31] or nanofiltration/reverse osmosis membranes [32–34], and it is related with the significant difference in the electrical characteristics of the two parts Separations2018,5,5 5of12 Separations 2018, 5, 5 5 of 11 fSoerpmaraitniogn s 2th01e8 , 5c,o 5m posite system: the membrane and the electrolyte solution, respectively. 5 Tofh 1e1 permeabilitysystemssuchasdensenon-swollenmembranes[31]ornanofiltration/reverseosmosis equivalent circuit for the whole electrolyte(e)/membrane(m) system consists in the addition (series membranes[32–34],anditisrelatedwiththesignificantdifferenceintheelectricalcharacteristicsof afossromciinatgi onth) eo fc towmop sousibt-ec irscyustitesm: a: pthaer almleel masbsroacniaet ioannd o ft ha er eesliestcatrnocley t(eR )s aonludt iao nca, praecsiptoerc t(iCve) lfyo. r Tthhee thetwopartsformingthecompositesystem: themembraneandtheelectrolytesolution,respectively. eelqeuctirvoallyetnet csiorlcuutiito nfo rp tlhaece wd hboeletw eeleecnt rothlyet ee(ele)/cmtreomdebsr aanned(m t)h sey smteemm bcorannsies ts(R ienC teh),e paldudsi taio np a(srearllieels The equivalent circuit for the whole electrolyte(e)/membrane(m) system consists in the addition aassssoocciiaattiioonn )o of fa trwesoi sstuanbc-cei racnudit as: gae npearraallilzeel da scsaopcaiactiitoonr (oRfm aQ rme)s fiostra tnhcee m(Re)m abnrda nae c caopnatcriitbourt (ioCn) dfoure t htoe (seriesassociation)oftwosub-circuits: aparallelassociationofaresistance(R)andacapacitor(C) ae ldeicsttrroiblyuttei osno oluf trieolna xpatliaocne dti mbeestw [3e5e]n ( stehee M ealteecrtiraolds easn da nMde tthhoed sm seecmtiborna)n. e (ReCe), plus a parallel fortheelectrolytesolutionplacedbetweentheelectrodesandthemembrane(R C ),plusaparallel e e association of a resistance and a generalized capacitor (RmQm) for the membrane contribution due to associationofaresistanceandageneralizedcapacitor(R Q )forthemembranecontributionduetoa m m a distribution of relaxation times [35] (see Materials and Methods section). distributionofrelaxationtimes[35](seeMaterialsandMethodssection). Figure 3. Impedance plots for the 26% AlqCl/74% CTA membrane separating two NaCl solutions at 0F.i0g3u Mre c3o.nImcepnetrdaatniocne. p(alo) tNsyfoqrutihste p2l6o%t (A−ZlqimCg lv/s7.4 Z%reaCl);T (Ab)m Beomdeb rpalnoet (s−eZpiamrga vtisn. gfrtewquoeNncayC)l. solutionsat 0F.i0g3uMre c3o. nImcepnetrdaatniocne. p(lao)tNs fyoqru tihset p2l6o%t( A−lZqCl/7v4s%.Z CTA); m(be)mBobdraenpel osetp(−arZatingv tsw.for eNqauCenl csyo)lu.tions at img real img T0.h0e3 Mfi ct onocfe ntthraet ioinm. (pa)e dNaynqcueis t cpulortv (e−sZ imogb vtsa. iZnreeadl) ; (fbo)r B otdhee p lNot a(C−Zl imgc ovsn.c ferenqtruaetnicoyn)s. studied (see electrochemical impedance spectroscopy (EIS) measurements in the Experimental section) allows us ThefitoftheimpedancecurvesobtainedfortheNaClconcentrationsstudied(seeelectrochemical the dTetheer mfiint atoiof n tohfe thiem mpeedmabnrcaen ec uanrvde es leoctbrtoaliynteed e lefoctrr ictahle r eNsisatCanl cec o(nRcme natnrda tRiosn, sr essptuecdtiievde ly()s aeet impedancespectroscopy(EIS)measurementsintheExperimentalsection)allowsusthedetermination eealeccht rNocahCelm soiclualt iiomnp, eadnadn Fcieg supreec 4trao sshcoopwys (tEhIeS )d mepeeansduerenmcee nRtms ainn dth Re sE wxpitehr iemleecntrtoally steec tcioonnc)e anlltorawtiso uns. ofthemembraneandelectrolyteelectricalresistance(R andR ,respectively)ateachNaClsolution, m s Mthoer deoevteerrm, tinakaitniogn ionft ot haec cmoeumntb rthane er ealnadti oenle cbterotwlyeteen e lmecetmricbarla rnees ieslteacntcreic (aRl mr easnisdta Rnsc, er easnpde cetilvecetlryi)c aalt andFigure4ashowsthedependenceR andR withelectrolyteconcentration. Moreover,takinginto m s caeocanccodhu uNncttaiCtvhilet ysro e(lσluamtti)io o[n3n,6 b]a entdw Feeignumree m4ab srhaonweesl ethcter idceaplerensdisetnacnec eRamn adnedl eRcst rwiciathlc eolnecdturoctliyvtiet yco(σnce)n[t3r6a]tion. Moreover, taking into account the relation between membrane electrical resistance andm electrical σm = Δxm/RmSm (2) conductivity (σm) [36] σ =∆x /R S (2) m m m m where ∆xm and Sm represent the membrane σthm i=ck Δnxems/sR amnSdm area respectively (assuming the transp(o2r) t twakheesr ep∆laxce tahnrdouSghr tehper ewsehnotleth meemmebmrabnraen aerethai)c, kvnaersiastaionnd oafr emaermesbpreacntiev eelleyc(tariscsaulm coinngduthcetivtriatyn swpiotrht m m NtwaakhCeeslr epc ∆loaxncmce eatnhntrdroa Sutimgo hnre tpchareenws eahnlots olteh emb eme moembbtrbaairnnaeendea. r tehFaii)cg,kuvnraeers isa4 tabino ndsh oaorfwemas ermtehsbep reaσcntmie-vσeesll yerc e(talrasictsiauolmncsoihnnigdp u th(cmeti vtermiatynbsrwpaointrhet cNtoaaknCedsul pcctloiavncicetey tn hvtrsro.a sutoigolhun ttichoaenn wcoahnlsodolue cbmteiveomitbybt)ar, aiwnnehed ea.rree tFahi)ge, uvsiargernia4iftbiiocasnnh oto fbw masrertimhereb erσfafneec-tσ e olfe rctehtlreai ct2ia6ol% ncso AhnildpquC(clmt/i7ve4im%tyb CwraTinAthe m s PcNoIManCd olu ncc ttoihvneict ieyonvntsr t.arstaionolsnup tiocorantn cc aoannls dboue cobtbiev sieotrybv)t,eawdin,h ewedrh.e icFthhige cuosriugeln d4i fibbce a srnhetloabwtaesrdr itteohr ete hfσfee mdc-teσnos fserteh sletart2ui6oc%ntusArheil pqa Cn(dlm/ l7oe4mw%b ioCranTniAce dcoifnfudsuioctniv aictyro vsss. tshoilsu tkiionnd c oofn mduecmtibvriatyn)e, sw [h20e,r3e1 t]h. e significant barrier effect of the 26% AlqCl/74% CTA PIMontheiontransportcanbeobserved,whichcouldberelatedtothedensestructureandlowionic PIM on the ion transport can be observed, which could be related to the dense structure and low ionic diffusionacrossthiskindofmembranes[20,31]. diffusion across this kind of membranes [20,31]. Figure4.(a)Variationof26%AlqCl/74%CTAmembrane(♦)andNaClsolution(×)electricalresistance Fwigituhreel e4c.t r(oal)y tVeacroinactieonnt raotfi o2n6.%(b )AMlqeCml/b7r4a%n eCcoTnAd umcteimvibtyravneer s(u◊s) saonludt ioNna(CNl asColl)uctoionnd u(c×t)i veilt eyc.trical resistance with electrolyte concentration. (b) Membrane conductivity versus solution (NaCl) cDFoinigfdufuuresc itvi4v.e it(ypa.)e rVmareiaabtiiolnit yofa c2r6o%s sAalqmCle/m74b%r aCnTeA, Pm,eimsbarnanoeth (e◊r) panadra mNaeCtel rsuolsuutaiolnly (d×)e teelermctriincaeld for s memrbersaisnteancchea rwacitthe riezlaectitoronl,yoteb tcaoinnceednftrraotmions.a l(tbd) ifMfuesmiobnramnee acsounredmucetinvtisty. Avcecrosruds insgoltuotioFnic k(’NsafiCrls)t law, Dcoinffduuscivtive itpye. rmeability across a membrane, Ps, is another parameter usually determined for membrane characterization, obtained from salt diffusion measurements. According to Fick’s first law, Diffusive permeability across a membrane, Ps, is another parameter usually determined for membrane characterization, obtained from salt diffusion measurements. According to Fick’s first law, Separations2018,5,5 6of12 Separations 2018, 5, 5 6 of 11 ththee ssoolluuttee flfluuxx ccrroossssininggt htheem memembrbarnaenaet astte satdeya-dsyta-tset,aJtse,, aJns,d atnhde ctohnec ceonntrcaetniotnradtiioffne rdenifcfeerwenhciceh wcahuicshes csauucshesfl suuxc,h∆ fclu=x(, c∆dc− = (ccrd) ,−a crer),r ealraet eredlabtyed[3 b7y] [37] JJs= =d dnn//ddtt == PPs ∆∆cc == PPs (c(dc − −cr)c ) (3)( 3) s s s d r Equation (3) can also be expressed as Equation(3)canalsobeexpressedas dcr/(cd − cr) = (Sm/Vo)Ps dt (4) dc /(c −c )=(S /Vo)P dt (4) r d r m s Vo and Sm are the volume of the receiving cell and the membrane area, respectively. Taking into aVccooaunndt tShme amreastsh ecovnotliunmuietyo: fctho e+r eccoe i=v icngt +c ecllt a=n dcotnhsetamnte, mwbhrearnee caroe aa,ndre scpoe cintidvieclayt.e Ttahkei ningitiinatlo d r d r d r accountthemasscontinuity: c o +c o =c t +c t =constant, wherec o andc o indicatetheinitial concentrations and c t and ct at ad time rt, we dobtainr the expression d r d r concentrationsandc tandc tatatimet,weobtaintheexpression d r ln([1 − (2ct/c t)] = −2[S /(Vo ∆x )] P t (5) r d m m s ln([1−(2c t/c t)]=−2[S /(Vo∆x )]P t (5) r d m m s where Vo represents the cell volume (that means at t = 0). Figure 5 shows time evolution of solution concentration separated by the PIM at a NaCl donor solution concentration of 0.01 M. Diffusive NaCl whereVorepresentsthecellvolume(thatmeansatt=0). Figure5showstimeevolutionofsolution permeability across the PIM was determined from the slope of the straight line shown in Figure 5, concentrationseparatedbythePIMataNaCldonorsolutionconcentrationof0.01M.DiffusiveNaCl apcceormrdeinabgi tliot yEqacuraotsiosnt h(5e)P, aIMndw thaes vdaeltueer mPsi n=e 3d.8f r×o 1m0−t8 hme/ssl owpaes oofbttahiensetdr.a Tighhist lvianleuseh ios wsinmiinlarF itgou threat5 , oabctcaoinrdeidn gftoorE qluowati onpe(5rm),eaanbdiltihtye vaolru erPev=er3s.e8 ×os1m0−o8sims//nsanwoafsilotrbattaioinne d.mTehmisbvraalnuees is[s3im1,3il2a]r toanthda, t s consequently, it seems to be associated to the dense structure of the membrane, which controls the obtainedforlowpermeabilityorreverseosmosis/nanofiltrationmembranes[31,32]and,consequently, transport when no carried mediated effect is involved. itseemstobeassociatedtothedensestructureofthemembrane,whichcontrolsthetransportwhen nocarriedmediatedeffectisinvolved. Figure5.Timeevolutionofsolutionconcentrationsdifferenceratioatbothsidesofthe26%AlqCl/74% Figure 5. Time evolution of solution concentrations difference ratio at both sides of the 26% AlqCl/74% CTAPIMforNaCldonorconcentrationc o=0.01M.