ebook img

Electrical Solitons: Theory, Design, and Applications PDF

252 Pages·2010·45.159 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electrical Solitons: Theory, Design, and Applications

Electrical Solitons Theory, Design, and Applications K11460_FM.indd 1 11/17/10 1:38 PM Devices, Circuits, and Systems Series Editor Krzysztof Iniewski CMOS Emerging Technologies Inc., Vancouver, British Columbia, Canada Internet Networks: Wired, Wireless, and Optical Technologies Krzysztof Iniewski Semiconductor Radiation Detection Systems Krzysztof Iniewski Electronics for Radiation Detection Krzysztof Iniewski Radiation Effects in Semiconductors Krzysztof Iniewski Electrical Solitons: Theory, Design, and Applications David Ricketts and Donhee Ham FORTHCOMING Radio Frequency Integrated Circuit Design Sebastian Magierowski Semiconductors: Integrated Circuit Design for Manufacturability Artur Balasinki Integrated Microsystems: Materials, MEMs, Photonics, Bio Interfaces Krzysztof Iniewski K11460_FM.indd 2 11/17/10 1:38 PM Electrical Solitons Theory, Design, and Applications David S. Ricketts Donhee Ham Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business K11460_FM.indd 3 11/17/10 1:38 PM CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2011 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number: 978-1-4398-2980-6 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging‑in‑Publication Data Ricketts, David Shawn Electrical solitons : theory, design, and applications / David S. Ricketts, Donhee Ham. p. cm. -- (Devices, circuits, and systems) Includes bibliographical references and index. ISBN 978-1-4398-2980-6 (hardback) 1. Solitons. I. Ham, Donhee. II. Title. QC174.26.W28R53 2010 530.12’4--dc22 2010042045 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com K11460_FM.indd 4 11/17/10 1:38 PM Contents List of Figures ix List of Tables xiii Preface xv I Electrical Solitons: Theory 1 1 Introduction 3 1.1 The “Solitons” . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 A Brief Overview and History of the Soliton . . . . . . 7 2 The KdV Soliton 13 2.1 The Solitary Wave Solution . . . . . . . . . . . . . . . . 13 2.2 The Periodic Soliton: The Cnoidal Wave Solution . . . 15 2.2.1 Asymptotics of the Cnoidal Wave. . . . . . . . . 19 2.2.2 The Cnoidal Wave vs. the Periodic Sech2 Wave . 20 2.3 Transient Dynamics of the KdV . . . . . . . . . . . . . 20 2.3.1 Solitary Wave (cid:54)= Soliton . . . . . . . . . . . . . . 20 2.3.2 Soliton Collisions . . . . . . . . . . . . . . . . . . 22 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.A EllipticIntegrals,FunctionsandTheirLinktoDifferential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.A.1 Arclength of a Circle . . . . . . . . . . . . . . . . 28 2.A.2 Arclength of an Ellipse. . . . . . . . . . . . . . . 30 2.A.3 Elliptic Functions. . . . . . . . . . . . . . . . . . 31 2.A.4 Example PDEs . . . . . . . . . . . . . . . . . . . 32 3 The Heart of the Soliton: Inverse Scattering 35 3.1 Inverse Scattering Method . . . . . . . . . . . . . . . . 36 3.2 A Math Problem . . . . . . . . . . . . . . . . . . . . . . 36 3.3 KdV Solution via the Inverse Scattering Method . . . . 38 3.4 Solution of the KdV Initial Value Problem . . . . . . . 42 3.4.1 The Eigenvalue Problem Using the Schr¨odinger Operator . . . . . . . . . . . . . . . . . . . . . . 42 3.5 Asymptotic Solution to the Inverse Scattering Method . 47 v vi 3.5.1 Reflectionless Potentials . . . . . . . . . . . . . . 48 3.5.2 Non-Reflectionless Potentials . . . . . . . . . . . 52 3.6 Soliton Definition . . . . . . . . . . . . . . . . . . . . . 55 3.7 Transient Solutions of the KdV . . . . . . . . . . . . . . 56 3.7.1 Hirota’s Direct Method . . . . . . . . . . . . . . 56 3.7.2 Transient Solution Summary . . . . . . . . . . . 58 3.8 The Three Faces of the KdV Soliton . . . . . . . . . . . 58 4 Conservative and Dissipative Soliton Systems 61 4.1 Conservation Laws . . . . . . . . . . . . . . . . . . . . . 61 4.2 The Lossy KdV . . . . . . . . . . . . . . . . . . . . . . 63 II Electrical Solitons: Design 69 5 Electrical Nonlinear Transmission Line and Electrical Solitons 71 5.1 The Nonlinear Transmission Line . . . . . . . . . . . . 71 5.2 Toda Lattice . . . . . . . . . . . . . . . . . . . . . . . . 73 5.3 NLTL Lattice . . . . . . . . . . . . . . . . . . . . . . . 74 5.4 KdV Approximation of the NLTL . . . . . . . . . . . . 77 5.5 The Lossy NLTL . . . . . . . . . . . . . . . . . . . . . . 80 6 The Electrical Soliton in the Lab 85 Michael W. Chen and En Shi 6.1 Toda Lattice, NLTL Lattice and KdV Solitons . . . . . 86 6.2 Scaling and Transformations: Lab → NLTL → KdV . . 87 6.3 NLTL Characterization . . . . . . . . . . . . . . . . . . 93 6.4 Inverse Scattering on the NLTL . . . . . . . . . . . . . 96 6.5 Soliton Damping on the NLTL . . . . . . . . . . . . . . 97 6.6 Numerical Accuracy . . . . . . . . . . . . . . . . . . . . 100 III Electrical Solitons: Application 103 7 NLTL as a Two-Port System 105 Xiaofeng Li and Michael W. Chen 7.1 Pulse Compression and Tapered NLTL . . . . . . . . . 105 7.2 Shockwave NLTL . . . . . . . . . . . . . . . . . . . . . 110 7.3 Harmonic Generation . . . . . . . . . . . . . . . . . . . 117 7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8 The Soliton Oscillator 119 8.1 Basic Topology . . . . . . . . . . . . . . . . . . . . . . . 119 8.2 Instability Mechanisms . . . . . . . . . . . . . . . . . . 121 8.2.1 Case I — Voltage Limiting Amplifier . . . . . . . 121 vii 8.2.2 Case II — Linear Amplifier . . . . . . . . . . . . 122 8.3 Identification of Three Instability Mechanisms . . . . . 122 8.4 NLTL Soliton Oscillator — Working Model . . . . . . . 125 8.4.1 Operating Principles . . . . . . . . . . . . . . . . 125 8.4.1.1 Bias adjustment . . . . . . . . . . . . . 126 8.4.1.2 Amplifier operation . . . . . . . . . . . 126 8.4.2 Stability Mechanisms — Solution . . . . . . . . . 127 8.4.2.1 Distortion reduction . . . . . . . . . . . 127 8.4.2.2 Perturbation rejection . . . . . . . . . . 127 8.4.2.3 Single mode selection . . . . . . . . . . 129 8.5 System Design and Amplifier Dynamics . . . . . . . . . 129 8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 140 9 The Circular Soliton Oscillator 141 9.1 CMOS, Low MHz Prototype . . . . . . . . . . . . . . . 141 9.1.1 Oscillator Implementation . . . . . . . . . . . . . 142 9.1.1.1 Amplifier design . . . . . . . . . . . . . 143 9.1.1.2 NLTL design . . . . . . . . . . . . . . . 144 9.1.1.3 Termination . . . . . . . . . . . . . . . 144 9.1.2 Experimental Verification . . . . . . . . . . . . . 146 9.1.2.1 Adaptive bias control . . . . . . . . . . 146 9.1.2.2 Startup soliton dynamics . . . . . . . . 147 9.1.2.3 Perturbation rejection . . . . . . . . . . 147 9.1.2.4 Steady-state soliton oscillation . . . . . 151 9.1.2.5 Soliton propagation in steady-state . . 151 9.2 Bipolar, Microwave Prototype . . . . . . . . . . . . . . 154 9.2.1 Oscillator Implementation . . . . . . . . . . . . . 157 9.2.2 Experimental Results . . . . . . . . . . . . . . . 162 9.3 CMOS, Chip-scale, GHz Prototype . . . . . . . . . . . 165 9.3.1 Oscillator Implementation . . . . . . . . . . . . . 165 9.3.2 Test and Measurement . . . . . . . . . . . . . . . 167 9.3.3 Experimental Results . . . . . . . . . . . . . . . 167 9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 170 10 The Reflection Soliton Oscillator 173 O. Ozgur Yildirim 10.1 Operating Principle . . . . . . . . . . . . . . . . . . . . 175 10.1.1 Reflection at the Amplifier End . . . . . . . . . . 176 10.1.2 Reflection at the Open End . . . . . . . . . . . . 179 10.2 Amplifier Design . . . . . . . . . . . . . . . . . . . . . . 181 10.2.1 Need for an Adaptive Bias Scheme . . . . . . . . 181 10.2.2 Reflection Amplifier with an Adaptive Bias . . . 181 10.2.3 Improved R-C Network . . . . . . . . . . . . . . 186 viii 10.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 186 10.4 Comparison with Haus’s Oscillator . . . . . . . . . . . . 193 10.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 194 11 ChaoticSolitonOscillatorandChaoticCommunications 197 O. Ozgur Yildirim, Nan Sun, and Xiaofeng Li 11.1 Chaos and Chaotic Communications . . . . . . . . . . . 198 11.2 Chaotic Soliton Oscillator . . . . . . . . . . . . . . . . . 200 11.3 Simulation of the Chaotic Soliton Oscillator . . . . . . 202 11.4 Simulation of Chaotic Binary Communication . . . . . 203 11.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 208 12 Phase Noise of Soliton Oscillators 211 Xiaofeng Li 12.1 Phase Noise Fundamentals . . . . . . . . . . . . . . . . 212 12.2 Phase Noise Due to Direct Phase Perturbation . . . . . 215 12.2.1 Distributed Noise Sources . . . . . . . . . . . . . 215 12.2.2 Lumped Noise Sources . . . . . . . . . . . . . . . 223 12.3 Amplitude-to-Phase Noise Conversion . . . . . . . . . . 225 12.3.1 Distributed Noise Sources . . . . . . . . . . . . . 227 12.3.2 Lumped Noise Sources . . . . . . . . . . . . . . . 228 12.3.3 Indirect vs. Direct Phase Perturbations . . . . . 229 12.4 Experimental Verification . . . . . . . . . . . . . . . . . 229 12.4.1 Oscillator Prototypes . . . . . . . . . . . . . . . 229 12.4.2 Phase Noise Measurement . . . . . . . . . . . . . 230 12.4.3 Intensity of Noise Sources . . . . . . . . . . . . . 232 12.4.4 Measurement–Theory Comparison . . . . . . . . 235 12.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 238 Bibliography 239 Index 247 List of Figures 1.1 Time evolution of solitons during collision. . . . . . . . 4 1.2 Solitons in high-speed electronics. . . . . . . . . . . . . 6 1.3 The classical solitons. . . . . . . . . . . . . . . . . . . . 8 2.1 The cnoidal wave. . . . . . . . . . . . . . . . . . . . . . 18 2.2 The cnoidal wave versus periodic sech2 wave.. . . . . . 21 2.3 Soliton collision: Lax case I. . . . . . . . . . . . . . . . 23 2.4 Soliton collision: Lax case II. . . . . . . . . . . . . . . . 24 2.5 Soliton collision: Lax case III. . . . . . . . . . . . . . . 25 2.6 Soliton amplitude and phase modulation during colli- sion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 A.1 Trigonometric and elliptic functions. . . . . . . . . . . 29 3.1 Inverse scattering method. . . . . . . . . . . . . . . . . 40 3.2 Inverse scattering method using delta function potential. 43 3.3 Soliton collision: reflectionless potential. . . . . . . . . 50 3.4 Time evolution of solitons, eigenvalues and eigenfunc- tions for reflectionless potentials. . . . . . . . . . . . . 51 3.5 Soliton collision: Non-reflectionless potential.. . . . . . 53 3.6 Breakup of a square pulse into multiple solitons. . . . . 54 4.1 KdV soliton damping. . . . . . . . . . . . . . . . . . . 67 5.1 Nonlinear transmission line (NLTL). . . . . . . . . . . 72 5.2 Coefficients of the NLTL lattice and the KdV approxi- mation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3 Loss mechanisms in the NLTL. . . . . . . . . . . . . . 81 6.1 NLTL: Toda lattice, NLTL lattice and KdV approxima- tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.2 Laboratory coordinates. . . . . . . . . . . . . . . . . . 89 6.3 Transformation from laboratory coordinates to KdV co- ordinates. . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.4 Capacitance versus bias voltage. . . . . . . . . . . . . . 94 6.5 Inductor equivalent series resistance versus frequency. . 95 ix x 6.6 NLTL dispersion measurement. . . . . . . . . . . . . . 95 6.7 Experimental inverse scattering: Fixed A. . . . . . . . 98 6.8 Experimental inverse scattering: Fixed W. . . . . . . . 99 6.9 Soliton damping on the NLTL. . . . . . . . . . . . . . . 101 6.10 Simulation inaccuracies. . . . . . . . . . . . . . . . . . 102 7.1 Monolithic NLTL. . . . . . . . . . . . . . . . . . . . . . 106 7.2 Dispersion due to structural periodicity. . . . . . . . . 107 7.3 Pulse compression using tapered NLTLs. . . . . . . . . 109 7.4 Loss mechanisms in NLTL. . . . . . . . . . . . . . . . . 110 7.5 Shockwave formation. . . . . . . . . . . . . . . . . . . . 111 7.6 Shockwave of Burgers equation. . . . . . . . . . . . . . 113 7.7 Effects of dispersion on shockwave. . . . . . . . . . . . 115 7.8 Shockwave formation on the lossy NLTL. . . . . . . . . 116 7.9 Harmonic generation with discrete device. . . . . . . . 117 7.10 Second harmonic generation with NLTL. . . . . . . . . 118 8.1 Ring NLTL and multi-mode solutions. . . . . . . . . . 120 8.2 Soliton oscillator topology. . . . . . . . . . . . . . . . . 121 8.3 Soliton oscillator topology: Saturating amplifier. . . . . 123 8.4 Soliton oscillator topology: Linear amplifier. . . . . . . 124 8.5 Stabilizing amplifier. . . . . . . . . . . . . . . . . . . . 126 8.6 Soliton oscillator: dc output during start-up. . . . . . . 127 8.7 Soliton oscillator amplifier: Operating principles. . . . 128 8.8 Soliton oscillator amplifier: Mode-dependent gain. . . . 130 8.9 Q-switched instability. . . . . . . . . . . . . . . . . . . 131 8.10 Simulation of the adaptive bias transient response. . . 134 8.11 Saturable absorber instability. . . . . . . . . . . . . . . 135 8.12 Simulation of the adaptive bias transient response and saturable absorber. . . . . . . . . . . . . . . . . . . . . 138 8.13 Behavioral simulation of the Q-switched instability. . . 139 9.1 Low MHz prototype schematic. . . . . . . . . . . . . . 142 9.2 NLTL design. . . . . . . . . . . . . . . . . . . . . . . . 145 9.3 NLTL termination: tapered-loss NLTL. . . . . . . . . . 145 9.4 Low MHz soliton oscillator prototype. . . . . . . . . . . 146 9.5 Experimental results: Amplifier bias adjustment. . . . 148 9.6 Experimental results: Startup transient. . . . . . . . . 149 9.7 Experimental results: Perturbation rejection. . . . . . . 150 9.8 Experimentalresults: Steady-stateoscillationofmode1 and mode 2. . . . . . . . . . . . . . . . . . . . . . . . . 152 9.9 Experimental results: Robustness to disturbance. . . . 153 9.10 Steady-state soliton propagation. . . . . . . . . . . . . 154

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.