RESEARCHARTICLE Electroacupuncture at Guanyuan (CV 4), Zusanli (ST 36) and Baihui (DU 20) regulate the aging-related changes in gene expression profile of the hippocampus in sub-acutely aging rats JianminLiu1,2☯,JingLiu1,2☯,Guang’anWang3,GuangyaLiu1,2,HuanjiaoZhou1,YunFan1, FengxiaLiang1,2,HuaWang1,2* a1111111111 a1111111111 1 Acupuncture-moxibustionandOrthopedicCollege,HubeiUniversityofChineseMedicine,Wuhan,China, 2 HubeiProvincialCollaborativeInnovationCenterofPreventiveTreatmentbyAcupuncture&Moxibustion, a1111111111 Wuhan,China,3 TheThirdClinicalMedicineCollege,HenanUniversityofChineseMedicine,Zhengzhou, a1111111111 China a1111111111 ☯Theseauthorscontributedequallytothiswork. *[email protected] OPENACCESS Abstract Citation:LiuJ,LiuJ,WangG,LiuG,ZhouH,Fan Y,etal.(2018)ElectroacupunctureatGuanyuan Toinvestigatethemolecularmechanismsofsub-acutelyaginganddemonstratetheeffect (CV4),Zusanli(ST36)andBaihui(DU20)regulate ofelectroacupuncture(EA)attheGuanyuan(CV4),Zusanli(ST36)andBaihui(DU20) theaging-relatedchangesingeneexpression acupointonthesub-acutelyagingbrain,cDNAmicroarraysandbioinformaticsanalyses profileofthehippocampusinsub-acutelyaging werecarriedout.ThirtySprague-Dawley(SD)maleratswereselectedandrandomly rats.PLoSONE13(1):e0191623.https://doi.org/ 10.1371/journal.pone.0191623 dividedintothreegroups:thecontrolgroup(C),thesub-acutelyagingmodelgroup(M)and theelectroacupuncturegroup(M+EA).Sub-acutelyagingmodelratswereobtainedbyD- Editor:CristoforoScavone,UniversidadedeSao Paulo,BRAZIL galactoses.c.injectioncontinuouslyfor40days.TotalRNAwasextractedfromthehippo- campusareaofbrainsinthreegroupsforcDNAmicroarrays.Thedataofdifferentgroups Received:November8,2016 werecomparedandanalyzedbydifferentialexpressionanalysis,Geneontology(GO)term Accepted:December14,2017 enrichment,KyotoEncyclopediaofGenesGenomes(KEGG)pathwayenrichmentand Published:January19,2018 quantitativereal-timePCR.Accordingtotheresults,4052DEgeneswereidentifiedinour Copyright:©2018Liuetal.Thisisanopenaccess study.Amongthem,therewere3079differentiallyexpressed(DE)genesbetweengroupM articledistributedunderthetermsoftheCreative andgroupC,andthesegenesareassociatedwiththeagingofrats.Moreover,983genes CommonsAttributionLicense,whichpermits wereexpresseddifferentlyingroupM+EAcomparedwithgroupM,revealingthatpointssti- unrestricteduse,distribution,andreproductionin anymedium,providedtheoriginalauthorand mulicouldregulategeneexpressioninbrainwithaging.Geneontology(GO)termenrich- sourcearecredited. mentandKEGGenrichmentwereperformedtofurtherclassifythedifferentialexpression DataAvailabilityStatement:Allrelevantdataare genes.ImportantGOtermsandKEGGpathwaysconnectedwithsub-acutelyagingEA withinthepaperanditsSupportingInformation effectswereidentified.Atlast,3significantdifferentiallyexpressedgeneswereselectedfor files. real-timequantitativePCRtoclarifythecDNAmicroarrayresults.Inconclusion,thecDNA Funding:Thisworkwassupportedby2016 microarraydatafirstcomparedandanalyzedthedifferencesofgeneexpressionprofilein scientificresearchguidanceprojectsofHubei thehippocampusofratsindifferentgroups,whichcontributetoourknowledgeonthe province(No.B2016111).Thefundershadnorole molecularmechanismsofEAtowardssub-acutelyaging. instudydesign,datacollectionandanalysis, decisiontopublish,orpreparationofthe manuscript. PLOSONE|https://doi.org/10.1371/journal.pone.0191623 January19,2018 1/18 Effectofelectroacupunctureonsub-acutelyagingbrain Competinginterests:Theauthorshavedeclared Introduction thatnocompetinginterestsexist. Inrecentyears,thenumberofolderpersonsisincreasingrapidly.Underthiscircumstance, theproblemofagingisdrawingmoreandmoresocialattention.Agingisaccompaniedby cognitivedeclineinamajorsegmentofthepopulationandistheprimaryriskfactorforAlz- heimer’sdiseaseandotherprevalentneurodegenerativedisorders.Aspeoplebecomeolder, theage-relatedchangeswilloccur,suchaschangesinthefunctionsandcompositionofthe humanbody[1,2].Coupledwithphysiologicchanges,therearealsomedicalconditionsthat risemorecommonlywithadvancingage.Thesechangesandconditionsincreaseanolder adult’svulnerabilitytoandinjuriesfromabuseorneglect[3].Accordingtoformalresearch, agingisassociatedwithdeteriorationoftheimmunesystem(immunosenescence),an increasedsusceptibilitytoinfection,autoimmunediseaseandcancerandreducedresponsive- nesstovaccination[4,5].Akeyfeatureoftheagedhumanimmunesystemistheaccumulation ofhighlydifferentiatedCD8(+)CD28(-)Tcells,aphenomenonthatnegativelyinfluences immunefunctionintheelderly.Asaresult,themechanismsthatregulatesurvivalordeathof CD8(+)CD28(-)Tcellshasbecomethefocusofmanyresearchers[6].Tocombatimmunose- nescence,alotofstrategiesareemerging,focusingoncellularandgenetictherapies,which includebonemarrowtransplantationandgeneticreprogramming[7].Exceptforimmunose- nescence,brainagingprocessesarealsoenormouslycomplexphenomenathatcaninclude cognitivedeclineandincreasetheriskofAlzheimer’sdisease(AD)[8].Therearedifferent kindsofmethodstocombatage-relatedbraindiseasesordelaybrainaging,includingdrug therapyandnon-drugtherapy[9].Forinstance,Mannosylatedliposomalflavonoidisusefulin combatingage-ralatedischemia-reperfusioninducedoxidativedamageinratbrain[10]. Moreover,Caloricrestriction(CR)andtransgenicoverexpressionofendogenousantioxidants therapywereproventodelayorinhibitanumberofage-associatedpathologicandbiologic changesinthebrain,thustohavelife-extendingfunction[11,12]. Acupunctureisatraditionaltherapyappliedforthousandsofyears,anditwasalsoapower- fulnon-drugtherapywhichisusedextensivelyinOrientalMedicineandhasemergedasan importantmodalityofcomplementaryandalternativetherapytoWesternMedicine[13].In thetheoryoftraditionalChinesemedicine,itisproposedthatacupuncturecanstrengthenthe humanbodytoresistdiseasesbypuncturingneedlesatcertainpoints[14].Ithasalsobeen provedthatacupuncturetheorycouldapplytoratsandthattheresultsofacupunctureexperi- mentsbasedonratsagreewiththeresultsbasedonhuman.Untilnow,rats’modelshavebeen appliedtotheacupunctureresearchofvariouskindsofdiseases,suchashypertension,Alzhei- merdisease,diabetes,aging,andhaveachievedgreatsuccess[15].Forexample,previous researchdemonstratedthatacupunctureat“Taichong”(LR3)hasimmediateeffectonpatients withhypertensionof1or2degree,andtheloweringextentispositivelyrelatedwiththeblood pressurebeforeacupuncture[16].Thenotherresearchgroupsprovedthatmoderate-stimula- tionof“Taichong”(LR3)canlowerbloodpressureandplasmaEA-1levelinhypertension rats.Sothespontaneouslyhypertensiverats(SHR)modelwasusedbymanyresearchersto seekabetteracupunctureparameterforclinicaltreatmentofhypertension[17,18].Double