Electric vehicle diffusion in the Portuguese automobile market Marta Isabel Marques Ramos Braz da Silva Disserta¸ca˜o para obtenc¸˜ao do Grau de Mestre em Engenharia do Ambiente Ju´ri Presidente: Professor Doutor Jos´e Manuel de Saldanha Gon¸calves Matos Orientador: Professor Doutor Filipe Manuel Mercier Vila¸ca e Moura Vogal: Professor Doutor Francisco Manuel Freire Cardoso Ferreira Maio 2012 Acknowledgements First, I would like to thank my advisor Filipe Moura for giving me this opportunity and guiding me through this work. His help when nothing seemed to work was essential. I would also like to thank Luis Mart´ınez, for the help in solving all sorts of software problems along the way, and Miguel Duarte and Manuel Brando. I want to express my gratitude to Gonc¸alo Santos for helping me in the adaptation of the SCUSSE survey in order to develop the Stated Preferences survey. I would also like to thank all my friends that made this long journey more enjoyable. Among many others I would like to give my special thanks to Ana Cipriano, Inˆes Fernandes, F´abio Grego, Leonor Pratt, Jos´e Carlos Salgado, Celso Gonc¸alves and, especially, to Jo˜ao Sobrinho. Most importantly, I would like to thank my family, my parents and my sister, for their patience and support during these troubled times. i Abstract Measures to decrease carbon dioxide emissions have been put into action not only to meet the Kyoto Protocol targets but also to improve the air quality and decrease energy dependency. The present research focuses on the transportation sector, and more specifically, on Electric Vehicles as part of the Portuguese policy to potentially turn the transportation system more energy and environ- mentally efficient. The main goal is to estimate the fleet wide energy consumption and corresponding CO emissions up to 2030 and examine to what extent the introduction of EVs will reduce those indi- 2 cators. With that in mind, a system dynamics model of the Portuguese car fleet was modeled trying to capture the inter-relationships between the main drivers of the system but also by simulating the car owners’ behaviour when selecting technologies, in this case, cars. It was found that EVs can reach up to 7.6% of the total vehicle fleet by 2030 whereas hybrid vehicles could reach up to almost 60%. A decrease in energy intensity (expressed in toe/103AC) and carbon intensity (in ton CO /toe) of at least 51% and 5%, respectively, compared to the 1990’s levels, can be 2 achieved. These results show that, despite the higher concern for the environment, people will hardly shift to EVs. Hybrid vehicles will emerge as the best solution to decrease fuel consumption as people struggle to lower their monthly fuel budget while maintaining their current travel demand. Key-words: Electric vehicle, technology diffusion, car fleet, discrete choice model, scenario analysis, Portugal iii Resumo V´arias medidas para diminuir as emiss˜oes de di´oxido de carbono foram postas em ac¸c˜ao de modo a cumprir os objectivos do Protocolo de Quioto, melhorar a qualidade do ar e diminuir a dependˆencia energ´etica. Opresentetrabalhoest´afocadonosectordostransportes,maisespecificamentenosVe´ıculosEl´ectricos como parte da pol´ıtica portuguesa para potencialmente tornar o sistema de transportes mais eficiente tanto energicamente como ambientalmente. O objectivo principal ´e a estima¸c˜ao do consumo de energia total da frota e as correspondentes emiss˜oes de CO at´e 2030 e examinar em que medida a introdu¸c˜ao 2 de VEs vai reduzir estes indicadores. Para tal, um modelo de dinˆamica de sistemas da frota portuguesa de ve´ıculos foi desenvolvido tentando capturar as inter-rela¸c˜oes entre os principais motores do sistema simulandotamb´emocomportamentodospropriet´ariosdeve´ıculosquandoseleccionamtecnologias,neste caso, carros. Verificou-se que os VEs podem alcanc¸ar at´e 7.6% da frota total de ve´ıculos em 2030 enquanto que os ve´ıculos h´ıbridos podem alcanc¸ar at´e cerca de 60%. Decr´escimos na intensidade energ´etica (expressa em tep/103AC) e na intensidade carb´onica (em ton CO /tep) de pelo menos 51% e 5%, respectivamente, 2 em compara¸c˜ao com os n´ıveis de 1990, podem ser alcan¸cados. Estes resultados mostram que, apesar da maior preocupac¸˜ao com o ambiente, a mudanc¸a para os VEs ser´a pouco expressiva. Os ve´ıculos h´ıbridos ir˜ao surgir como a melhor soluc¸˜ao para diminuir o consumo de combust´ıvel quando a popula¸c˜ao tenta diminuir o seu or¸camento mensal de combust´ıvel mas mant´em o n´ıvel de mobilidade. Palavras-chave: Ve´ıculo el´etrico, difus˜ao de tecnologia, frota de ve´ıculos, modelo de escolha discreta, an´alise de cen´arios, Portugal iv Table of Contents 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Methodological Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Literature Review 9 2.1 Vehicle Fleet Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Static disaggregate car type choice model . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Transportation Policies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Policy Analysis Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Policies and Measures 17 3.1 Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 National Climate Change Program . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.2 National Energy Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.3 National Energy Efficiency Action Plan . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1 Taxation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1.1 Registration or acquisition tax . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1.2 Ownership taxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.2 Biodiesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.3 Early Retirement Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.4 Electric Mobility in Portugal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.4.1 Zero Emission Mobility Partnership . . . . . . . . . . . . . . . . . . . . . 24 3.2.4.2 MOBI.E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Model Description 25 4.1 Model overview - the causal loop diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.1 Vehicle Stock Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.1.1 Market Share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.2 Travel Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.3 Kilometric Cost Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.3.1 Variable Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.3.2 Fixed Costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.4 Emissions Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3 Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5 Results and Discussion 45 5.1 Reference scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1.1 Base case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1.2 Controlled hybrid market share case . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2 Transportation policy instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2.1 Tax on petroleum products (TPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2.2 Vehicle purchase tax (VPT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 v 5.2.3 Vehicle circulation tax (VCT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2.4 Mobility electricity tax (MET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.1 Clean but not sparkling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3.1.1 Implementation of Transportation Policy Instruments . . . . . . . . . . . 61 5.3.2 Dynamic but careless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3.2.1 Implementation of Transportation Policy Instruments . . . . . . . . . . . 65 5.3.3 Bright skies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3.3.1 Implementation of Transportation Policy Instruments . . . . . . . . . . . 68 5.3.3.2 Acceleration of fast-charging points for EVs. . . . . . . . . . . . . . . . . 70 5.3.3.3 Urban sprawl control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6 Conclusions 75 6.1 Research synopsis and highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.2 Limitations and leads for future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 References 78 A Online survey 85 B Survey attributes’ levels 89 C Parameters for MS calculation 91 vi List of Figures 1.1 Anthropogenic GHG emissions in the world . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 GHG emissions in Portugal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 GHG emissions in Portugal by sector in 2010 . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Transport emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 IEA explanatory scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.1 Overall causal loop diagram of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Feedback loops of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 Causal loop diagram divided into the building modules . . . . . . . . . . . . . . . . . . . . 27 4.4 Evolution of charging time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.5 Evolution of number of makes and models for hybrid vehicles . . . . . . . . . . . . . . . . 33 4.6 Estimated number of LPG vehicles over time . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.7 Relationship between GDP per capita and total travel demand . . . . . . . . . . . . . . . 36 4.8 Modal split for passenger cars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.9 Change in fuel efficiency over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.10 Distribution of kilometres per driving mode . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.11 Total vehicle fleet, vehicle sales and vehicle scrappage - Model validation . . . . . . . . . . 42 4.12 Vehicle fleet per age - Model validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.13 Passenger car travel demand - Model validation . . . . . . . . . . . . . . . . . . . . . . . . 43 4.14 Fuel consumption - Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.15 CO emissions - Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2 5.1 EI and CI evolution - Reference scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 GDP, fuel consumption and CO emissions - Reference scenario . . . . . . . . . . . . . . . 46 2 5.3 Fleet structure - Reference scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.4 Hybrids market shares - Controlled hybrid market share case . . . . . . . . . . . . . . . . 48 5.5 Fuel consumption and CO emissions - Controlled hybrid market share case . . . . . . . . 49 2 5.6 EI and CI - Controlled hybrid market share case . . . . . . . . . . . . . . . . . . . . . . . 49 5.7 Fleet structure - Controlled hybrid market share case. . . . . . . . . . . . . . . . . . . . . 50 5.8 Fleet structure in 2030 - Increase in the tax on petroleum products . . . . . . . . . . . . . 51 5.9 Fuel consumption and CO emissions - Increase in the tax on petroleum products. . . . . 52 2 5.10 EI and CI - Increase in the tax on petroleum products . . . . . . . . . . . . . . . . . . . . 52 5.11 Fleet structure in 2030 - Increase in the vehicle purchase tax . . . . . . . . . . . . . . . . 53 5.12 Fuel consumption and CO emissions - Increase in the vehicle purchase tax . . . . . . . . 53 2 5.13 EI and CI - Increase in the vehicle purchase tax . . . . . . . . . . . . . . . . . . . . . . . . 54 5.14 Fuel consumption and CO emissions - Increase in the vehicle circulation tax . . . . . . . 54 2 5.15 EI and CI - Increase in the vehicle circulation tax . . . . . . . . . . . . . . . . . . . . . . . 55 5.16 Fleet structure in 2030 - Implementation of a mobility electricity tax . . . . . . . . . . . . 56 5.17 Fuel consumption and CO emissions - Implementation of a mobility electricity tax . . . . 56 2 5.18 EI and CI - Implementation of a mobility electricity tax . . . . . . . . . . . . . . . . . . . 56 5.19 Explanatory scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.20 Evolution of motorization rate - Clean but not sparkling . . . . . . . . . . . . . . . . . . . 60 5.21 GDP, fuel consumption and CO emissions - Clean but not sparkling . . . . . . . . . . . . 60 2 5.22 EI and CI - Clean but not sparkling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.23 Fleet structure in 2030 - Implementation of TPIs - CS . . . . . . . . . . . . . . . . . . . . 62 5.24 EI and CI - Implementation of TPIs - CS . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.25 Evolution of motorization rate - Dynamic but careless . . . . . . . . . . . . . . . . . . . . 63 5.26 GDP, fuel consumption and CO emissions - Dynamic but careless . . . . . . . . . . . . . 64 2 vii 5.27 EI and CI - Dynamic but careless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.28 Fleet structure in 2030 - Implementation of TPIs - DC . . . . . . . . . . . . . . . . . . . . 65 5.29 EI and CI - Implementation of TPIs - DC . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.30 Evolution of motorization rate - Bright skies. . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.31 GDP, fuel consumption and CO emissions - Bright skies . . . . . . . . . . . . . . . . . . 67 2 5.32 EI and CI - Bright skies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.33 Fleet structure in 2030 - Implementation of TPIs - BS . . . . . . . . . . . . . . . . . . . . 69 5.34 EI and CI - Implementation of TPIs - BS . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.35 Evolution of charging time - Acceleration of fast-charging points policy . . . . . . . . . . . 70 5.36 Fleet structure in 2030 - Acceleration of fast-charging points policy . . . . . . . . . . . . . 71 5.37 EI and CI - Acceleration of fast-charging points policy . . . . . . . . . . . . . . . . . . . . 71 5.38 Total travel demand - Urban sprawl control policy . . . . . . . . . . . . . . . . . . . . . . 72 5.39 Fleet structure in 2030 - Urban sprawl control policy . . . . . . . . . . . . . . . . . . . . . 72 5.40 EI and CI - Urban sprawl control policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 viii
Description: