Geophysical Journal International Geophys.J.Int.(2013)193,664–677 doi:10.1093/gji/ggt025 m s ti e n Electrical characterization of the North Anatolian Fault Zone g a m underneath the Marmara Sea, Turkey by ocean bottom o e a magnetotellurics al p d an Tu¨lay Kaya,1,2 Takafumi Kasaya,3 S. Bu¨lent Tank,2,4 Yasuo Ogawa,2 M. Kemal Tunc¸er,5 m Naoto Oshiman,6 Yoshimori Honkura1,2 and Masaki Matsushima1 s ti e 1EarthandPlanetaryScience,TokyoInstituteofTechnology,Tokyo,152-8551,Japan.E-mail:[email protected] n D g 2VolcanicFluidResearchCenter,TokyoInstituteofTechnology,Tokyo,152-8551,Japan o ma 3IFREE,JapanAgencyforMarine-EarthScienceandTechnology,Yokosuka,237-0061,Japan wn ck 45GGeeoopphhyyssiiccss,,IB˙sotagnabziucliUUnniivveerrssiittyy,,I˙I˙ssttaannbbuull,,3344362804,,TTuurrkkeeyy loade m,ro 6DisasterPreventionResearchInstitute,KyotoUniversity,Kyoto,611-0011,Japan d from etis Accepted2013January22.Received2013January21;inoriginalform2011December31 https gn ://a a ca m d o SUMMARY em Ge The first magnetotelluric study in the Marmara Sea, Turkey, was undertaken to resolve the ic.o GJI swtreustcwtuarredoefxttehnesciorunsotfanthdeuNppoertrhmAannatlteoliinanthFeaureltg(ioNnA,Fa)ndintothdeeCt¸eırnmarincıekthareealo.cLaotinogn-poefritohde up.co m oceanbottommagnetotelluricdatawereacquiredatsixsitesalongtwoprofilescrossingthe /g C¸ınarcıkBasin,whereasignificantincreaseinmicroseismicactivitywasobservedfollowing ji/a thedevastating1999˙IzmitandDu¨zceearthquakes.2-Dresistivitymodelsindicatetheexistence rtic le ofaconductoratadepthof∼10kminthemiddleofbothprofilesalongwithadeeperextension -a b intotheuppermantle,implyingthepresenceoffluidinthecrustandpartialmeltingintheupper stra mantle. The northern and southern boundaries of this conductor are interpreted to represent c t/1 the northern and southern branches of the NAF in the Marmara Sea, respectively. These 9 3 conductorshavebeenpreviouslyidentifiedfarthertotheeastalongtheNAF,suggestingthat /2 /6 theelectricalcharacteristicsofthisfaultarecontinuousfromonlandareasintotheMarmara 64 Sea. Microseismic activity in the C¸ınarcık area is located above the conductor documented /63 7 here,andindicatesapossibleseismogenicroleofcrustalfluidspresentintheconductivezone. 5 6 1 Incomparison,resistivezonesalongtheNAFmayactasasperitiesthatcouldeventuallyresult b y inalargeearthquake. g u e s Key words: Magnetotelluric; Marine electromagnetics; Earthquake source observations; t o Fractures and faults; Kinematics of crustal and mantle deformation; Rheology: crust and n 1 9 lithosphere. N o v e m b e r 2 1 INTRODUCTION ofthe1999˙Izmit(Mw7.4)earthquakeextendedintotheMarmara 018 Seahowever,thefaultsegmentbetweenthe1912Ganosand1999 The 1600-km-long North Anatolian Fault (NAF) is an interconti- ˙Izmitfracturezones(Fig.1b)hasnotrupturedsince1766(Tokso¨z nentaldextralstrike-slipfaultthatislocatedbetweenthenorthern etal.1979);thissegmentintheMarmaraSeaisconsideredtobea Eurasian Plate and the southern Anatolian block (Fig. 1a). After ‘seismicgap’thatmaybecapableofgeneratingaM≥7earthquake closure of the Neo-Tethyan Ocean during the Late Mesozoic and (Hubert-Ferrarietal.2000). Cenozoic, collision of the Arabian and Eurasian plates resulted The onland outcrop of the NAF is well known as a result of inrelativewestwardmovementoftheAnatolianPlate(McKenzie previous geological and geophysical studies (Ketin 1948; Barka 1972;Tokso¨zetal.1979).Thiswestwardmovementisconsidered 1992;Yılmazetal.1997;Akyu¨zetal.2002;S¸engo¨retal.2005). tobethemaincauseofmajortectoniceventsalongtheNAF.Dur- Around the Marmara Sea, the NAF crosses three tectonic zones ingthepastcentury,theepicentresofdestructiveearthquakesalong fromnorthtosouth,withthenorthernzoneconsistingofPrecam- theNAFhavemigratedwestwardstartingwiththe1939Erzincan briancrystallinebasementofthe˙Istanbul–ZonguldakZone,repre- earthquake(Ms7.9)andextendingtothe1999˙Izmit(Mw7.4)and sentingasouth-facingLaurasiancontinentalmargin(Yılmazetal. Du¨zce(Mw 7.2)earthquakes(Pınaretal.2010).Thefaultrupture 1997).Thesouthernzone,heretermedtheSakaryaContinent,isa 664 (cid:4)C TheAuthors2013.PublishedbyOxfordUniversityPressonbehalfofTheRoyalAstronomicalSociety. ResistivityoftheNAFunderneaththeMarmaraSea 665 D o w n lo a d e d fro m h ttp Figure1. (a)SimplifiedtectonicmapofTurkey,indicatingthestudyareaasdelineatedbyapinkrectangle.Blacklinesandarrowsindicatefaultlinesand s platemotionsinandaroundTurkey,respectively.