reinforcing-oneunblockingacupuncturewasprovedtohaveasignificantlyeffectonsenile immunologicfunction[19].Otherresearchesdemonstratedthatdoublereinforcing-one unblockingacupuncturecouldalsoimprovethespatiallearningandmemoryinagingmodel rats[20,21]. Sofar,thefunctionofacupunctureinregulatingtheimmunesystemhasbeenrevealedin manyresearches.Forinstance,acupuncturecanenhanceanticancerandantistressimmune functionandexertantiinflammationeffects.TheacupuncturepointST36(Zusanli)isan importantacupointwhichiswidelyappliedinimmune-relateddiseases.M.Zhuetal.reported PLOSONE|https://doi.org/10.1371/journal.pone.0191623 January19,2018 2/18 Effectofelectroacupunctureonsub-acutelyagingbrain thatEApreconditioningatST36obviouslyamelioratedCLP-inducedintestinalinjuryand highpermeabilityandreducedthemortalityofCLP-inducedsepsisratsthroughincreasing theconcentrationofsIgAandthepercentageofCD3+,γ/δ,andCD4+Tcellsandtheratioof CD4+/CD8+Tcells[22].Anotherresearchgroupdiscoveredanovelcholinergicanti-inflam- matorypathwayactivatedbyacupunctureaswellasachemokine-mediatedproliferationof opioid-containingmacrophagesininflamedtissuesinresponsetoacupuncture[23].Acu- puncturewasprovedtoplayaroleindelayingbrainagingandtreatingage-relatedbraindis- eases.“YiQi-TiaoXue, FuBenPeiYuan” acupuncturemethodhasbeenprovedtoimprove cognitionabilityofdementiarat[24].Moreover,acupuncturecaninducedifferentcellprolif- erationindifferentbrainregionsofSAMP8,whichbringsforththeneedtoexplorefurtherfor themechanismofcognitivedeficitsandacupunctureinterventioninthisfield[25]. BasedonalongclinicexperienceandstudyingofthetraditionalChinesemedicinetheory, theelectroacupuncturetreatmentwhichinsertpointsatGuanyuan(CV4),Zusanli(ST36) andBaihui(DU20)withneedle,alsonamed“ShuangguYitong”(double-reinforcingandone- unblocking)acupuncturetherapyhasbeenfoundthespecialeffecttoregulatetheimmunesys- temforrats[26–28].Somemechanismsofhowthe“ShuangguYitong”electroacupuncture therapyregulatestheimmunosenescencehavebeenstudiedinourpreviousresearch.Itturns outthatEAatGuanyuan(CV4),Zusanli(ST36)andBaihui(DU20)coulddelayagingbyreg- ulatingTcellsinproliferation,secretionofIL-2anditsreceptorandimprovetheexpressionof CD8+,CD28+[22,23].FurtherstudyrevealsthatEAatGuanyuan(CV4),Zusanli(ST36)and Baihui(DU20)coulddecreasethecontentofIL-1βandIL-6ofserum[28].Basedontheprevi- ousresearchesandinordertogainabetterunderstandingofaging-relatedchangesandhow “ShuangguYitong”EAaffectsthebrainsofsub-acutelyagingrats,DNAmicroarrayanalysis wasexplored.Themicroarraydatademonstratedifferencesbetweencontrolgroup(C),the electroacupuncturegroup(M+EA)andthesub-acutelyagingmodelgroup(M).Thediffer- encesexistedingeneexpressionlevel,GOcategoriesandpathwaycategories,whichcontribute toourknowledgeontheeffectofEAtothebrainofsub-acutelyagingratsinthemolecular level.Importantgenesrelatedwithsub-acutelyagingandEAeffectswereselectedforfurther study. Materialsandmethods Animaltreatment ThirtySDmaleratsin3-month-oldwereobtainedfromtheAnimalExperimentalCenterof HebeiMedicalUniversity,China[Experimentalanimalproductionlicensenumber:SCXK (Hebei)2008-1-003].Alltheratswereraisedintheindividuallyventilatedcageswiththetem- peraturebetween20˚Cto25˚C.Thehumiditywasbetween45%and55%.Lightwasprovided from8amto8pmtosimulatethecircadianrhythmswhilefoodandwaterwasofferedsuffi- ciently.AllanimaltreatmentswereapprovedbytheAnimalEthicsCommitteeoftheHubei UniversityofChineseMedicine,No.