ebook img

Electrical Properties of Materials PDF

480 Pages·2010·6.286 MB·English
by  SolymarL.WalshD.
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electrical Properties of Materials

Electrical properties of materials EIGHTH EDITION L. Solymar DepartmentofElectricalandElectronicEngineering ImperialCollege,London D. Walsh DepartmentofEngineeringScience UniversityofOxford 1 3 GreatClarendonStreet,OxfordOX26DP OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwidein Oxford NewYork Auckland CapeTown DaresSalaam HongKong Karachi KualaLumpur Madrid Melbourne MexicoCity Nairobi NewDelhi Shanghai Taipei Toronto Withofficesin Argentina Austria Brazil Chile CzechRepublic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore SouthKorea Switzerland Thailand Turkey Ukraine Vietnam OxfordisaregisteredtrademarkofOxfordUniversityPress intheUKandincertainothercountries PublishedintheUnitedStates byOxfordUniversityPressInc.,NewYork ©OxfordUniversityPress,1970,1979,1984,1988,1993,1998,2004,2010 Firstedition1970 Secondedition1979 Thirdedition1984 Fourthedition1988 Fifthedition1993 Sixthedition1998,reprinted1999 Seventhedition2004 Eighthedition2010 Themoralrightsoftheauthorshavebeenasserted DatabaserightOxfordUniversityPress(maker) Allrightsreserved.Nopartofthispublicationmaybereproduced, storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, withoutthepriorpermissioninwritingofOxfordUniversityPress, orasexpresslypermittedbylaw,orundertermsagreedwiththeappropriate reprographicsrightsorganization.Enquiriesconcerningreproduction outsidethescopeoftheaboveshouldbesenttotheRightsDepartment, OxfordUniversityPress,attheaddressabove Youmustnotcirculatethisbookinanyotherbindingorcover andyoumustimposethissameconditiononanyacquirer BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressCataloginginPublicationData Dataavailable TypesetbyNewgenImagingSystems(P)Ltd.,Chennai,India PrintedinGreatBritain onacid-freepaperby CPIAntonyRowe,Chippenham,Wilts ISBN 978–0–19–956592–4 (HB) ISBN 978–0–19–956591–7 (PB) 10 9 8 7 6 5 4 3 2 1 Data on specific materials in text Errorsusinginadequatedataaremuch lessthanusingnodataatall CharlesBabbage Table 1.1 Thresholdwavelengthsforalkalimetals 11 Table 1.2 Electricalandthermalconductivitiesmeasuredat 20 293K Figure 4.5 Theperiodictableoftheelements 60 Table 4.1 Theelectronicconfigurationsoftheelements 62 Table 5.1 Mohshardnessscale(modified) 70 Table 6.1 Fermilevelsofmetals 84 Table 6.2 Workfunctionsofmetals 88 Figure 6.10 Field-ionmicrographofatungstentip 94 Table 8.1 Energylevelsofdonor(groupV)andacceptor 125 (groupIII)impuritiesinGeandSi Figure 8.7 ElectronandholemobilitiesinGeandSiasa 132 functionofimpurityconcentration Figure 8.8 ElectronandholemobilitiesinGaAsasa 134 functionofimpurityconcentration Table 8.2 Sizeofatomsintetrahedralbonds 135 Table 8.3 SemiconductorpropertiesI.Energygapand 136 structure Table 8.4 SemiconductorpropertiesII.Currentcarriers 142 Figure 8.18 (a)Generalarrangementofanoptical 146 transmissionmeasurementandtheresultfor (b)GaAsand(c)Si Exercise 9.6 SpecificdopingdatainGeandSi 219 Table 10.1 Dielectricconstantandrefractiveindexofsome 227 non-polar,weaklypolor,polar,and semiconductingmaterials Table 10.2 Frequenciesofmaximumreflection(f )and 233 r minimumtransmission(f)foranumberof t alkalihalides Table 10.3 Piezoelectricceramics 237 xivDataonspecificmaterialsintext Exercise 10.5 Dielectriclossinthoria 247 Figure 11.9 Hysteresisloopsof(a)Supermalloyand 259 (b)Alnico5and9 Table 11.1 Majorfamiliesofsoftmagneticmaterialswith 261 typicalproperties Figure 11.12 Hysteresiscurvesofsomerare-earthmagnetsin 263 thesecondquadrant Table 11.2 Hardmagneticmaterials 263 Exercise 11.6 