Electric Machines Electric Machines Transients, Control Principles, Finite Element Analysis, and Optimal Design with MATLAB® Second Edition Ion Boldea and Lucian N. Tutelea MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software. Second edition published 2022 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487- 2742 and by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN First edition published by CRC Press 2009 CRC Press is an imprint of Taylor & Francis Group, LLC © 2022 Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978- 750- 8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Boldea, I., author. | Tutelea, Lucian, author. Title: Electric machines : transients, control principles, finite element analysis and optimal design with MATLAB / Ion Boldea, Lucian N. Tutelea. Description: Second edition. | Boca Raton, FL : CRC Press, 2021. | Includes bibliographical references and index. Identifiers: LCCN 2021035679 (print) | LCCN 2021035680 (ebook) | ISBN 9780367375652 (hbk) | ISBN 9781032105727 (pbk) | ISBN 9781003216018 (ebk) Subjects: LCSH: Electric machinery--Design and construction--Data processing. | MATLAB. Classification: LCC TK2331 .B584 2021 (print) | LCC TK2331 (ebook) | DDC 621.31/042--dc23 LC record available at https://lccn.loc.gov/2021035679 LC ebook record available at https://lccn.loc.gov/2021035680 ISBN: 978-0-367-37565-2 (hbk) ISBN: 978-1-032-10572-7 (pbk) ISBN: 978-1-003-21601-8 (ebk) DOI: 10.1201/9781003216018 Typeset in Times by SPi Technologies India Pvt Ltd (Straive) Contents Preface .......................................................................................................................xi Authors ....................................................................................................................xiii Chapter 1 Electric Machine Circuit Models for Transients and Control ..............1 1.1 Introduction ...............................................................................1 1.2 Orthogonal (dq) Physical Model ...............................................2 1.3 Pulsational and Motion- Induced Voltages in dq Models ...........4 1.4 dq Model of DC Brush PM Motor (ωb = 0) ...............................5 1.5 Basic dq Model of Synchronous Machines (ωb = ωr) ................6 1.6 Basic dq Model of Induction Machines (ωb = 0, ωr, ω1) ............8 1.7 Magnetic Saturation in dq Models ............................................9 1.8 Frequency (Skin) Effect Consideration in dq Models .............11 1.9 Equivalence between dq Models and AC Machines ................12 1.10 Space Phasor (Complex Variable) Model ................................15 1.11 High- Frequency Models for Electric Machines ......................17 1.12 Orthogonal Models of Multiphase A.C. Machines ..................19 1.13 Summary ..................................................................................22 1.14 Proposed Problems ..................................................................24 References ..........................................................................................25 Chapter 2 Transients and Control Principles of Brush–Commutator DC Machines ............................................................................................27 2.1 Introduction .............................................................................27 2.2 Orthogonal (dq) Model of DC Brush Machines with Separate Excitation ..................................................................27 2.3 Electromagnetic (Fast) Transients ...........................................30 2.4 Electromechanical Transients ..................................................32 2.4.1 Constant Excitation (PM) Flux, Ψdr ...........................32 2.4.2 Variable Flux Transients .............................................35 2.4.3 DC Brush Series Motor Transients .............................37 2.5 Basic Closed- Loop Control of DC Brush PM Motor ..............38 2.6 D.C.–D.C. Converter- Fed D.C. Brush PM Motor ...................39 2.7 Parameters from Test Data/Lab 2.1 .........................................41 2.8 Summary ..................................................................................42 2.9 Proposed Problems ..................................................................43 References ..........................................................................................44 Chapter 3 Synchronous Machine Transients and Control Principles ..................45 3.1 Introduction .............................................................................45 3.2 Phase Inductances of SMs .......................................................46 v vi Contents 3.3 Phase Coordinate Model ..........................................................48 3.4 dq0 Model to Three- Phase SM Parameters Relationships ......49 3.5 Structural Diagram of the SM dq0 Model ...............................52 3.6 pu dq0 Model of SMs ..............................................................54 3.7 Balanced Steady State via the dq0 Model ...............................57 3.8 Laplace Parameters for Electromagnetic Transients ...............60 3.9 Electromagnetic Transients at Constant Speed ........................62 3.10 Sudden Three- Phase Short Circuit from a Generator at No Load/Lab ............................................................................64 3.11 Asynchronous Running of SMs at a Given Speed...................66 3.12 Reduced- Order dq0 Models for Electromechanical Transients .................................................................................71 3.12.1 Neglecting Fast Stator Electrical Transients...............71 3.12.2 Neglecting Stator and Rotor Cage Transients ............72 3.12.3 Simplified (Third- Order) dq Model Adaptation for SM Voltage Control ..............................................72 3.13 Small- Deviation Electromechanical Transients (in PU) ..........75 3.14 Large- Deviation Electromechanical Transients .......................78 3.14.1 Asynchronous Starting and Self— Synchronization of DC—Excited SMs/Lab 3.2 .........79 3.14.2 Asynchronous Self- Starting of PMSMs to Power Grid .................................................................81 3.14.3 Line- to- Line and Line- to- Neutral Faults ....................81 3.15 Transients for Controlled Flux and Sinusoidal Current PMSMs .......................................................................82 3.15.1 Constant d- Axis (ψd) Flux Transients in Cageless SMs .............................................................83 3.15.2 Vector Control of PMSMs at Constant ψd0 (i = const) .................................................................86 d0 3.15.3 Constant Stator Flux Transients in Cageless SMs at cos φ1 = 1 .......................................................87 3.15.4 Vector Control of SMs with Constant Flux (ψs) and cos φs = 1 .............................................................91 3.16 Transients for Controlled Flux and Rectangular Current SMs .............................................................................92 3.16.1 Model of Brushless DC- PM Motor Transients ..........93 3.16.2 DC- Excited Cage Rotor SM Model for Rectangular Current Control ......................................95 3.17 Switched Reluctance Machine Modeling for Transients .........96 3.18 Split- Phase Cage Rotor SM Transients .................................102 3.19 Standstill Testing for SM Parameters/Lab 3.3 .......................104 3.19.1 Saturated Steady- State Parameters, L and dm L , from Current Decay Tests at Standstill .............104 qm 3.19.2 Single Frequency Test for Subtransient Inductances, L′′ and L′′ ..............................................108 d q Contents vii 3.19.3 Standstill Frequency Response Tests ........................108 3.20 Linear Synchronous Motor Transients ..................................109 3.21 Summary ................................................................................113 3.22 Proposed Problems ................................................................115 References ........................................................................................118 Chapter 4 Induction Machines Transients and Control Principles ....................119 4.1 Three- Phase Variable Model ..................................................119 4.2 dq (Space Phasor) Model of IMs ...........................................121 4.3 Three- Phase IM–dq Model Relationships .............................123 4.4 Magnetic Saturation and Skin Effects in the dq Model .........124 4.5 Space Phasor Model Steady State: Cage and Wound Rotor IMs ..................................................................125 4.6 Electromagnetic Transients ...................................................132 4.7 Three- Phase Sudden Short Circuit/Lab 4.1 ...........................133 4.7.1 Transient Current at Zero Speed...............................136 4.8 Small- Deviation Electromechanical Transients .....................137 4.9 Large- Deviation Electromechanical Transients/Lab 4.2 .......139 4.10 Reduced- Order dq Model in Multimachine Transients .........141 4.10.1 Other Severe Transients ............................................143 4.11 m/N Actual Winding Modeling of IMs with Cage Faults .....143 r 4.12 Transients for Controlled Magnetic Flux and Variable Frequency ..............................................................................147 4.12.1 Complex Eigenvalues of IM Space Phasor Model ...147 4.13 Cage Rotor IM Constant Rotor Flux Transients and Vector Control Basics ............................................................149 4.13.1 Cage- Rotor IM Constant Stator Flux Transients and Vector Control Basics ........................................154 4.13.2 Constant Rotor Flux Transients and Vector Control Principles of Doubly Fed IMs .....................156 4.14 Doubly Fed IM as a Brushless Exciter for SMs ....................157 4.15 Parameter Estimation in Standstill Tests/Lab 4.3 ..................162 4.15.1 Standstill Flux Decay for Magnetization Curve Identification: Ψ∗ (I ) .............................................162 m m 4.15.2 Identification of Resistances and Leakage Inductances from Standstill Flux Decay Tests .........165 4.15.3 Standstill Frequency Response (SSFR) Tests ...........165 4.16 Split- Phase Capacitor IM Transients/Lab 4.4 ........................167 4.16.1 Phase Variable Model ...............................................168 4.16.2 dq Model ..................................................................169 4.17 Linear Induction Motor Transients ........................................170 4.18 Line-Start Self- Synchronizing Premium Efficiency IMs ......173 4.18.1 Line Start One Phase—Source Split-Phase Capacitor Self- synchronizing Induction Motor with PMs in the Rotor’s Flux Barriers .....................175 viii Contents 4.19 Summary ................................................................................179 4.20 Proposed Problems ................................................................183 References ........................................................................................185 Chapter 5 Essentials of Finite Element Analysis (FEA) in Electromagnetics ........187 5.1 Vectorial Fields ......................................................................187 5.1.1 Coordinate Systems ..................................................187 5.1.2 Operations with Vectors ...........................................189 5.1.3 Line and Surface (Flux) Integrals of a Vectorial Field ..........................................................190 5.1.4 Differential Operations .............................................191 5.1.5 Integral Identities ......................................................193 5.1.6 Differential Identities ...............................................195 5.2 Electromagnetic Fields ..........................................................196 5.2.1 Electrostatic Fields ...................................................196 5.2.2 Fields of Current Densities .......................................197 5.2.3 Magnetic Fields ........................................................198 5.2.4 Electromagnetic Fields: Maxwell Equations ............199 5.3 Visualization of Fields ...........................................................199 5.4 Boundary Conditions .............................................................202 5.4.1 Dirichlet’s Boundary Conditions ..............................202 5.4.2 Neumann’s Boundary Conditions ............................203 5.4.3 Mixed Robin’s Boundary Conditions .......................203 5.4.4 Periodic Boundary Conditions .................................204 5.4.5 Open Boundaries ......................................................204 5.4.5.1 Problem Truncation ...................................204 5.4.5.2 Asymptotical Boundary Conditions ..........204 5.4.5.3 Kelvin Transform .......................................206 5.5 Finite Element Method ..........................................................208 5.5.1 Residuum (Galerkin’s) Method ................................208 5.5.2 Variational (Rayleigh–Ritz) Method ........................209 5.5.3 Stages in Finite Element Method Application ..........210 5.5.3.1 Domain Discretization ...............................210 5.5.3.2 Choosing Interpolation Functions .............210 5.5.3.3 Formulation of Algebraic System Equations ...................................................210 5.5.3.4 Solving Algebraic Equations .....................210 5.6 2D FEM .................................................................................211 5.7 Analysis with FEM ................................................................213 5.7.1 Electromagnetic Forces ............................................215 5.7.1.1 Integration of Lorenz Force .......................215 5.7.1.2 Maxwell Tensor Method ............................216 5.7.1.3 Virtual Work Method .................................217 Contents ix 5.7.2 Loss Computation ....................................................218 5.7.2.1 Iron Losses .................................................218 References ........................................................................................219 Chapter 6 FEA of Electric Machines Electromagnetics ...................................221 6.1 Single- Phase Linear PM Motors ...........................................221 6.1.1 Preprocessor Stage ...................................................222 6.1.2 Postprocessor Stage ..................................................228 6.1.3 Summary ..................................................................235 6.2 Rotary PMSMs (6/4) .............................................................237 6.2.1 BLDC Motor: Preprocessor Stage ............................238 6.2.2 BLDC Motor Analysis: Postprocessor Stage ...........243 6.2.3 Summary ..................................................................261 6.3 The Three- Phase Induction Machines ...................................261 6.3.1 Induction Machines: Ideal No Load .........................266 6.3.2 Rotor Bar Skin Effect ...............................................271 6.3.3 Summary ..................................................................278 References ........................................................................................279 Chapter 7 Thermal FEA of Electric Machines..................................................281 7.1 Thermal Models .....................................................................281 7.1.1 The Single-body Thermal Model .............................281 7.1.2 The Two-body Thermal Model .................................283 7.1.3 Equivalent Thermal Circuit (Thermal Network) ......285 7.2 Thermal Analysis of Electric Machines by Finite Element ...285 7.2.1 Equivalent Coil Conductivity––Simplified Thermal Model of the Slot ......................................................285 7.2.2 Boundary Conditions ................................................286 7.2.3 The Input Data ..........................................................287 7.3 Steady-state Simulation Results ............................................289 7.4 Thermal Transient Analysis of Electric Machines by Finite Element .......................................................................292 7.5 Summary ................................................................................295 References ........................................................................................298 Chapter 8 Optimal Electromagnetic Design of Electric Machines: The Basics .....299 8.1 Electric Machine Design Problem .........................................299 8.2 Optimization Methods ...........................................................301 8.3 Optimum Current Control .....................................................307 8.4 Modified Hooke–Jeeves Optimization Algorithm .................311 8.5 Electric Machine Design Using Genetic Algorithms ............317 References ........................................................................................321