∆ct:solutionconcentrationdifferenceattimet; CTA PIM for NaCl donor concentration cddo = 0.01 M. ∆ct: solution concentration difference at time t; ∆Co:initialsolutionconcentrationdifference(t=0). ∆Co: initial solution concentration difference (t = 0). TThhee loloww ppeermrmeeaabbiliiltiyty aanndd bbaarrrireier reefffefecct ttoto NNaaCCl ltrtarannssppoortr teexxhhibibitietedd bbyy ththee PPIMIM ddeetetermrminineedd bbyy ddififfeferreenntt kkiinnddss ooff mmeeaassuureremmeenntstsi sios foinf tienrteesrtefsotr fiotsr aiptsp laipcaptliiocnatiinonn aitnu rnaaltwuaratel rwsyastteerm ssys(wtehmicsh (uwshuiaclhly uhsauvaellya lshoavNea Callsion NsoalCutli oinn asnoldu/tioorno tahnedr/soarl to)tshinerc esiatlts)u spipnocert sitt hseupelpimoritns atthioen eolifmthineairticoonn torfib tuhteioirn cwonitthribreustpioenct wtoitcha rrerisepde-cmt teod icaatrerdietdr-amnsepdoiartt.ed transport. ApplicationofthePIMtotheSeparationofSulfonamides Application of the PIM to the Separation of Sulfonamides TThhee trtarannspspoortr tkkinineetitcisc soof ffofouur rssuulflofonnaammididees saaccrorosss sththee PPIMIM isis aa ssimimuultlatanneeoouuss ccoommbbininaatitoionn oof f eexxtrtaracctitoionn aanndd bbaacckk-e-exxtrtaractcitoionn rereaactcitoionns soocccucurrrirningg inin nnoonn-e-qequuiliilbirbiruiumm cocnondditiitoinosn sata tththe esasmame etitmime.e . The fundamentals of sulfonamides (S) extraction at basic pH by Aliquat 336 incorporated in a PIM can be described by the generic stoichiometric equation (Equation (6)) [15] [AlqCl−]mem + Ant−aq  [AlqAnt−]mem + Cl−aq (6) Separations2018,5,5 7of12 Thefundamentalsofsulfonamides(S)extractionatbasicpHbyAliquat336incorporatedinaPIMcan bedescribedbythegenericstoichiometricequation(Equation(6))[15] Separations 2018, 5, 5 7 of 11 − − (cid:28) − − [AlqCl ] +Ant [AlqAnt ] +Cl (6) where mem and aq refer to the membmraenme and aqauqeous phases, remsepmectivelya.q As it is indicated in Equation (6), sulfonamides are extracted via formation of an ionic pair with where and refertothemembraneandaqueousphases,respectively. mem aq the triocylmethyl ammonium cation while chloride is released in the aqueous solution. Thus, the AsitisindicatedinEquation(6),sulfonamidesareextractedviaformationofanionicpairwiththe release of the extracted sulfonamides is possible in a stripping phase containing high amounts of triocylmethylammoniumcationwhilechlorideisreleasedintheaqueoussolution. Thus,thereleaseof chloride anion. theextractedsulfonamidesispossibleinastrippingphasecontaininghighamountsofchlorideanion. The transient concentration profiles of sulfathiazole (STZ), sulfapyridine (SPY), sulfamethazine Thetransientconcentrationprofilesofsulfathiazole(STZ),sulfapyridine(SPY),sulfamethazine (SMZ), and sulfamethoxazole (SMX) in the feed and stripping solutions as a function of time are (SMZ), and sulfamethoxazole (SMX) in the feed and stripping solutions as a function of time are presented in Figure 6. The results show an important decrease of the concentration of both STZ (with presentedinFigure6. TheresultsshowanimportantdecreaseoftheconcentrationofbothSTZ(with a thiazole functional group) and SMX (which is the most acidic antibiotic in this study) in the feed athiazolefunctionalgroup)andSMX(whichisthemostacidicantibioticinthisstudy)inthefeed solution the first 8 h of experiment. However, the transport of these species to the stripping phase is solutionthefirst8hofexperiment. However,thetransportofthesespeciestothestrippingphaseis much slower. Hence, it can be observed that 60% of the initial STZ and 50% of SMX are remain in the muchslower. Hence,itcanbeobservedthat60%oftheinitialSTZand50%ofSMXareremaininthe membrane after 24 h of experiment, pointing out that the transport of these species through the dense membraneafter24hofexperiment,pointingoutthatthetransportofthesespeciesthroughthedense membrane is the limiting step for their separation. SPY and SMZ exhibit less affinity towards Aliquat membraneisthelimitingstepfortheirseparation. SPYandSMZexhibitlessaffinitytowardsAliquat 336 due to their less acidic characteristics and their transport is not significant. 336duetotheirlessacidiccharacteristicsandtheirtransportisnotsignificant. (a) (b) (c) (d) Figure 6. Transient concentration profiles in sulfonamides transport experiments using the 26% Figure 6. Transient concentration profiles in sulfonamides transport experiments using the 26% AlqCl/74% CTA PIM. (a) STZ; (b) SMX; (c) SPY; (d) SMZ. Triangles: feed solution; squares: sAtrlqipCpli/n74g%so CluTtAio nP.IM(F.e e(ad) sSoTlZut; i(obn): S5MmXg; (Lc−) 1SPoYfs; u(dlf)o SnMamZi.d TersiaantgplHes:9 f,esetrdi pspoliuntgiosno;l ustqiuonar:e1s:M strNipapCiln).g solution. (Feed solution: 5 mg L−1 of sulfonamides at pH 9, stripping solution: 1 M NaCl). 3. Materials and Methods 3.1. Membrane Preparation PIMs were prepared dissolving 200 mg of cellulose triacetate (CTA) in 20 mL of chloroform and stirred during 5 h. Afterwards, 1.3 mL of a 0.5 M Aliquat 336 IL (trioctyl methylammonium chloride Separations2018,5,5 8of12 3. MaterialsandMethods 3.1. MembranePreparation PIMswereprepareddissolving200mgofcellulosetriacetate(CTA)in20mLofchloroformand stirredduring5h. Afterwards,1.3mLofa0.5MAliquat336IL(trioctylmethylammoniumchlorideor AliquatCl)solutioninchloroformwasaddedtothepolymersolutionandletstirred2hmore. Then, thesolutionwaspouredintoaflatbottomglassdishandthesolventwasallowedtoevaporatefor 24hatroomtemperature. Theresultingfilmwascarefullypeeledofffromthebottomoftheglassdish. PreparedPIMshadacompositionof26%ofAliquatCland74%ofCTAandthicknessof30±3µm. TheILAliquat336andthepolymerCTAwerepurchasedfromFlukaChemie(Steinheim,Germany), whileotherchemicalsarefromPanreac(Barcelona,Spain). XPSMeasurements MembranesurfacechemicalcharacterizationwasperformedbyanalyzingXPSspectraobtained withaPhysicalElectronicsspectrometerPHI5700(PhysicalElectronics,Chanhanssen,MN,USA), usingX-rayMgKαradiation(300W,15kV,1253.6eV)astheexcitationsource. High-resolutionspectra wererecordedatagiventake-offangleof45◦ byaconcentrichemispherical(±0.1eVbindingenergy accuracy)andanalyzedfollowingtheprocedureandexperimentalconditionsalreadyexplainedin previouspapers[24,38].Measurementswereperformedwithamembraneinwetstate(26%AlqCl/74% CTA-wsample),whichmeans,aftertheirimmersionindistilledwaterfor48h,sampleweregently surfacedriedwithpaper,andstoredforoneweektoensurethelossoftheadsorbedwater;XPSanalysis ofdryPIMsample(26%AlqCl/74%CTA-d)wasalreadyreported[18]. Moreover,acellulosetriacetate film(withoutIL)indryandwetstates(CTA-dandCTA-w,respectively)wasalsoanalyzedbyXPS forcomparison. 