MagneticsusceptibilityofNiatvarying 284 temperature Figure 12.15 Relationshipbetweenenergygapandlattice 307 spacingforsomemixedIII–Vsemiconductors Table 12.1 Compoundsforlaserdiodes 307 Table 13.1 Electronegativitiesofelements 332 Table 13.2 Propertiesofelectro-opticmaterials 335 Table 13.3 Propertiesofsomematerialsusedfor 342 acousto-opticinteraction Table 14.1 Thecriticaltemperatureandcriticalmagnetic 364 fieldofanumberofsuperconductingelements Figure 14.9 Temperaturedependenceofthespecificheatof 370 tinnearthecriticaltemperature(afterKeesom andKok,1932) Figure 14.13 Thetemperaturevariationoftheenergygap 378 (relatedtotheenergygapatT =0)asafunction ofT/T c Table 14.2 Thecriticaltemperatureandcriticalmagnetic 383 field(atT =4.2K)ofthemoreimportanthard superconductors Figure 14.21 Themaximumcriticaltemperatureagainsttime 385 fortraditionalandoxidesuperconductors Table 14.3 Approximatecriticaltemperatures(K)ofa 386 selectionofhigh-T superconductors c Figure 14.24 Criticalcurrentdensitiesasafunctionof 389 magneticfieldat77K(---)andat4.2K(---)for BSCCO,Nb–TiandNb Sn 3 Figure A1.4 Thebenzeneseries,showingopticalabsorption 419 progressingfromtheuvtothevisible Appendix III Physicalconstants 426 Introduction TillnowmanhasbeenupagainstNature; fromnowonhewillbeupagainsthisownnature. DennisGaborInventingthefuture Itisagoodthingforanuneducatedmantoreadbooksofquotations. W.S.ChurchillRovingcommissioninmyearlylife(1930) Engineeringusedtobeadown-to-earthprofession.TheRomanengineers,who providedcivilizedEuropewithbridgesandroads,didajobcomprehensibleto all.Andthisisstilltrueinmostbranchesofengineeringtoday.Bridge-building has become a sophisticated science, the mathematics of optimum structures is formidable; nevertheless, the basic relationships are not far removed from commonsense.Aheavierloadismorelikelytocauseabridgetocollapse,and theuseofsteelinsteadofwoodwillimprovetheload-carryingcapacity. Solid-state electronic devices are in a different category. In order to understand their behaviour, you need to delve into quantum mechanics. Is quantummechanicsfarremovedfromcommonsense?Yes,forthetimebeing, itis.Weliveinaclassicalworld.Thephenomenawemeeteverydayareclassical phenomena.Thefinedetailsrepresentedbyquantummechanicsareaveraged out; wehavenofirst-handexperienceofthelawsofquantummechanics; we canonlyinfertheexistenceofcertainrelationshipsfromthefinaloutcome.Will itbealwaysthisway?Notnecessarily.Therearequantumphenomenaknownto existonamacroscopicscaleas,forexample,superconductivity,anditisquite likelythatcertainbiologicalprocesseswillbefoundtorepresentmacroscopic quantum phenomena. So, a ten-year-old might be able to give a summary of thelawsofquantummechanics—halfacenturyhence.Forthetimebeingthere isnoeasywaytoquantummechanics; noshortcutsandnobroadhighways. We just have to struggle through. I believe it will be worth the effort. It will beyourfirstopportunitytoglancebehindthescenes,topiercethesurfaceand findthegrandioselogicofahiddenworld. Shouldengineersbeinterestedatallinhiddenmysteries?Isn’tthattheduty and privilege of the physicists? I do not think so. If you want to invent new electronicdevices,youmustbeabletounderstandtheoperationoftheexisting ones. And perhaps you need to more than merely understand the physical mechanism.Youneedtogrowfamiliarwiththeworldofatomsandelectrons, tofeelathomeamongthem,toappreciatetheirhabitsandcharacters. Weshallnotbeabletogoverydeeplyintothesubject.Timeisshort,andfew ofyouwillhavethemathematicalapparatusforthefrontalassault.Soweshall approach the subject in carefully planned steps. First, we shall try to deduce asmuchinformationaspossibleonthebasisoftheclassicalpicture.Then,we shalltalkaboutanumberofphenomenathatareclearlyincontrastwithclassical