[2016]IEC(010). After1weekofadaptation,theratswererandomlydividedintothreegroupsasfollowing: thecontrolgroup(C),thesub-acutelyagingmodelgroup(M)andtheelectroacupuncture group(M+EA),10ratsforeachgroup.RatsingroupCwereraisednormallywithoutanytreat- ments.Whilethesub-acutelyagingmodelratswereobtainedbyD-galactoses.c.injectioncon- tinuouslyfor40dayssincethesecondweek.TheconcentrationofD-galactoses.c.was350mg. kg-1.d-1,onetimeforeachday[29].RatsingroupMwereraisedwithoutanytreatmentsafter modeling.WhiletheRatsofM+EAgroupstartedEAtreatmentatGuanyuan(CV4),Zusanli (ST36)andBaihui(DU20)onceadayaftermodelingfor27days(theproceduresareshownas following).TheprocessoftheexperimentwasshowninS1Fig.Thebodytemperature,tongue PLOSONE|https://doi.org/10.1371/journal.pone.0191623 January19,2018 3/18 Effectofelectroacupunctureonsub-acutelyagingbrain temperatureandtheweightofratsindifferentgroupsweremeasuredeverythreedaysduring themodelmakingandelectroacupuntureprocedurestomakesurethatthephysiologicalindi- catorsofratsarenormal.Alleffortsweremadetominimizesuffering. Electroacupuncture(EA)treatment Sterileacupunctureneedles[size:φ0.30(cid:3)25mm(diameter:0.30millimeter,length:25millime- ter);madebySuzhouAcupuncture&MoxibustionApplianceCo.,Lid,Suzhou,P.R.China] andthepulsegenerator(6805-II,ShanghaiTaichengtechnologydevelopmentco.,LTD)were usedduringtheEAtreatment.Needleswereinsertedperpendicularlyintothemusclelayerat Guanyuan(CV4),Zusanli(ST36)andinsertedhorizontallyintosubgalealtissueatthepoint ofBaihui(DU20)toadepthof2mm.TheGuanyuan(CV4)acupointwasconnectedtothe negativechargeofthepulsegeneratorandtheZusanli(thebilateralZusanliwereusedalter- natelyintheEAtreatment)wasconnectedtothepositivecharge(continuouswave:2Hz,1 mA,lasted15min).Baihui(DU20)wasstimulatedwithneedlesatthesametime:Afterthe needlehasreacheditsdesiredlocation,totwirlandrotatetheneedlebackwardandforward continuouslywiththefrequency2–3timespersecondfor30seconds.Thesamemanipulation wasdoneafterevery5minutesforthreetimesuntilwithdrawingtheneedle.TheEAtreatment wasperformedeverydayexceptSundayandlastedfor27days.Thiselectroacupuncture(EA) treatmentprotocalhasbeendepositedintheprotocols.io.Thedigitalobjectidentifier(DOI) linkis:http://dx.doi.org/10.17504/protocols.io.ky8cxzw. Tissuesampling AttheendoftheEAtreatment,ratsfromthreegroupswerefastedovernight.Thenalltherats werekilledbydislocationofcervicalvertebraandthebrainswerequicklyexcisedafterintra- peritonealanesthesiausingpentobarbitalnatrium.Thecollectedsampleswerewashedbythe coldnormalsaline.Subsequently,thehippocampusareawasdivided,frozenintheliquid nitrogenandthenkeptunder-80˚CforRNAextraction.Thehippocampusareaoftenratsin eachgroupmakesuponesample,andthenthethreesamplesfromgroupC,groupMand groupM+EAwerepreparedfortheRNAextraction. RNApreparationandquantitativereal-timePCR(q-PCR) RNAisoPlus(TaKaRaBiotech.Co.,Dalian,China)wasusedtoextractthetotalRNAaccording tothemanufacturer’sprotocol.AllRNAsamplesweretreatedwithDNaseI(TaKaRaBiotech. Co.,Dalian,China)andfrozenat−80˚CbeforeDNAmicroarrayexperiment.RNAquantityand puritywasassessedusingNanoDropND-1000(Passcriteriaforabsorbanceratiosareestablished atA260/A280(cid:21)1.8andA260/A230(cid:21)1.6).RINvaluesareascertainedusingAgilentRNA6000 NanoassaytodetermineRNAintegrity(PasscriteriaforRINvalueisestablishedat(cid:21)7indicating acceptableRNAintegrity).gDNAcontaminationwasevaluatedbygelelectrophoresis. First-strandcDNAwaspreparedbyAll-in-oneFirststrandcDNASynthesisKit(Geneco- poeia,Guangzhou,China)followingthemanufacturer’sprotocol.ThentheBIO-RADCFX96 q-PCRsystem(SYBRGreenIfluorescentdyedetection)wasusedtoperformtheqRT-PCR. ThemRNAabundancewasnormalizedwiththehousekeepinggeneβ-actin,andtherelative expressionlevelswerecalculatedusingthe2-ΔΔCtmethod[30]. Microarray Microarrayanalysiswascarriedouttoinvestigategeneexpressionpatternsinthehippocam- pusofratsindifferentgroups.6-OHDA-targetedtranscriptswereanalyzedwithWholeRat PLOSONE|https://doi.org/10.1371/journal.pone.0191623 January19,2018 4/18 Effectofelectroacupunctureonsub-acutelyagingbrain Genome4×44Kmicroarrays(Geneexpressionhybridizationkit,Agilent)accordingtothe manufacturer’sinstruction.RosettaResolverSystemR(RosettaBiosoftware)wasusedtopro- cessdataanalysis:1.Rosettaprofileerrormodelcalculation:theerrorduetorandomfactors andsystematicbiasesareestimatedbyRosettaerrormodelwhichcancapturethepredictable behaviorofthevarianceinmicroarraymeasurement[31];2.Squeezereplicatedprobes:the repeatedprobeswithinonechipareaveraged;3.Normalizeintensities:Medianscalingper- formedondatasetwithoutflaggedandcontroldata;4.Pearson’scorrelationcoefficient:statis- ticalanalysiscalculatedonthreetechnicalreplicatestoassessreproducibility;Thereplicated analysisoftheRNAfromthesamesamplecandecreasethetechnicalvariationandthefalse positive,makingtheresultsmoreaccurately.5.Mergetechnicalreplicatedata:Averageinten- sityvaluescalculatedontechnicalreplicates;6.Pairwiseratiocalculation:Probefiltering,nor- malization,pair-wisecomparisonanderror-weightedmodelingareperformedbasedon customers’designatedsamplegroups;7.Differentiallyexpressedgenelists:Standardselection criteriatoidentifydifferentiallyexpressedgenesareestablishedat|Foldchange|(cid:21)1and P<0.05.Student’st-test(two-tailed)wasusedfordataanalysisthisstudy.8.Theheatmap wasobtainedusingthesoftwareHemI[32],whiletheVenndiagramwasobtainedusing VENNY[33].WeappliedKOBASsoftwaretotestthestatisticalenrichmentofdifferential expressiongenesinKEGGpathways. Results RNApreparation TotalRNAwasextractedfromthehippocampusofratsindifferentgroupsandtreatedwith DNaseI.TheabsorbanceratiosofA260/A280ingroupC,MandM+EAwere1.99,1.99and 1.88,respectively.WhiletheabsorbanceratiosofA260/A230were1.98,2.16and1.96.RINval- uesinthreegroupswereallabovethepasscriteria(8.5,9.0and8.3respectively)(Table1).The resultsindicatingthattheRNApurityandintegrityaresuitableforcDNAmicroarray experiment. Identificationofdifferentiallyexpressedgenesbetweendifferentgroups Todemonstratethemolecularmechanismsofthesub-acutelyagingandEAeffects,thediffer- entiallyexpressed(DE)genesbetweendifferentgroupswereidentifiedandanalyzed.Firstly, theheatmapwasmadetocomparetheexpressionpatternsofDEgenesinthreegroups.There are4052DEgenesidentifiedinourstudy(S1Table).AscanbeseeninFig1,thegeneexpres- sionpatternofgroupMwasquitedifferentfromthatofgroupC,revealingthatthesub-acutely agingwasassociatedwiththeexpressionchangingofalargesumofgenesinthehippocampus. Meanwhile,theexpressionlevelofDEgenesingroupM+EAwasdifferentfromthatingroup M,whichsuggestedthatEAhaschangedthegeneexpressionpatternofbraininsub-acutely agingrats. Accordingtotheresults,therewere3079DEgenesbetweengroupMandgroupC,among them1750geneswereup-regulatedand1329weredown-regulated.Thesegenesarerelated withtheagingofbraininrats.WhencomparinggroupM+EAandgroupM,983DEgenes Table1. QualitycontrolofRNAsampleinthreegroups. Sample A260/A280 A260/A230 RIN Conc(ng/ul) GroupC 1.99 1.98 8.5 1042.7 GroupM 1.99 2.16 9.0 734.0 GroupM+EA 1.88 1.96 8.3 705.8 https://doi.org/10.1371/journal.pone.0191623.t001 PLOSONE|https://doi.org/10.1371/journal.pone.0191623 January19,2018 5/18 Effectofelectroacupunctureonsub-acutelyagingbrain PLOSONE|https://doi.org/10.1371/journal.pone.0191623 January19,2018 6/18 Effectofelectroacupunctureonsub-acutelyagingbrain Fig1.Heatmapofdifferentiallyexpressedgenesofthreesamples. https://doi.org/10.1371/journal.pone.0191623.g001 wereidentified.Thenumberofup-regulatedgeneswas620whilethenumberofdown-regu- latedgeneswas363,asshowninTable2.Furtheranalysiswasmadetocomparethenumber andoverlappingrelationshipsofDEgenesbetweendifferentgroups.AccordingtoFig2A,the comparinggroupsMvs.CandM+EAvsMshared445DEgenes.2634DEgeneswerepeculiar tocomparinggroupMvs.Cand538DEgeneswerepeculiartoM+EAvsM.Thentheshared 445DEgeneswereanalyzedtofigureoutimportantgenesrelatedwithsub-acutelyagingand EAeffects.Bycomparingtheup-regulatedgenesbetweenMvs.CandMvs.M+EA,weidenti- fied348overlappingDEgenes,whichmeanEAcanreversethedown-regulateofthesegenes inthesub-acutelyaginggroup.Besides,1404DEgeneswerepeculiartoMvs.Ccomparing groupand274werepeculiartoMvs.M+EA(Fig2B).Likewise,bycomparingthedown-regu- latedgenesofMvs.CandMvs.M+EA,78sharedDEgeneswereidentified.1251DEgenes werepeculiartoMvs.Cdown-regulatedgenesand285werepeculiartocomparinggroupM vs.M+EA(Fig2C).TheresultrevealsthatEAtreatmentcanup-regulatetheexpressionof78 geneswhichweredown-regulatedingroupM.Commonelementsin“MvsC-UP”and“Mvs M+EA-UP”andin“MvsC-DOWN”and“MvsM+EA-DOWN”wereshowninS2Table. Functionaldistributionofdifferentiallyexpressedgenes TheidentifieddifferentiallyexpressedgeneswerefurtheranalyzedbyGeneontology(GO) termenrichmentandKyotoEncyclopediaofGenesGenomes(KEGG)pathwayenrichment. ComparinggroupsMvsCandM+EAvsMwerechosenforGOandKEGGanalysis.Accord- ingtotheGOcategories,theidentifiedDEgeneswerecategorizedintothreemajorfunctional groups:cellularcomponent,molecularfunction,andbiologicalprocess.Incomparinggroup MvsC,theabundantgeneswerecategorizedinto20majorfunctionalgroupsbasedonthe GOcategories,andproteinimportintonucleustranslocation,transgolginetworktransport vesicleandkinaseactivoteracvitityarethetopthreefunctionalcategories,ascanbeenseenin Table3.Likewise,incomparinggroupM+EAvsM,theabundantDEgeneswerecategorized into20majorfunctionalgroups,andfunctionalmategoriesarepositiveregulationoftrans- port,voltagegatedpotassiumchannelcomplexandvitaminbindingarethemostabundant (Table4). TheKEGGpathwayenrichmentwerethenperformedtocategorytheDEgenesincompar- inggroupMvsCandM+EAvsM.ComparedwithgroupC,5KEGGpathwaywereidentified up-regulatedand9wereidentifieddown-regulatedingroupM.Theup-regulatedtermswere asfollowing:rno04080:Neuroactiveligand-receptorinteraction,rno04916:Melanogenesis, rno04270:Vascularsmoothmusclecontraction,rno04020:Calciumsignalingpathwayand rno04912:GnRHsignalingpathway;thedown-regulatedtermswere:rno04070:Phosphatidy- linositolsignalingsystem,rno04670:Leukocytetransendothelialmigration,rno04960:Aldo- sterone-regulatedsodiumreabsorption,rno05223:Non-smallcelllungcancer,rno05214: Glioma,rno05200:Pathwaysincancer,rno04662:Bcellreceptorsignalingpathwayand Table2. ThenumberofDEgenesbetweendifferentsamples. NO Comparison Up-regulated Down-regulated 1 Cvs.M+EA 1164 945 2 Mvs.M+EA 363 620 3 Mvs.C 1750 1329 https://doi.org/10.1371/journal.pone.0191623.t002 PLOSONE|https://doi.org/10.1371/journal.pone.0191623 January19,2018 7/18 Effectofelectroacupunctureonsub-acutelyagingbrain Fig2.ComparisonsofthenumberandoverlappingrelationshipsofDEgenesbetweendifferentsamples.A.Purplecirclerepresentsnumber ofDEgenesbetweengroupMandgroupC;yellowcirclestandfornumberofDEgenesbetweengroupM+EAandgroupM;B.Purplecircle representsnumberofup-regulatedDEgenesbetweengroupMandgroupC;yellowcirclestandfornumberofup-regulatedDEgenesbetween groupMandgroupM+EA;C.Purplecirclerepresentsnumberofdown-regulatedDEgenesbetweengroupMandgroupC;yellowcirclestandfor numberofdown-regulatedDEgenesbetweengroupMandgroupM+EA.TheoverlappingregionrepresentssharedDEgenesoftwocomparable groups. https://doi.org/10.1371/journal.pone.0191623.g002 rno05222:Smallcelllungcancer(Fig3A).DEgenesinvolvedinthesepathwayswerelisted inTable5.IncomparinggroupM+EAvsM,18KEGGpathwaytermswereup-regulated, andthemostabundantfivetermswererno04070:Phosphatidylinositolsignalingsystem, rno04720:Long-termpotentiation,rno04010:MAPKsignalingpathway,rno04310:Wntsig- nalingpathwayandrno04020:Calciumsignalingpathway.ComparedwithgroupM,5KEGG pathwaytermsweredown-regulatedingroupM+EA,includingrno04080:Neuroactive ligand-receptorinteraction,rno04270:Vascularsmoothmusclecontraction,rno04916:Mela- nogenesis,rno04020:Calciumsignalingpathwayandrno00350:Tyrosinemetabolism,as showninFig3BandTable5.Notably,whilethegeneexpressioninphosphatidylinositolsig- nalingsystempathwaywasdown-regulatedingroupMcomparedwithgroupC,itwasup-reg- ulatedaftertheEAtreatment.Besides,whileKEGGpathwaysneuroactiveligand-receptor interaction,vascularsmoothmusclecontraction,melanogenesisandcalciumsignalingpath- waywereup-regulatedinthesub-acutelymodelgroup,theywerealldown-regulatedafterthe EAtreatment.TheresultsrevealthatEAtreatmentcanaffecttheexpressionofgenesinthese KEGGpathways,andreversingthegeneexpressionchangesinthesepathwayscanberegarded PLOSONE|https://doi.org/10.1371/journal.pone.0191623 January19,2018 8/18 Effectofelectroacupunctureonsub-acutelyagingbrain R O VITY CEPT MolecularFunction KINASE_ACTIVATOR_ACTIVITY SERINE_TYPE_ENDOPEPTIDASE_ACTIVITY RAS_GUANYL_NUCLEOTIDE_EXCHANGE_FACTOR_ACTIVITY VITAMIN_BINDING SERINE_TYPE_PEPTIDASE_ACTIVITY SERINE_HYDROLASE_ACTIVITY GUANYL_NUCLEOTIDE_EXCHANGE_FACTOR_ACTIVITY METABOTROPIC_GLUTAMATEGABA_B_LIKE_RECEPTOR_ACTI CARBON_CARBON_LYASE_ACTIVITY GABA_RECEPTOR_ACTIVITY OXIDOREDUCTASE_ACTIVITY_ACTING_ON_PEROXIDE_AS_AC RHO_GUANYL_NUCLEOTIDE_EXCHANGE_FACTOR_ACTIVITY INWARD_RECTIFIER_POTASSIUM_CHANNEL_ACTIVITY NEUROPEPTIDE_HORMONE_ACTIVITY PHOSPHATE_TRANSMEMBRANE_TRANSPORTER_ACTIVITY MRNA_BINDING NEUROPEPTIDE_RECEPTOR_ACTIVITY CHROMATIN_BINDING NEUROPEPTIDE_BINDING SMALL_GTPASE_BINDING E L C SI E V _ T R E O E N P N A CellularComponent TRANS_GOLGI_NETWORK_TRANS TRANSPORT_VESICLE ENDOCYTIC_VESICLE NUCLEAR_CHROMATIN BASOLATERAL_PLASMA_MEMBRA LAMELLIPODIUM OUTER_MEMBRANE GOLGI_ASSOCIATED_VESICLE EARLY_ENDOSOME SECRETORY_GRANULE NUCLEAR_MEMBRANE_PART TIGHT_JUNCTION CONDENSED_CHROMOSOME CENTROSOME APICAL_JUNCTION_COMPLEX APICOLATERAL_PLASMA_MEMBR PORE_COMPLEX CHROMATIN CLATHRIN_COATED_VESICLE ORGANELLE_OUTER_MEMBRANE C. group CTION OCESS d U R Man NSD AL_P A M Table3.ThemostenrichedGOtermsbetweengroup BiologicalProcess PROTEIN_IMPORT_INTO_NUCLEUS_TRANSLOCATION INTERACTION_WITH_HOST HEMOSTASIS ACUTE_INFLAMMATORY_RESPONSE REGULATION_OF_RAS_PROTEIN_SIGNAL_TRANSDUCTION CDC42_PROTEIN_SIGNAL_TRANSDUCTION NLS_BEARING_SUBSTRATE_IMPORT_INTO_NUCLEUS SMOOTH_MUSCLE_CONTRACTION_GO_0006939 BLOOD_COAGULATION COAGULATION WOUND_HEALING PROTEIN_IMPORT_INTO_NUCLEUS REGULATION_OF_SMALL_GTPASE_MEDIATED_SIGNAL_TR NUCLEAR_IMPORT REGULATION_OF_BODY_FLUID_LEVELS POSITIVE_REGULATION_OF_TRANSPORT NEGATIVE_REGULATION_OF_MULTICELLULAR_ORGANIS NEGATIVE_REGULATION_OF_CELL_CYCLE FEEDING_BEHAVIOR MITOTIC_SISTER_CHROMATID_SEGREGATION https://doi.org/10.1371/journal.pone.0191623.t003 PLOSONE|https://doi.org/10.1371/journal.pone.0191623 January19,2018 9/18 Effectofelectroacupunctureonsub-acutelyagingbrain Y T VI TI C A MolecularFunction VITAMIN_BINDING AUXILIARY_TRANSPORT_PROTEIN_ACTIVITY VOLTAGE_GATED_POTASSIUM_CHANNEL_ACTIVITY METABOTROPIC_GLUTAMATEGABA_B_LIKE_RECEPTOR_ POTASSIUM_CHANNEL_ACTIVITY GUANYL_NUCLEOTIDE_EXCHANGE_FACTOR_ACTIVITY INWARD_RECTIFIER_POTASSIUM_CHANNEL_ACTIVITY KINASE_ACTIVATOR_ACTIVITY LOW_DENSITY_LIPOPROTEIN_BINDING NEUROPEPTIDE_HORMONE_ACTIVITY SMAD_BINDING PHOSPHOLIPASE_A2_ACTIVITY POTASSIUM_CHANNEL_REGULATOR_ACTIVITY SOLUTE_SODIUM_SYMPORTER_ACTIVITY RAS_GTPASE_BINDING COPPER_ION_BINDING PEPTIDE_RECEPTOR_ACTIVITY LIPID_TRANSPORTER_ACTIVITY SERINE_TYPE_ENDOPEPTIDASE_ACTIVITY SODIUM_CHANNEL_ACTIVITY X E L MP LE O C CellularComponent VOLTAGE_GATED_POTASSIUM_CHANNEL_C TRANS_GOLGI_NETWORK_TRANSPORT_VESI ENDOCYTIC_VESICLE ENDOSOME EARLY_ENDOSOME VESICULAR_FRACTION COLLAGEN MICROSOME CENTROSOME GOLGI_ASSOCIATED_VESICLE TRANSPORT_VESICLE TIGHT_JUNCTION CELL_SURFACE BASOLATERAL_PLASMA_MEMBRANE MICROTUBULE_ORGANIZING_CENTER APICAL_JUNCTION_COMPLEX APICOLATERAL_PLASMA_MEMBRANE CLATHRIN_COATED_VESICLE EXTRACELLULAR_SPACE COATED_VESICLE Y A W H T A P G_ N C. ALI p N u G upMandgro AL_PROCESS A_RECEPTOR_SI NSDUCTION Table4.ThemostenrichedGOtermsbetweengro BiologicalProcess POSITIVE_REGULATION_OF_TRANSPORT INTERACTION_WITH_HOST ACUTE_INFLAMMATORY_RESPONSE POTASSIUM_ION_TRANSPORT CELL_FATE_COMMITMENT NEGATIVE_REGULATION_OF_MULTICELLULAR_ORGANISM REGULATION_OF_TRANSFORMING_GROWTH_FACTOR_BET DIGESTION FEEDING_BEHAVIOR ORGANELLE_LOCALIZATION MONOVALENT_INORGANIC_CATION_TRANSPORT ESTABLISHMENT_OF_ORGANELLE_LOCALIZATION REGULATION_OF_RAS_PROTEIN_SIGNAL_TRANSDUCTION CELLULAR_RESPONSE_TO_NUTRIENT_LEVELS CELLULAR_RESPONSE_TO_STRESS TRIACYLGLYCEROL_METABOLIC_PROCESS COFACTOR_TRANSPORT RESPONSE_TO_EXTRACELLULAR_STIMULUS REGULATION_OF_SMALL_GTPASE_MEDIATED_SIGNAL_TRA CDC42_PROTEIN_SIGNAL_TRANSDUCTION https://doi.org/10.1371/journal.pone.0191623.t004 PLOSONE|https://doi.org/10.1371/journal.pone.0191623 January19,2018 10/18
Description: