THEELECTROCHEMICALBEHAVIOROFCOPPER ANDCOPPERNICKELALLOYSINSYNTHETICSEA WATER By PAULTHOMASWOJCIK ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOLOF THEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENTOFTHE REQUIREMENTSFORTHEDEGREEOFDOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1997 ACKNOWLEDGMENTS Theauthorwishestoexpresshisgratitudetokeyindividualsfortheircontribution tothisdissertationandtotheenhancementofthislearningexperience.Hewouldliketo thankDr.MarkE.Orazemforhisguidance,supportandinsightfulsuggestions.The authorwouldalsoliketothankmembers,bothpastandpresent,oftheElectrochemical EngineeringGroupattheUniversityofFloridafortheirstimulatingargumentsand informativediscussions.OliverMoghissiandSteveCarsonhavebeenagreathelpon topics ofelectrochemistry, and Pankaj Agarwal and Doug Reimer have been indispensableintheareasofmeasurementmodelsandcomputersrespectively.His motherandfatherreceiveaspecialthankyouforsupplyingtheadvice,supportofhis decisions, andencouragementwhich hasmadethis educational experiencetruly enjoyable. TABLEOFCONTENTS page ACKNOWLEDGMENTS ii LISTOFTABLES vi LISTOFFIGURES vii LISTOFSYMBOLS xiv ABSTRACT xvi CHAPTER1INTRODUCTION 1 CHAPTER2 BACKGROUND 6 2.1CopperUtilityinSeaWaterEnvironments 6 2.2ModelLimitations 7 2.2.1Limitationsofthermodynamicinformation 7 2.2.2Realsystemchemicalcharacterizationinadequacies 8 2.2.3Under-predictedreactionrates 8 2.2.4Chemicalreactiontimes 8 2.3Thermodynamics 8 2.4CorrosioninAlkalineChlorideSolutions 18 2.5CopperinSeaWaterEnvironments 20 2.6ElectrochemicalBehaviorofCopperinAqueousEnvironmentswith Flow 24 2.6.1Erosioncorrosion 24 2.6.2Causesandindications 25 CHAPTER3 ELECTROCHEMICALTECHNIQUES 28 1 1 3. LargeSignalAmplitudeMeasurementTechniques 29 3.2SmallSignalAmplitudeMeasurementTechniques 29 3.3ElectrochemicalImpedanceSpectroscopy 30 CHAPTER4EXPERIMENTALMETHOD 36 4.1ImpingingJetSystem 36 4.2SampleandSolutionPreparation 42 4.3ExperimentalProcedure 43 CHAPTER5VMAORDIUALBALETEADMPILMIPTEUDDAENCGEALSVPAENCOTSRTOASTCIOCPAYLLY 48 5.1Variable-AmplitudeGalvanostaticModulationAlgorithm 55 5.2PredictionoftheAmplitudeoftheCurrentPerturbation 56 5.3PredictionoftheValuefortheCurrentMeasuringResistor 58 5.4ApplicationtoCorrosionMeasurements 62 5.5ComparisonWithOtherTechniques 64 5.6ExperimentalStudies 71 CHAPTER6RESULTSANDDISCUSSION 76 6.1TheMeasurementModelApproach 78 6.2LinearSweepVoltammetry 79 6.3CopperinPartially-AeratedElectrolyte:Part1 87 6.4CopperinPartially-AeratedElectrolyte:Part2 105 6.570/30Copper/NickelAlloyinAeratedElectrolyte 11 6.6CopperinAeratedElectrolyte 117 6.7X-rayPhotoelectronSpectroscopyAnalysis 128 6.8CopperRodsinSyntheticSeaWater 136 CHAPTER7COMPARISONWITHPASTRESULTS 147 CHAPTER8CONCLUSIONS 155 CHAPTER9SUGGESTIONSFORFUTUREWORK 158 APPENDICES A:ELECTROCHEMISTRY 161 B:TIMESUMMARIES 165 REFERENCES 171 BIOGRAPHICALSKETCH 178 LISTOFTABLES page Tabler2e.f1:erSeenlceecdtetodastnaonrdmaardlehlyedcrtorgodeenpeolteecnttrioadles(inBaarqdue&ouFsausloklnuteiron1s98a0t)2.5°C 9 Table2.2:Cathodicreactionsforcopperinanalkalineaqueoussolution. 19 Table2.3:ElementalcompositionofASTMD-l141-52formulaAsyntheticsea 21 water. Table2.4:Coppercompoundspossibleinacopper/syntheticseawatersystem. 22 Thecolorandsolubilityinwateraregivenforeachcompound(Weast 1984). Tablea2n.5d:hHyedtreorxoigdeenceaorubsoneaqutielsib(rSiatuimnvmol&viMnogrogxaidnes1,98h1yd).roxides,carbonates, 23 Table5.1:CurrentmeasuringresistorrangesforaPAR273potentiostat. 61 Tableb5e.2:viPsauarlaimzeetderbyvailnuseesrtfioorneolfecRtraicnadlCcirvcauliutess1inatnodF2i.guCirrecu5i.5t.s1and2can 65 Table6.1:Timelinehighlightingmajoreventsfortheexperimentpresentedin 92 Figures6.5-6.16. TableW7.a1t:erCr(iEtfiicradl,V1e9l7o7c)i.tyandShearStressforCopper-BasedAlloysinSea 150 TableBl:SummaryofexperimentaleventsfordatapresentedinSection6.3. 166 TableBlcont. 167 TableB2:SummaryofexperimentaleventsfordatapresentedinSection6.4. 168 TableB3:SummaryofexperimentaleventsfordatapresentedinSection6.5. 169 TableB4:SummaryofexperimentaleventsfordatapresentedinSection6.6. 170 5 LISTOFFIGURES Page Figure252.°C1:.PSootleindtisaulb-sptHanecqeusiluinbdreirumcodnisaigdrearamtfioornaarceopCpue,rC/uw2a0t,eransdysCtueOm.atThe 12 nEluemcbterroschienmtihciaslfEiqguuirleicborirareisnpAoqnduetoourseaScotliuotnisongsi.veAnminortheedAettlaaisleodf descriptionofthisfigureisgiveninthereference(Pourbaix1974). Figure2.2:Potential-pHequilibriumdiagramforacopper/watersystemat 13 25°C.SolidsubstancesunderconsiderationareCu,Cu20,andCu(OH)2 (Pourbaix1974).Thenumbersinthisfigurecorrespondtoreactionsgiven intheAtlasofElectrochemicalEquilibriainAqueousSolutions.Amore detaileddescriptionofthisfigureisgiveninthereference(Pourbaix 1974). Figure2.3:Potential-pHequilibriumdiagramforacopper/seawatersystemat 14 25°C.SolidsubstancesunderconsiderationareCu,Cu20,CuCl,CuO,and tChue2r(eOfHe)r3enCcle.wThhiechnugmivbeesrsadinettahiilsedfidgeusrcercipotriroenspoofntdhitsofriegaucrteio(nBsiagnicvhein&in Longhi1973). Figure252.°4C:.PSootleindtisaulb-sptHanecqeusiluinbdreirumcodnisaigdrearamtfioornaarceopCpue,rC/us2e0a,waCtueCrl,systemat 1 Cu(OH)2,andCu2(OH)3Cl.Thenumbersinthisfigurecorrespondto rfeiagucrteio(nBsigaincvhein&intLhoengrhefier1e9n7c3e).whichgivesadetaileddescriptionofthis Figure2.5:Potential-pHequilibriumdiagramforacopper/seawatersystemat 16 25°C.SolidsubstancesunderconsiderationareCu,Cu20,CuO,CuCl,and CuC03-Cu(OH)2.Thenumbersinthisfigurecorrespondtoreactions g(Biivaenncihnit&heLroenfgehreinc1e97w3h)i.chgivesadetaileddescriptionofthisfigure 7 Figure2.6:Potential-pHequilibriumdiagramforacopper/seawatersystemat 1 25°C.SolidsubstancesunderconsiderationareCu,Cu20,CuCl, Cu(OH)2,andCuC03Cu(OH)2.Thenumbersinthisfigurecorrespondto rFeiagcutrieon(sBigainvcehnii&ntLhoenrgehfier1e9n7c3e)w.hichgivesadetaileddescriptionofthis Figure3.1:Current/Potentialcurvestodemonstratelinearresponsefromsmall 35 signalperturbation(Gabrielli,1980). Figurec4o.n1d:ucStheedarhesrtree.ssThaesadifmuenncstiioonnloefssjetquvaenltoictiytyr/frorretphreeesxenptesritmheenrtaatliowoofrkthe 38 radialposition/electroderadius. Figure4.2:Experimentalconfigurationusedforinvestigatingtheinfluenceofjet 46 velocityonthecorrosionofcopperandcopperalloysinsyntheticsea water. Figure4.3:Schematicillustrationoftheimpingingjetcellandimportantcell 47 components. Figureex5.p1er:iSmcehnetmaotnicthiellcuosrtrroatsiioonnopfottehnetiianlfloufenacseyosfteampowtietnhtiaoscthaatincgiinmgpedance 53 baseline. Figure5.2:Sequentialcurrentpotentialcurvesforasystemwithatransient 54 corrosionpotential. Figure5.3:Potentialperturbationfortestcircuit,Circuit1,resultingfrom 55 traditionalgalvanostaticimpedancemeasurementsusingfixedamplitude currentperturbations. Figureme5.t4h:oCdosmfpoarrtihseovnarbieatbwleeeanmptlheitoundeepaolignotriatnhdmtwhirtehepaoi1n0tmprVedtiacrtgieotn 58 potentialperturbation. Figure5.5:Testcircuitandconnections. 64 Figurega5l.v7:anIosmtpaetdiac,ncVeApGl,anaenpdloptotfeonrtitoessttactiirccutietcChenlilque1sc.omparingconventional 67 Figure5.8:Therealcomponentoftheimpedanceasafunctionoffrequencyfor 68 testcircuitCell1comparingconventionalgalvanostatic,VAG,and potentiostatictechniques. . Figure5.9:Theimaginarycomponentoftheimpedanceasafunctionof 68 VfrAeGq,uenacnydfpoortetnetsitocsitractuiicttCeeclhlni1qcueosm.paringconventionalgalvanostatic, Figure5.10:ImpedanceplaneplotfortestcircuitCell2comparingconventional 69 galvanostatic,VAG,andpotentiostatictechniques.Notetheorderof magnitudechangeintheimpedancevaluescomparedtoCell1 Figure5.11:Therealandimaginarycomponentsoftheimpedanceasafunction 70 offrequencyfortestcircuitCell2comparingconventionalgalvanostatic, VAG,andpotentiostatictechniques. FigureA5S.1T2:MI1m1p4e1dasnyncteheptliacnesepalowtatfeorr.9C9o.m9p%arpuirseoncobpeptewreeelnecVtAroGdeainmdmersedin 73 potentiostatictechniquessuggestthatsmallchangesinthesystem amdevaesrusreelmyeenftfsectcomnedauscutreedmienntthsemVaAdeGimnotdheepaorteenrteiporsotdautciicbmleo.dewhile Figure5.13:Impedanceplaneplotfor99.9%purecopperelectrodeimmersedin 74 ASTM1141syntheticseawater.Comparisonbetweenconventionalfixed amplitudegalvanostatic,VAG,andpotentiostatictechniques. Figure5.14:Therealcomponentoftheimpedanceasafunctionoffrequencyfor 75 dwaattaerprceosmepnatredinigncFoingvuernet5i.o1n3a.l9g9a.lv9a%nocsotpapteircainmdmeVrAseGdtiencshynnitqhueetsi.csea Figure5.15:Theimaginarycomponentoftheimpedanceasafunctionof 75 wfarteeqruecnocmyp(asreienFgigcuorneve5n.t1i3o)naflorg9al9v.a9n%osctaotpipceranidmmVeArsGedteicnhnsiyqnutehse.ticsea Figure6.1:Linearsweepvoltammogramatthreedifferentsweeprates.Applied 83 potentialversusresultingcurrent(Charriere1997). Figure6.2:Cyclicvoltammogramwitharateof66mV/s(Charriere1997). 83 Figure6.3:Potentialtimetracesfor99.9%purecopperinaeratedsyntheticsea 84 water.Velocity(=0.1m/s)maintainedatlowvalueprimarilytoensure uniformmasstransfertothesurfaceandremovalofcorrosionproducesnot tightlyadheredtothesurface. Figureco6n.4s:taPnrtog2r0e0s.s0iomnV.ofIamafiglemsgprroowgirnesgsdfurrionmglpefottetnotiriogshtta,titcotcalonetlraoplsaetdtime= 85 1000seconds(Charriere1997).Filmsoriginateattheperipheryandgrow towardsthecenterofelectrode. Figure6.5:Progressionofafilmremovalfromelectrodesurfaceduring 86 potentiostaticcontrolatconstant200.0mV.Imagesprogresslefttoright, totalelapsedtime=1000seconds(Charriere1997).Filmbecameunstable andwasremovedbyshearbeginningattheouteredgebecauseofahigher shearstress. Figure6.6:Corrosionpotentialof99.9%Cumeasuredasafunctionoftimefor 93 aperiodof33days.Electroderemainedinstagnantfluidfromt=190to 550hours.Acathodicpotentialwasappliedatt=556hoursandflowwas resumedatt=557hours. Figure6.61..7:PuVriedecoopmpiecrroingrnaopnh-aoebrtaatiendedelfeocrtrtohleyteexpbeefroirmeenqtuideessccernitbepderiinodT,abtlieme= 94 190hours. Figure6.61..8:PuVriedecoopmpiecrroingrnaopnh-aoebrtaatiendedelfeocrtrtohleyteexpafetreirmqeunitesdceesnctripbeerdioidn,Ttaibmlee= 94 555hours. Figure6.9:VideomicrographobtainedfortheexperimentdescribedinTable 95 6p.o1t.enPtuiraledciosptpuerrbainncen.onH-yaderraotgeednebluecbtbrloelsytaenadftbearrqeucioespcpeenrtvpiseirbiloed,atnidme= 556hours. Figure6.10:Purecopperinnon-aeratedelectrolyteafterflowresumption,time= 95 558hours. Figure6.11AnexpandedtimescalefortheCorrosionpotentialdatapresentedin 96 Figure6.6.Firstsevendaysofimmersion. Figure6.12:Impedancedatafor99.9%Cutakenduringthefirstfivehoursof 97 submersion.Thegeneraltrendwasthatthepolarizationimpedance decreasedforapproximatelysevenhoursaftersubmersionandthen increasedtoasteadystatevalue. Figure6.13:Polarizationimpedancecorrespondingtoimpedancescansshownin 98 Figure6.12.Valuesandassociatederrorpredictedthroughtheuseofa measurementmodel. Figure6.14:Impedancescansfor99.9%Cubeforeandafterthe16day „„ quiescentperiod. Figurepo6t.e1n5t:iaClopapppelrieedle(c-t1r.o3deV)cobrerfoosrieonstparotteonftieaxlpearsiamefnutn.ctAiocnhoafntgiemei.nCthaethpoHdic 100 showednoeffectincorrosionpotentialwhileavelocitychangeclearly affectedthecorrosionpotentialforanon-aeratedsolution.