3.2. ElasticMeasurements Elastic characterization was carried out using a force digital gauge (ES20 model, Mark-10 Corporation,NewYork,NY,USA),withamaximumtensionof100N,lengthaccuracyof±0.01mm, andatastrengthrateof10mm/s,connectedtoacomputer. Elasticmeasurementswereperformed withthemembraneinair(sample26%AlqCl/74%CTA-d)andplacedinadistilledwatertank(sample 26%AlqCl/74%CTA-w). 3.3. ElectrochemicalCharacterization: CellPotentials,ElectrochemicalImpedanceSpectroscopy,andSalt DiffusionMeasurements Electrochemicalcharacterizationofthe26%AlqCl/74%CTAPIMwascarriedoutinadead-end testcellsimilartothatdescribedin[39], withthesolutionstirredat540rpmtominimizesolution concentration-polarizationatthemembranesurfacesandatroomtemperature(25±2)◦C. Concentrationorcellpotential(∆E)measurementswereperformedusingtworeversibleAg/AgCl electrodesconnectedtoadigitalvoltmeter(Yokohama7552,1GΩinputresistance)andchangingthe concentrationsoftheNaClsolutionsatbothmembranesidesbykeepingconstanttheconcentration ratio c /c = 2, from c ranging between 0.005 M and 0.2 M. The membranes were maintained 1 2 2 overnight in contact with the lowest concentration solution, but it was renovated previously to startthemeasurements. Membranepotential(∆Φ )orequilibriumelectricalpotentialdifference mbr betweentwosolutionsofthesameelectrolytebutdifferentconcentrations(c andc )separatedbythe 1 2 membranewereobtainedfrommeasuredcellpotentialvaluesbysubtractingtheelectrodepotential (∆Φ =(RT/F)ln(c /c ),whereRandFrepresentthegasandFaradayconstants,andTisthesystem elect 1 2 temperature[37],thatis,∆Φ =∆E−∆Φ . mbr elect Electrochemicalimpedancespectroscopy(EIS)measurementswereperformedwiththemembrane placedinthedead-endtestcellbetweentwoNaClsolutionsofthesameconcentration(concentration rangingbetween0.01Mand0.05M),withPtelectrodesconnectedtoafrequencyresponseanalyzer Separations2018,5,5 9of12 (FRA,Solartron1260,England),thatis: NaClsolution(c)/electrode//membrane//electrode/NaCl solution(c)system[4]. Measurementswererecordedfor100datapointsforfrequency(f)ranging between1Hzand107 Hz,atamaximumvoltageof0.01V[4,31,33]. Theimpedanceofasystem,Z, isacomplexnumber,Z=Z +jZ ,derivedfromexperimentaldataobtainedfromabroadrange real img offrequencies,whichcanbeseparatedintoreal(Z )andimaginary(Z )partsbyalgebrarules. real img Forsimpleandhomogeneoussystems,Z andZ arerelatedtotheelectricalresistance(R)andthe real img capacitance(C)bythefollowingexpressions Z =(R/[1+(ωRC)2]);Z =−(ωR2C/[1+(ωRC)2]) (7) real img whereωrepresentstheangularfrequency(ω=2πf). Theanalysisoftheimpedancedataisusually carriedoutbyplotting−ZimgversusZreal(Nyquistplot),whereasemi-circlecorrespondstothe parallelassociationofaresistanceandacapacitanceor(RC)circuit[35]. Thisdescriptionisonlyvalid forhomogeneoussystems,whichpresentauniquerelaxationtimeτ(withτ =2πRC),butinthe max caseofnon-homogeneoussystemstheNyquistplotisadepressedsemi-circleduetoadistribution ofrelaxationtimes,thenanon-generalizedcapacitor(usuallyrepresentedasQ)isconsidered[35]. Moreover,forcompositesystemsconsistingoflayerswithdifferentelectricalcharacteristics,aseries associationofsemi-circles/depressedsemi-circles(oneforeachlayer)iscommonlyobtained[31–34]. For NaCl diffusion, the membrane separated a donor solution (c = 0.01 M) from a receiving d dilutedsolution(c ),whichinitiallywasdistilledwater(thatmeans,c o =0)[39]. Timevariationof r r donor and receiving solution concentrations was determined by measuring conductivity changes by means of two conductivity cells, each one submerged in a half-cell, connected to two digital conductivitymeters(CrisonGLP31,Barcelona,Spain). 3.4. TransportExperiments TransportacrossthePIMoffourdifferentantibiotics—sulfathiazole(STZ),sulfapyridine(SPY), sulfamethazine(SMZ),andsulfamethoxazole(SMX)—allpurchasedfromSigma-Aldrich(Steinheim, Germany) was analyzed. Antibiotics stock solutions (250 mg L−1) were prepared in methanol. Experiments were carried out in a permeation cell similar to the one described in [15] in which themechanicallystirred(800rpm)feedandstrippingsolutions(150mLeach)wereseparatedbythe PIM with an exposed membrane surface area of 11.5 cm2. All experiments were conducted at an ambienttemperatureof22±1◦C. Workingsolutioncontainingamixtureof5mgL−1eachcompoundwaspreparedbyappropriate dilution of the stock solutions with deionized water (Milli-Q Plus system, Millipore Iberica S.A., Madrid,Spain)andthepHwasadjustedto9withNaOH.Sodiumchloride(CarloErba,Cornaredo, Italy)wasusedtopreparethe1MNaClstrippingsolution. Samplesweretakenfromthefeedand stripping solutions at regular time intervals during the 24 h period of the experiments and were analyzedbyanHPLCsystem(1200SeriesAgilentTechnologies,SantaClara,CA,USA)withadiode arraydetector(1290InfinityDADAgilentTechnologies,SantaClara,CA,USA)followingtheprocedure describedin[15]. 4. Conclusions Electrochemicalcharacterizationofapolymerinclusionmembranepreparedwiththeionicliquid Aliquat336(26%)andthepolymercellulosetriacetate(74%)wasperformedwithamodelelectrolyte (NaCl)bymeasuringmembranepotential,electrochemicalimpedancespectroscopy,andsaltdiffusion. Theseresultsenabletheestimationofcharacteristicelectrochemicalmembraneparameterssuchus the membrane conductivity, and its dependence with NaCl solution concentration, the diffusive permeability, and the ion (Na+ and Cl−) transport numbers, which clearly show the barrier effect of this membrane to the transport of NaCl. Moreover, membrane contact with water or aqueous solutionsseemstoaffectbothchemicalsurfacecharacteristicsandelasticparameters. Theseparation Separations2018,5,5 10of12 ofsulfonamidesusingthismembraneisaffectedbyitsdensecharacter,whichlimitsthetransportof theorganicmoleculesthroughit. Acknowledgments: The financial support of the research project CTM2016-78798-C2-2-P (AEI/FEDER/UE) isacknowledged. Author Contributions: Juana Benavente performed impedance spectroscopy measurements, interpreted electrochemicalcharacterizationandXPSdata,co-wrotethemanuscriptanditsfinalrevision.MaríaIsabelVázquez carried out elastic and diffusion experiments. Virginia Romero was responsible for membrane potential measurementsanddataanalysis.EnriquetaAnticóandClàudiaFontàscontributedtothepreparationofPIMs, doing the transport experiments of antibiotics, interpretation of data, co-writing of the manuscript, and the finalrevision. ConflictsofInterest:Theauthorsdeclarenoconflictofinterest. References 1. Bennet,M.D.;Leo,D.J.IonicLiquidsasstablesolventsforionicpolymertransducers.Sens.ActuatorsA2004, 115,79–90.[CrossRef] 2. Welton, T. Room-Temperature Ionic Liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99,2071–2083.[PubMed] 3. Armand,M.;Endres,F.;MacFarlane,D.R.;Ohno,H.;Scrosati,B.Ionic-liquidMaterialsfortheElectrochemical ChallengesoftheFuture.Nat.Mater.2009,8,621–629.[CrossRef][PubMed] 4. Fortunato,R.;Branco,L.;Afonso,C.A.M.;Benavente,J.;Crespo,J.G.Electricalimpedancespectroscopy characterizationofsupportedionicliquidmembranes.J.Membr.Sci.2006,270,42–49.[CrossRef] 5. Regel-Rosocka, M.; Matema, K. Ionic Liquids in Separation of Metal Ions from Aqueous Solutions. In Application of Ionic Liquids in Science and Technology; Handy, S., Ed.; InTech: Rijeka, Croatia, 2011; pp.375–798,ISBN978-953-307-605-8. 6. Ejigu,A.;Walsh,D.A.ElectrocatalysisinRoomTemperatureIonicLiquids.InElectrochemistryinIonicLiquids: Application;Torriero,A.A.J.,Ed.;Springer:NewYork,NY,USA,2015;pp.483–506.ISBN978-3-319-15131-1. 7. Albo,J.;Luis,P.;Irabien,A.Carbondioxidecapturefromfluegasesusingacross-flowmembranecontactor andtheionicliquid1-ethyl-3-methylimidazoliumethylsulfate.Ind.Eng.Chem.Res.2010,49,11045–11051. [CrossRef] 8. Jogelnig,D.;Stojanovic,A.;Galanski,M.;Groessl,M.;Jirsa,F.;Krachler,R.;Keppler,B.K.Greenersynthesis ofnewammoniumionicliquidsandtheirpotentialasextractingagents.TetrahedronLett.2008,49,2782–2785. [CrossRef] 9. Rubio,A.M.;Tomás-Alonso,F.;HernándezFernández,J.;PérezdelosRíos,A.;m.GreenAspectofIonic Liquids. In Ionic Liquids in Separation Technology; Pérez de los Ríos, A., HernándezFernández,F.J.,Eds.; ElsevierB.V.:Amsterdam,TheNetherlands,2014;pp.82–92,ISBN978-0-444-63257-9. 10. Almeida,M.I.S.G.;Cattrall,R.W.;Kolev,S.D.Recenttrendsintransportandextractionofmetalionsusing polymerinclusionmembranes(PIMs).J.Membr.Sci.2012,415–416,9–23.[CrossRef] 11. Nghiem,L.D.;Mornane,P.;Potter,I.D.;Perera,J.M.;Cattrall,R.W.;Kolev,S.D.Extractionandtransportof metalionsandsmallorganiccompoundsusingpolymerinclusionmembranes(PIMs).J.Membr.Sci.2006, 281,7–41.[CrossRef] 12. RodriguezdeSanMiguel,E.; Aguilar,J.C.; deGyes,J.Structuraleffectsonmetalionmigrationacross polymerinclusionmembranes:Dependenceoftransportprofilesonnatureofactiveplasticizer.J.Membr.Sci. 2008,307,105–116.[CrossRef] 13. Pont,N.;Salvadó,V.;Fontàs,C.SelectivetransportandremovalofCdfromchloridesolutionsbypolymer inclusionmembranes.J.Membr.Sci.2008,318,340–345.[CrossRef] 14. Pospiech,B.ApplicationofPhosphoniumIonicLiquidsasIonCarriersinPolymerInclusionMembranes (PIMs) for Separation of Cadmium(II) and Copper(II) from Aqueous Solutions. J. Solut. Chem. 2015, 44,2431–2447.[CrossRef][PubMed] 15. Garcia-Rodríguez,A.;Matamoros,V.;Kolev,S.D.;Fontàs,C.Developmentofapolymerinclusionmembrane (PIM)forthepreconcentrationofantibioticsinenvironmentalwatersamples.J.Membr.Sci.2015,492,32–39. [CrossRef]

Description:
with the ionic liquid (IL) Aliquat 336 (26%) and the polymer cellulose triacetate (CTA) (76%) solvents for organic reactions and catalysis, energy, electro-deposition, green .. SPY and SMZ exhibit less affinity towards Aliquat.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.