ideasandintroducequantummechanics,startingwithSchrödinger’sequation. Youwillbecomeacquaintedwiththepropertiesofindividualatomsandwhat happens when they conglomerate and take the form of a solid.You will hear xvi Introduction aboutconductors,insulators,semiconductors,p–njunctions,transistors,lasers, superconductors, and a number of related solid-state devices. Sometimes the statementwillbepurelyqualitativebutinmostcasesweshalltrytogivethe essentialquantitativerelationships. Theselectureswillnotmakeyouanexpertinquantummechanicsnorwill theyenableyoutodesignacomputerthesizeofamatchbox. Theywillgive younomorethanageneralidea. Ifyouelecttospecializeinsolid-statedevicesyouwill,nodoubt,delvemore deeplyintotheintricaciesofthetheoryandintothedetailsofthetechnology.If youshouldworkinarelatedsubjectthen,presumably,youwillkeepaliveyour interest,andyoumayoccasionallyfinditusefultobeabletothinkinquantum- mechanicalterms.Ifyourbranchofengineeringhasnothingtodowithquantum mechanics,wouldyoubeabletoclaimintenyears’timethatyouprofitedfrom thiscourse? Ihopetheanswertothisquestionisyes. Ibelievethatonceyou havebeenexposed(howeversuperficially)toquantum-mechanicalreasoning, itwillleavepermanentmarksonyou.Itwillinfluenceyourideasonthenature of physical laws, on the ultimate accuracy of measurements, and, in general, willsharpenyourcriticalfaculties. Preface to the eighth edition Once more we have taken the opportunity to bring our book up to date. The major change is due to the recent upsurge of interest in artificial materials (metamaterials in the modern jargon), which persuaded us to turn a small appendixintoafull-blownchapter.Inordertosupplythetheoreticalfoundations forthisnewchapterwehaveexpandedourcoverageofplasmaphenomenain Chapter1,andincludedasectioninChapter10onanomalousdispersionwith theaimtointroducebackwardwaves.AnotherexpansionofChapter10isdueto theincreasinginterestinTHzdevices.Wehaveincludedatreatmentofoptical phononswhichhaveresonancesinthatfrequencyrange. Given the five years since the last edition, it is not surprising that we had tomakesomechangesineverychapter,occasionallybecausewethoughtthat theexistingexplanationcouldbeimprovedupon, butmostlybecauseofnew developments.Thechapterthatreceivedthegreatestamountofnewadditions isthatonsemiconductordevices.Wehaveincludedplasmaetching,expanded the treatment of microelectromechanical systems, and pointed out the means by which those further miraculous reductions in minimum feature size have takenplace.Theprogressinspintronicshasbeennotedbytreblingthesizeof therelevantsection.Themainadditiontothelaserchapterisonquantumdot devices;wehavealsoaddedabriefsectiononlasercooling.Themainchange inthechapteronoptoelectronicsisourreassessmentoftoooptimisticprevious predictionsonLEDs.Somemodestadvancesinsuperconductorshavealsobeen noted.Wehaveaddednewentriestoexistingtablesandintroducedthreenew tables:oninfraredresonancesofalkalihalides,onpiezoelectricconstants,and onthecriticaltemperaturesofhigh-T superconductors. c Additionsofwhichwecouldhavethoughtearlierareexplicitreferencesto NobelPrizeswheneverwewriteabouttherelevanttopics.Weourselveswere surprisedthatthenumberofNobellaureatesincludedcametoafigureashigh as50.Perhapsitisnotacoincidencethattheresearchthathashadthegreatest influenceuponthewaywelivehasalsoattractedthebestscientificminds.A listoftheseNobellaureatesisgiveninAppendixII. We wish to thank, first, all those students and lecturers whose comments helpedustopreparethisedition.WearegratefultoRichardSyms, whogave us all the information needed to include mass spectrometers in Section 9.26 andwhokindlyreadthefinaldraft.Wealsowishtoacknowledgethehelpwe receivedfromJohnAllen,KristelFobelets,andPaulStavrinou,allofthemfrom ImperialCollege,London,inthefieldofsemiconductordevicesandlasers. Contents Dataonspecificmaterialsintext xiii Introduction xv 1 The electron as a particle 1.1 Introduction 1 1.2 Theeffectofanelectricfield—conductivityandOhm’slaw 2 1.3 Thehydrodynamicmodelofelectronflow 4 1.4 TheHalleffect 5 1.5 Electromagneticwavesinsolids 6 1.6 Wavesinthepresenceofanappliedmagneticfield:cyclotronresonance 13 1.7 Plasmawaves 16 1.8 Heat 19 Exercises 21 2 The electron as a wave 2.1 Introduction 23 2.2 Theelectronmicroscope 26 2.3 Somepropertiesofwaves 27 2.4 Applicationstoelectrons 29 2.5 Twoanalogies 31 Exercises 33 3 The electron 3.1 Introduction 34 3.2 Schrödinger’sequation 36 3.3 SolutionsofSchrödinger’sequation 37 3.4 Theelectronasawave 38 3.5 Theelectronasaparticle 39 3.6 Theelectronmeetingapotentialbarrier 39 3.7 Twoanalogies 42 3.8 Theelectroninapotentialwell 43 3.9 Thepotentialwellwitharigidwall 45 3.10 Theuncertaintyrelationship 45 3.11 Philosophicalimplications 46 Exercises 48 vi Contents 4 The hydrogen atom and the periodic table 4.1 Thehydrogenatom 51 4.2 Quantumnumbers 56 4.3 ElectronspinandPauli’sexclusionprinciple 57 4.4 Theperiodictable 57 Exercises 61 5 Bonds 5.1 Introduction 64 5.2 Generalmechanicalpropertiesofbonds 65 5.3 Bondtypes 67 5.3.1 Ionicbonds 67 5.3.2 Metallicbonds 68 5.3.3 Thecovalentbond 68 5.3.4 ThevanderWaalsbond 71 5.3.5 Mixedbonds 72 5.3.6 Carbonagain 72 5.4 Feynman’scoupledmodeapproach 73 5.5 Nuclearforces 78 5.6 Thehydrogenmolecule 78 5.7 Ananalogy 79 Exercises 80 6 The free electron theory of metals 6.1 Freeelectrons 81 6.2 ThedensityofstatesandtheFermi–Diracdistribution 82 6.3 Thespecificheatofelectrons 85 6.4 Theworkfunction 86 6.5 Thermionicemission 86 6.6 TheSchottkyeffect 89 6.7 Fieldemission 92 6.8 Thefield-emissionmicroscope 92 6.9 Thephotoelectriceffect 93 6.10 Quartz–halogenlamps 95 6.11 Thejunctionbetweentwometals 95 Exercises 96 7 The band theory of solids 7.1 Introduction 98 7.2 TheKronig–Penneymodel 99 7.3 TheZimanmodel 102 7.4 TheFeynmanmodel 106 7.5 Theeffectivemass 109 7.6 Theeffectivenumberoffreeelectrons 111 Contents vii 7.7 Thenumberofpossiblestatesperband 112 7.8 Metalsandinsulators 114 7.9 Holes 114 7.10 Divalentmetals 116 7.11 Finitetemperatures 117 7.12 Concludingremarks 118 Exercises 119 8 Semiconductors 8.1 Introduction 120 8.2 Intrinsicsemiconductors 120 8.3 Extrinsicsemiconductors 125 8.4 Scattering 129 8.5 Arelationshipbetweenelectronandholedensities 131 8.6 III–VandII–VIcompounds 133 8.7 Non-equilibriumprocesses 137 8.8 Realsemiconductors 138 8.9 Amorphoussemiconductors 140 8.10 Measurementofsemiconductorproperties 140 8.10.1 Mobility 140 8.10.2 Hallcoefficient 143 8.10.3 Effectivemass 143 8.10.4 Energygap 144 8.10.5 Carrierlifetime 148 8.11 Preparationofpureandcontrolled-impuritysingle-crystalsemiconductors 148 8.11.1 Crystalgrowthfromthemelt 148 8.11.2 Zonerefining 149 8.11.3 Floatingzonepurification 150 8.11.4 Epitaxialgrowth 151 8.11.5 Molecularbeamepitaxy 152 8.11.6 Metal–organicchemicalvapourdeposition 153 8.11.7 Hydridevapourphaseepitaxy(HVPE)fornitridedevices 154 Exercises 155 9 Principles of semiconductor devices 9.1 Introduction 157 9.2 Thep–njunctioninequilibrium 157 9.3 Rectification 162 9.4 Injection 164 9.5 Junctioncapacity 166 9.6 Thetransistor 166 9.7 Metal–semiconductorjunctions 172 9.8 Theroleofsurfacestates;realmetal–semiconductorjunctions 174 9.9 Metal–insulator–semiconductorjunctions 176 9.10 Thetunneldiode 179 9.11 Thebackwarddiode 182 9.12 TheZenerdiodeandtheavalanchediode 182 9.12.1 Zenerbreakdown 183 9.12.2 Avalanchebreakdown 183 9.13 Varactordiodes 184

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.