(b)LocationmapofOBEMinstruments(yellowsquares)andMT(yellowtriangles)siteswithinandaround ://a c theMarmaraSea.BluelinesshowpreviousMTprofiles(GI,Gu¨rer;HE,Honkuraetal.;OE,Oshimanetal.;KE,Kayaetal.;TE,Tanketal.).Bluedashed a d rectanglesshowthelocationoftheP1andP2profiles.The1912Ganosandthe1999˙IzmitandDu¨zceearthquakerupturesareshownbysolidredlines.Dashed em blacklinesarepossibletracesoftheNAFintheMarmaraSea.Redstarsshowepicentresofthe1999˙IzmitandDu¨zceearthquakes.AP,ArmutluPeninsula;KP, ic KocaeliPeninsula;C¸B,C¸ınarcıkBasin;˙IFR,˙IzmitFaultRupture;DFR,Du¨zceFaultRupture;GFR,GanosFaultRupture;˙II,˙ImralıIsland;˙IB,˙ImralıBasin. .ou p .c o fragmentofcontinentallithospherethatrupturedfromGondwana- theMarmaraSeaandwithpresent-daydeformationcontrolledby m /g landduringtheTriassic(Yılmazetal.1997).TheArmutlu–Almacık a right-lateral strike-slipregime (O¨rgu¨lu¨ 2010). Local earthquake ji/a ZonecontainstheremnantsoftheIntra-Pontidesuturebetweenthe tomography(Karabulutetal.2003;Barıs¸etal.2005)hasimaged rtic ˙Istanbul–ZonguldakZoneandtheSakaryaContinent,andconsists lowP-wavevelocity(Vp)andlowVp/Vs(whereVs=S-waveveloc- le -a ofatectonicmelangeoftwozones(Fig.1).Allofthesetectonic ity)ratiozonesdownto15kmdepthbeneaththeMarmaraSea,in b s zones form constituent parts of the Western Pontides, a series of additiontohighVpandVp/Vsratiozonestowardsthenorthernand tra c east–westtrendingTethyanorogenicbelts;thismeansthatallthree southernedgesoftheC¸B.Althoughpreviousstudieshaveprovided t/1 zoneskeepalmosttheentireevolutionaryrecordoftheTethysides valuableinformationrelatedtotheformandtectonismoftheNAF, 9 3 (Yılmazetal.1997).Theoccurrenceofthe˙IzmitandDu¨zceearth- thewestwardextensionofthisfaultzoneandthedeeperstructure /2 /6 quakesonthenorthernsideofthesetectoniczones(Tanketal.2003, beneaththeMarmaraSearemaincontroversial. 6 4 2005;Kayaetal.2009;Tank2012)indicatesthesignificanceofthe Magnetotellurics(MT)isanelectromagneticmethodthatutilizes /6 3 extensionofthesezonesintotheMarmaraSea,intermsofpossible naturallyoccurringelectricandmagneticfieldstomapthesubsur- 75 6 locationsforthenextdevastatingearthquakealongtheNAF. face electrical resistivity at depths ranging from the near surface 1 b However,thejuxtapositionofthesezonesbeneaththeMarmara totheuppermantle(Vozoff1991).Sincefluidssignificantlylower y g SeaandtherelationshipbetweenthesezonesandtheNAFarecur- theelectricalresistivityofrocks,thistechniqueishighlyusefulin u e rentlypoorlyunderstood.Anumberofmarinestudiesundertaken fault zone investigations (Ritter et al. 2005; Becken et al. 2011). st o afterthe˙Izmitearthquakeenabledtheformulationofvarioustec- Previous MT research undertaken around active fault zones indi- n 1 tonicmodelsfortheMarmaraSea,namelypull-apart(Armijoetal. catesastrongcorrelationbetweenthepresenceoffluidsandseis- 9 N 1999),singledextralstrike-slipfault(LePichonetal.2001),and micactivity(Unsworthetal.2000;Ogawaetal.2001;Ogawa& o v extensional,crustalthinningmodels(Beceletal.2009).Thepull- Honkura2004;Wannamakeretal.2009;Beckenetal.2011),with em apart model suggests that the Marmara Sea is a large pull-apart themajorityoffaultzonesbeingassociatedwithresistor–conductor b e basinthatincludesanumberofsmallerpull-apartbasinsformedin boundaries,anddevastatingearthquakesoccurringinoraroundas- r 2 0 atranstensionaltectonicregime(Armijoetal.2002).Thismodel perityzonesidentifiedbylocalresistiveareasspatiallyassociated 1 8 requiressegmentedfaultingoftheNAFwithintheMarmaraSea. withzonesoflowresistivity(Honkuraetal.2000;Oshimanetal. AccordingtoLePichonetal.(2001),theNAFcrossestheMarmara 2002;Tanketal.2003,2005;Kayaetal.2009). Seaasasingledextralstrike-slipfaultthatfollowsthenorthernes- PreviousonshoreMTstudiesoftheNAFhaveidentifiedconduc- carpmentoftheC¸ınarcıkBasin(C¸B)intheeastandcutstheCentral torsatandbelowadepthof10kmalongtheNAF,withnorthernand Basintothewest.Incomparison,crustalthinningmodelsuggests southernedgesoftheconductorcoincidingwiththesurfacetraces thepresenceofanextensionalregimeintheMarmaraSeathatis oftheNAF.Theoccurrenceofmainshocksandmajoraftershocks dependent on both normal and strike-slip faulting regime (Becel within brittle resistive zones (Tank et al. 2003, 2005; Kaya et al. etal.2009).Crustalthinninghasbeendocumentedinthesouthern 2009),andearthquakeswarmactivityaroundmoreductileconduc- partoftheCentralBasinandisalsoobservedbeneaththe˙Imralıand tiveregions(Tanketal.2003)emphasizestheimportanceoffluids C¸Bs(Laigleetal.2008;Beceletal.2009).Theprecisehypocentral duringseismicevents.Ourobjectivehereistoimagethewestern distributionofmicroseismicactivity(Bulutetal.2009)isconsistent extensionoftheNAFundertheMarmaraSeainanareaknownto withthedown-dippingstructuresimagedbyCartonetal.(2007)in beaseismicgap. 666 T.Kayaetal. 103, 104 and 105 together with land site 106. The short period 2 DATA range (<∼250 s) at sites 101, 102 and 103 contains clear phase Fig.1bshowsthelocationsofmagnetotelluricstationsusedduring rollingoutofquadrant(PROQ;Chouteau&Tournerie2000),with thisstudy.Weused12landsites(yellowtriangles)andsixocean nosuchphaseresponsesrecordedatoceanbottomsite105.These bottom sites (yellow squares) in the eastern part of the Marmara differences can be explained by changes in bathymetry, with site Sea,anddefinedtwoprofiles(P1andP2)forlater2-Dmodelling, 105locatedonashallow(50-mwaterdepth),flat-lyingsectionof asidentifiedbydashedbluerectanglesinthefigure.TheNE–SW seafloor,whereastheotheroceanbottomsitesarelocatednearsharp orientedprofile(P1)includesfiveoceanbottomsites,fourofwhich changesinbathymetry.Electriccurrentsintheocean,perpendicu- arelocatedintheImralıandC¸Bs,togetherwithasinglelandsite lartobathymetricgradients,cangeneratesecondarymagneticfields inthesouthernMarmararegion.ThesecondN–Sorientedprofile thatarecomparabletoorevenstrongerthantheprimarymagnetic (P2)iscomposedoftwooceanbottomsitesand11landsites.The field(Constableetal.2009;Worzewskietal.2010).Giventhis,the northernmostoceanbottomsiteiscommoninbothprofiles. modelling discussed here did not incorporate short-period ocean Ocean bottom magnetotelluric sites deployed during this study bottomdatathatwereaffectedbybathymetry-derivedPROQ. used ocean bottom electromagnetic instruments (OBEM) devel- Thedimensionalityofthedatasetneedstobedefinedpriorto2-D D o opedbyKasaya&Goto(2009).Wemeasuredtwohorizontalelec- or3-Dmodelling.Here,weusethetensor-decompositioncodeof w n tricfieldsusing4mdipoleswithAg–AgClelectrodes,andthree- McNeice&Jones(2001),anexpandedversionoftheGroom–Bailey lo a componentmagneticfieldsusingflux-gatesensors.Thedatawere decomposition(Groom&Bailey1989)thatincorporatesmultiple de d awceqrueisreudccweistshfualnly8rHeczosvaemrepdlinafgterartdeaftoaraacbqouuits3itiwoene.kTsimaned-saelrliOesBdEaMta spietreisodan-ddeppeernidoednst,wdeitchomstpriokseitdioirnecptaioranmseintefersrrsehdofwronminthFeigs.it4e.-Tanhde from acquiredduringdeploymentwereanalysedusingarobustprocess- optimumstrikedirectionsinthe100–11000speriodbandswere h ingcode(Chaveetal.1987)andusableMTtransferfunctionswere N90◦EandN62◦EforprofilesP1andP2,respectively.Thesees- ttps obtainedforaperiodrangeof10–11000s,asshowninFigs2and3. timated 2-D strike directions were used to decompose the profile ://a c Landsitedeploymentsduringthisstudyusedbroad-bandPhoenix data,enablingthedefinitionofTEandTMmodes,whichrepresent ad MTU5MTinstrumentsthatcoveraperiodrangebetween0.003and flows of electric current along and perpendicular to these strike em 2000 s. However, in order to match the ocean bottom MT period directions. ic.o range,datafromthelandMTsiteswereusedatperiods>10sas up shown in Figs 2 and 3. One land site at the southwestern end of .co m profileP1wasanewdeployment,withtheother11landsiteson /g pwriothfilteheP2nefwromocTeaannkboetttaolm.(d2a0t0a3a)c.qTuhieresedddautrainwgetrheisjositnutdlyy.inverted 3 MODELLING ji/artic Figs2and3showthedataobtainedduringthisstudyassounding Weinvertedthedataby2-Dmodellingusingtheappropriatestrike le -a curves,incorporatingbothdiagonalandoff-diagonalcomponents. directionsdefinedwithintheprecedingsection.Althoughthestrike b s Fig.2showsobserveddatasoundingcurvesacrossprofileP1,com- directionsalongprofilesP1andP2differbysome28◦,weassumed tra c prising,fromnortheasttosouthwest,oceanbottomsites101,102, aquasi-2-Dstructureforthestudyarea. t/1 9 3 /2 /6 6 4 /6 3 7 5 6 1 b y g u e s t o n 1 9 N o v e m b e r 2 0 1 8 Figure2. Observedapparentresistivity(Logρa)andphase((cid:3))valuesversusperiod(LogT)withtheirerrorbarsestimatedforXX(∗),XY(-·),YX(-◦)and YY((cid:2))componentsofthesitesonP1.XandYrepresentthenorthandeastincoordinatesystem. ResistivityoftheNAFunderneaththeMarmaraSea 667 D o w n lo a d e d fro m h ttp s ://a c a d e m Figure3. Observedapparentresistivity(Logρa)andphase((cid:3))valuesversusperiod(LogT)withtheirerrorbarsestimatedforXX(∗),XY(-·),YX(-◦)andYY ic.o ((cid:2))componentsofthesitesonP2.XandYrepresentthenorthandeastincoordinatesystem. up .c o m /g ji/a rtic le -a b s tra c t/1 9 3 /2 /6 6 4 /6 3 7 5 6 1 b y g u e s t o n Figure4. Site-dependent(a),frequency-dependent(b)andsite-andfrequency-independent(c)forthewholefrequencyrangeof100–11000sstrikesofP1 1 andP2. 9 N o v e m It is known that TM mode 2-D modelling over a 3-D anomaly strongelectricalcurrentintheseaorientedparalleltothecoastline, b e can robustly recover the resistivity section under the profile which can generate a large secondary horizontal magnetic field r 2 0 (Wannamakeretal.1984).WetestedsuchsituationforanOBEM componentwiththeoppositepolaritytotheprimarymagneticfield 1 8 datasetbeneaththeMarmaraSea.Fig.5showsasimplified2-D (Constableetal.2009;Worzewskietal.2010).Thedifferencein and3-DresistivitymodelthatmimicstheMarmaraSea;thismodel TEandthecorresponding3-Dresponseisevidentforbothocean hasauniformearthof100(cid:4)mandabox-shapedoceanof0.3(cid:4)m bottomandlandsites;incomparison,theTMandthecorrespond- withdimensions180km(E–W)×60km(N–S)×1.2km(depth). ing3-Dresponsesareingoodagreement.TheTMresponsesfrom Fig.6comparesthe2-D(Ogawa&Uchida1996)andcorrespond- the modelled sea are dominated by a galvanic charge build-up at ing3-D(Mackieetal.1994)responsesalongtheprofile.Thetwo theverticalocean–landinterface,providingagoodapproximation, northernstations(402and404)areonland,withthefollowingtwo even for 3-D structures. Given this, we decided to use TM mode oceanbottomstations(406and408)closetothecoastintheMar- responsesthat,asshownhere,arerobustevenin3-Dsituations. mara Sea, respectively. Solid lines denote 2-D TE (red) and TM We used a modified version of the code of Ogawa & Uchida (blue)responses,withasterisksdenotingthecorresponding3-Dre- (1996) for 2-D inversion, with modifications detailed below. The sponses.ItisinterestingtonotethatbothTEandthecorresponding Ogawa and Uchida code used Rodi’s (1976) algorithm (MOM’s 3-DresponseshaveshorterperiodPROQ,primarilycausedbythe method)tocalculatespatialderivativesontheground.Thismethod 668 T.Kayaetal. Laplacianoperator.Themodifiedversionhasa|C(m−m )|2norm, 0 wherem isavectorcomprisingthelogresistivityoftheapriori o model.Thestaticshiftwasusedasaconstraintininversionasin theoriginalversionofOgawa&Uchida(1996)code. Westartedwiththeinitialmodelconstructionasdescribedhere. Initially, sea water was assigned a fixed value of 0.3(cid:4)m by ref- erencing the bathymetric data. It is also important to include a sedimentary layer as a priori information, as we do not have the short-perioddatarequiredtoconstraintheresistivityofshallowar- easimmediatelyunderindividualoceanbottomsites.Duringthis study,weusedthedistributionofsedimentsidentifiedusingseis- mic reflection data (Carton et al. 2007), with Fig. 7 showing the shallowresistivitydistributionthatwasincorporatedintothemodel as a constraint. During modelling, a thick sedimentary layer was D o assigned a fixed resistivity of 10(cid:4)m, extending to a depth of 4– w n 5 km below the C¸B (Okay et al. 2000; Carton et al. 2007), with lo a theinitialmodelhavingauniformbelow-sedimentresistivity.Error de floorvaluesof10percentand3◦wereusedforapparentresistivity d fro andphasevalues,respectively,withtheinitialmodelalsousedas m Figure5. Initialmodelsfor3-Dand2-Dforwardmodellingtests.Abox anapriorimodel. h type(depth:1.2km,width:60km)bathymetrywith0.3(cid:4)mresistivityis ttp We formulated three initial models that used uniform below- s setintothe100(cid:4)mhalf-spaceresistivity.Whitesquaresshowthelocation sedimentresistivitiesof10,100and1000(cid:4)m,withthefinalmod- ://a ofsites(402,404,406and408fromnorthtosouth)comparedinFig.6. c elsdependentontheinitial(apriori)models.Ofthethreeinitial ad models,the100(cid:4)mmodelshowedthebestfitwiththedata,with em isusedformultiplelevelsofseafloorsinthisstudy.Inaddition,we rootmeansquaremisfitvaluesof2.1and1.9forprofilesP1andP2, ic.o modified the definition of roughness norm to include an a priori respectively. up model in order to stabilize the inversion. The original roughness The identified 2-D electrical resistivity structures in the east- .co norm was |Cm|2, where m is a model vector representing the log ern Marmara Sea along profiles P1 and P2 are shown in m/g resistivity of the model, and C is the roughening matrix of the Figs 8(a) and (b). The electrical resistivity models have similar ji/a rtic le -a b s tra c t/1 9 3 /2 /6 6 4 /6 3 7 5 6 1 b y g u e s t o n 1 9 N o v e m b e r 2 0 1 8 Figure6. Apparentresistivity(left-handcolumn)andphase(right-handcolumn)responsesof3-D(asterisk)and2-D(solidline)forwardmodellingaregiven forthenortheast(blue)mode,whichmeanselectricfieldinthenorthandmagneticfieldintheeastdirectionisused,andeast–north(red)mode,theopposite casewiththenortheastmode.Sincethemodelissymmetric,onlysamplesites(402,404,406and408)fromnorth(toppanel)tothecentre(bottompanel)of theprofileareshown.RobustnessoftheTMmodeisclearespeciallyforthelongerperiods. ResistivityoftheNAFunderneaththeMarmaraSea 669 D o w n lo a Figure7. InitialmodelsofP1(a)andP2(b)for2-Dinversionareshownupto6km.Whiterectanglesrepresentthesitelocations.Bathymetrywasfixedto d e 0.3(cid:4)mwhileunderlyingsedimentwasfixedto10(cid:4)m.Theresistivityofthehalf-spacewassetas100(cid:4)m. d fro resistivitydistributionsbeneathbothprofiles,withashallowcon- m ductor(C1)startingafewkilometresbeneaththesedimentarylayer http andmergingwithadeeperconductor(C2)inthecentralpartofthe s profiles. Another shallow conductor (C3) in P1, located between ://a c tworesistivelayers,isalsopresentbeneaththeArmutluPeninsula ad e inP2.Bothmodelscontaindeepresistorsthathorizontallybound m thedeepC2conductorinthenorth(R1)andinthesouth(R2).The ic.o u shallowresistivelayerunderlainbyaconductiveanomaly(C3)be- p neaththeArmutluPeninsulawasalsoobservedinthepreviousMT .co m studybyTanketal.(2003)inwhichthestructuresdowntoalmost /g 20kmwereinvestigated. ji/a Acomparisonofobservedandcalculatedresponsesisshownin rtic Figs 9 and 10, for profiles P1 and P2, respectively. These curves le-a b s tra c t/1 9 3 /2 /6 6 4 /6 3 7 5 6 1 b y g u e s t o n 1 9 N o v e m b e r 2 0 1 8 Figure8. Final2-Delectricalresistivitymodelsobtainedfrominversionof TMmodedataforP1(a)andP2(b)profiles.Invertedtrianglesshowsite locations,redarrowsindicatepossiblebranchesoftheNAF,whitecircles represent microseismic activity from 2007 to 2010 (Bulut, GFZ) in and aroundtheC¸B.Blacklinebeneaththebasinsindicatesdepthofthefixed sedimentinmodelling.Thewhiteandgreydashedlinesindicatetheupper Figure9. Fittingcurvesoftheobserved(plussign)andcalculated(straight crust–lowercrustboundary(brittle-ductiletransitionzone)andMohodepth line)dataofP1aredemonstratedforsitesfromnorth(toppanel)tosouth (Laigleetal.2008;Beceletal.2010). (bottompanel). 670 T.Kayaetal. Wealsotestedthemainfeaturesidentifiedwithinthefinalmodels byforwardmodellingusingresistivitychanges.Figs13and14show sensitivitytestsforthemajoranomalies[R1(a),C1(b),C2(c)and R2(d)]beneathprofilesP1andP2,respectively.Thesetestsconfirm thatthemodellingaccuratelyrepresentsthedata.Accordingtothese tests,bothconductiveanomaliesC1andC2inbothprofileshave resistivityvaluesthatrangebetween1and10(cid:4)m. 4 DISCUSSION Theresultsofthisstudyprovidethefirstelectricalimagesofstruc- turesbetweentheseafloorandtheuppermantlebeneaththeMar- mara Sea. The tectonic and geological implications of the major D anomaliesidentifiedabovearediscussedinthisnextsection. o w n lo a d e 4.1 Implicationsfortectonicconfigurations d fro ThefinalmodelsgiveninFigs8(a)and(b)showthreedomains;one m h isconsistingoftwocentralsubverticalconductors(C1,C2),andoth- ttp eisrscoinncsliusdteinntgwthitehstuhrerokunnodwinngtreecstiosntoicrsp(rRov1i,nRce2s).inThthisedsitsutdriybuatrieoan. s://ac a Thenorthernresistor(R1)andtheoverlying10-km-thickconductor d e which belong to the ˙Istanbul–Zonguldak Zone represent Precam- m ic brianbedrockandOrdoviciantoCarboniferoussediments(Yılmaz .o u etal.1997).Thesouthernresistor(R2)correspondstotheSakarya p .c and Armutlu zones, and represents Paleozoic metamorphic rocks o m oftheSakaryaContinent.Thezonewiththesubverticalconductive /g anomaly corresponds to the collision zone between the ˙Istanbul– ji/a ZonguldakZoneandtheSakaryaContinent. rtic le -a b s 4.2 Sourcesofconductiveanomalies trac t/1 9 4.2.1 Uppercrustalconductor(C1) 3/2 /6 Anuppercrustalshallow conductive anomaly, herenamed C1,is 64 presentinthemiddleofbothprofileswitharesistivityof1–10(cid:4)m. /6 3 7 Experimental data indicate that electrical resistivity of aqueous 5 6 crustalfluidsisintherangeof0.01–0.1(cid:4)m(Nesbitt1993);meaning 1 b that,usingtheHashin–Shtrikmanupperbound(Hashin&Shtrik- y g man1962),abulkresistivityof1–10(cid:4)mcanbeexplainedbyporos- u e s ityof0.15–15.0percent.Inaddition,aseismictomographystudy t o detected low Vp and Vp/Vs ratio zones at depths of 5–15 km be- n 1 neaththeC¸B(Barıs¸etal.2005).Thesezoneswerealsointerpreted 9 N asareasofhigh-fluidcontent.Thedistributionofmicroseismicepi- o v centres around the C¸B is shown in Fig. 1(b). In Fig. 8, projected em hypocentresofearthquakesthatwereatadistanceof±10kmfrom be theprofilesP1andP2aregiven.Thisprojectionindicatesagood r 2 0 correlationbetweenresistivityandseismicity,withthemajorityof 1 8 themicroseismicactivityclusteringoutsidetherimsoftheC1con- ductorbeneaththeprofileP1,andclosetotheC1andC3conductors beneaththeprofileP2(Fig.8). Thisconfigurationcanbeexplainedbytheexistenceofaninter- Figure10. Fittingcurvesoftheobserved(plussign)andcalculated(straight connectedfluidnetworkandtheassociatedtriggeringofearthquakes line)dataofP2aredemonstratedforsitesfromnorth(toppanel)tosouth by the migration of fluids into the surrounding crust. Migration (bottompanel). offluidintoless-permeablecrustcanreducetheeffectivenormal stressandtriggerearthquakes(Sibsonetal.1988;Cox1999;Sib- indicate a generally good recovery of the observed data. The ap- son2000).Suchseismicity–resistivityrelationshipsareknownina parent resistivity and phase responses are compared in pseudo- numberofseismicallyactiveregions(Ogawaetal.2001;Ogawa& sectionsinFigs11and12,confirmingtherecoveryoftheobserved Honkura2004;Wannamakeretal.2004,2009;Jiraceketal.2007; data. Mitsuhataetal.2001). ResistivityoftheNAFunderneaththeMarmaraSea 671 D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra FTiMgumreod1e1.. Calculated(toppanel)andobserved(bottompanel)apparentresistivity(left-handpanel)andphase(right-handpanel)pseudo-sectionsofP1for ct/19 3 /2 /6 gionswithhighheatflow(100–140mWm−2)intheMarmaraSea 6 4.2.2 Lowercrusttoupper-mantleconductorC2 (˙Ilkıs¸ık 1995; Tezcan 1995) and mantle-derived He (>50percent 4/6 3 The research discussed here identified a vertical conductor, here of total He concentration) along the west to central segment of 75 6 namedC2,runsfromthelowercrusttotheuppermantle.Thiscon- the NAF (Gu¨lec¸ et al. 2002) may indicate the presence of zones 1 b ductormaybeassociatedwiththepresenceofhigh-salinityfluids withsignificantextensionandhightemperaturethatmayberelated y g and/or the partial melting of mantle material due to the astheno- totheupwellingofasthenosphericmaterial.Dilek&Altunkaynak u e sphericupwelling.Thebulkresistivity(1–10(cid:4)m)oftheC2zone (2007,2009)suggestedpartialmeltingasasourceoftheEocene st o indicateseither0.15–15.0percentfluidor1.5–39volpercentmelt volcanism in and around the Marmara Sea; as well, Altunkaynak n 1 fractionbytheHashin–Shtrikmanupperbound,usingpuremeltand (2007) showed that the geochemistry of the Marmara granitoids 9 N aqueousfluidresistivitiesof0.1–0.3and0.01–0.1(cid:4)m,respectively wasindicativeofsignificantcrustalcontaminationduringmagma o v (Presnalletal.1972;Waff1974;Tyburczy&Waff1983;Nesbitt ascent. em 1993;Yoshinoetal.2010;Pommier&LeTrong2011;Evans2012). Thesedatasuggestthatfluidsaremigratingfromadeepductile be Thepresenceofpartialmeltissupportedbytheupwellingofas- region to the upper brittle zone beneath the Marmara Sea. If this r 2 0 thenosphericmaterialbyothermagnetotelluricstudiesdocumented conductordoesrepresentpartialmelting,onepossibilityisthatthe 1 8 for the onland extent of the NAF (Gu¨rer 1996; Tank et al. 2005; hightemperatures,partialmeltingandfluid-releasingdehydration Tu¨rkog˘lu et al. 2008). In addition, seismological studies indicate reactionsdocumentedinthisareamayberelatedtoasthenospheric thatthecrustalthicknessaroundtheMarmaraSeavariesbetween upwellingcausedbysubductionofNeo-Tethyanoceaniclithosphere 29 and 32 km (Gu¨rbu¨z et al. 2003; Zor et al. 2006). Within the beneaththeSakaryaContinent,whichwasfollowedbyslabbreak- Marmara Sea, it is almost 31 km (grey dashed line in Fig. 8), off. except areas to the south of the Central Basin and beneath the TheformofthedeepC2conductorchangesbeneathbothprofiles, C¸ınarcık and ˙Imralı basins. Here, the crustal thickness decreases withtheconductorappearingnarrower,butwithahigherresistivity, to 26 km due to the thinning of the upper crust associated with beneathprofileP2thanbeneathprofileP1.Onepossiblereasonfor lithospheric-scaleextension(Laigleetal.2008;Beceletal.2009). this is that profile P2 crosses the easternmost part of the C¸B and In addition to that, Straub & Kahle (1994) documented a NE– the Armutlu Peninsula, and does not intersect structures beneath SWorientedextensionalregimealongthenorthernbranchofthe the˙ImralıBasinwhichisassociatedwithhighlyconductiveaque- NAF, in the present study area. Furthermore, the presence of re- ousfluidsand/ormoltencrustalandmantlematerial.Thebasement 672 T.Kayaetal. D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 9 3 /2 /6 6 4 Figure12. Calculated(toppanel)andobserved(bottompanel)apparentresistivity(left-handpanel)andphase(right-handpanel)pseudo-sectionsofP2for /6 3 TMmode. 7 5 6 1 b rocks of the Armutlu Peninsula consist of a succession of high- y 4.3 RelationshipwiththeNAF g and low-grade metamorphics overlain by sedimentary rocks—a u e similar lithological sequence to that found within the ˙Istanbul– 4.3.1 ContinuoustectonicfeaturesalongtheNAF st o ZonguldakunitsandSakaryaContinent(YılmazandTu¨ysu¨z1991; n 1 Yılmazetal.1995).ThisindicatesthatprofileP1includesstruc- We have documented significant similarities between the features 9 N turesbeneathboththe˙ImralıandC¸Bs,leadingtoawiderconductive resolvedinMTmodelsobtainedfortheMarmaraSeaarea,andin o v anomalythanobservedintheprofileP2. modelsfortheregiontotheeastofthestudyareaalongtheNAF. em Deepsubverticalconductorsbeneathlargestrike-slipfaultshave TheMarmaraSeaprofiles,P1andP2,aredominatedbyaconductor be also been recently imaged along the NAF (Tank et al. 2005), the thatishorizontallyboundedbyresistivezonestothenorthandsouth r 2 0 AlpineFaultinNewZealand(Wannamakeretal.2002)andtheSan (Fig.15).ThisstructurewasalsoobservedinpreviousonshoreMT 1 8 AndreasFault(Beckenetal.2011),suggestingthattheseconduc- studiesintheeasternpartofthepresentstudyareaalongtheNAF torsmaybeacommonfeatureinareascontainingmajorstrike-slip (Gu¨rer1996;Honkuraetal.2000;Oshimanetal.2002;Tanketal. faults. The existence of this type of conductor extending to 50- 2005;Kayaetal.2009;Kaya2010).Thedistributionofgeothermal km depth below the NAF near ˙Izmit was documented by Tank fieldsfromeasttowestalongtheNAF(Aydınetal.2005)isalso etal.(2005),whointerpretedthedeeperpartoftheconductorto consistentwiththelocationofthedeepconductors,suggestingthat be a region of partial melt, and the shallow part (just under the similar structures may also be present along the western part of brittle–ductiletransition)tobearegioncontainingsalinefluids.A the NAF in the Marmara Sea area. In terms of extending geo- similar interpretation, combining regions of fluid and underlying electrical structures from the eastern Marmara region to the C¸B, partialmelt,wasalsoprovidedinTibetbyLietal.(2003).Wan- wesuggestthat,fromnorthtosouth,theIstanbul–Zonguldakand namakeretal.(2002)andBeckenetal.(2011),ontheotherhand, Armutlu–AlmacikzonesandtheSakaryaContinenttectoniczones showedthatdeepverticalconductorisfluidsourcesupplyingcrustal arecontinuousfromthepreviouslydocumentedonlandareastothe fluid. areabeneaththeMarmaraSea. ResistivityoftheNAFunderneaththeMarmaraSea 673 D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le Figure13. ResolutiontestsfortheanomaliesR1(a),C1(b),C2(c)andR2(d)ofP1.Theresponsesatthestationsmostlysensitivetotheanomaliesare -a b srehsopwenct.ivBelluye.Pcloulsousrigrnep(+re)sednetmsothnestmraotedselthreesopbosnesrevewdhdilaetar.eIdn,yalelllaonwo,mgarleyentesatnsd,bbelsatckfitciosloobutrasinsheodwbyremspoodneslersestpootnhsee.anomalywith1,10,100and1000(cid:4)m, strac t/1 9 4.3.2 BranchesoftheNAF improveourknowledgeoftheextensionofthesestructuresfarther 3/2 tothewest,moreOBEMinstrumentdatafromoffshoreareastothe /6 Previous MT studies identified a correlation between resistor– 6 conductorboundariesandonlandbranchesoftheNAF(Tanketal. westarerequired. 4/6 2003,2005;Kayaetal.2009).Inthisrespect,subverticalresistor– 199R9es˙IizsmtivitityansdtrDucu¨tzucreesedaretfihnqeudakaersoushnodwtehdetrhuapttuthreezmoanienssohfocthkes 3756 conductorboundariesbeneaththeMarmaraSeamayalsoindicate 1 occurred within high-resistivity zones that were bounded to the b thelocationofNAFbranches,suggestingthatthenorthernresistor– y southbylower-resistivityzones(Tanketal.2003;Kayaetal.2009). g conductorboundaryinthestudyarearepresentsanorthernbranch u of the NAF (NAF1) that extends west from the ˙Izmit earthquake TsthruisctsuurgesgebsetnsetahtahttahleonMgatrhmeaNraASFe,acaonmdptahreiseopniscebnettrweseeonftrheesi1s9ti9v9e est o rupturezonetotheMarmaraSea.Fig.15showsbothextensionof n earthquakes may be crucial in relating high-resistivity zones to 1 theNAFbranchesandresistivitydistributionalongtheNAFfrom 9 possibleasperityzonesthatmayinitiatealargedevastatingevent N Du¨zceregiontotheMarmaraSea. o withintheMarmaraSea,whichisanareaofincreasedseismicity v Thesecondboundary,locatedatthesouthernescarpmentofthe after the ˙Izmit earthquake. This indicates that more MT research em C¸BbeneathprofileP2,isalsoobservedbeneathprofileP1,suggest- b ingthatthisminorbranchoftheNAFextendsfarthertothewest. needstobeundertakenontheresistivezoneatsitesfarthertothe er 2 northintheC¸B. 0 TheboundaryatthesouthernpartoftheC2zone,beneathprofile 1 8 P1,impliestheexistenceofanotherbranchoftheNAF,asshown byadashedlineinFigs1and15.Thishasoftenbeenreferredtoas 4.3.3 TectonicmodelsundertheMarmaraSea themiddlebranchthoughitisonestrandofthesouthernbranchof theNAF(Yilmazetal.2010).HerewerefertothisbranchasNAF2 Thesingledextralstrike-slipfaultmodelintheMarmaraSeasug- whichmeanstheextensionofthesouthernbranchoftheNAFin gestswestwardextensionofthenorthernbranchoftheNAFalong theMarmaraSea(Fig.15).Extensionofthesesubverticalresistor– thenorthernescarpmentoftheC¸B(LePichonetal.2001)corre- conductorboundariestoatleast50kmdepthsuggestsdeeplyrooted spondingtothenorthernresistor–conductorboundaryinourfinal NAFthatisalsosuppliedbyateleseismictomographystudyindi- models.Inordertobeabletosupportordeclinecontinuationofa cating a P-wave velocity contrast, represented by relatively high singlefaultinthismodel,moreOBEMinstrumentdatafromoff- P-wave velocity perturbations (δVp)tothe northoftheNAFand shoreareastothewestareneededtofigureoutifthereexistseither low P-wave velocity perturbations to the south, down to a depth many or a single resistivity boundary corresponding to the fault of 150 km in the Marmara Sea (Biryol et al. 2011). In order to branch.
Description: