ebook img

Electric Field-Induced Effects on Neuronal Cell Biology Accompanying Dielectrophoretic Trapping PDF

86 Pages·2003·1.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Electric Field-Induced Effects on Neuronal Cell Biology Accompanying Dielectrophoretic Trapping

Advances in Anatomy Embryology and Cell Biology Vol. 173 Editors F. Beck, Melbourne B. Christ, Freiburg W. Kriz, Heidelberg W. Kummer, Gießen E. Marani, Leiden R. Putz, M(cid:2)nchen Y. Sano, Kyoto T.H. Schiebler, W(cid:2)rzburg K. Zilles, D(cid:2)sseldorf Springer-Verlag Berlin Heidelberg GmbH T. Heida Electric Field-Induced Effects on Neuronal Cell Biology Accompanying Dielectrophoretic Trapping With46Figuresand7Tables B D Dr.TjitskeHeida UniversityofTwente FacultyofElectricalEngineering MathematicsandComputerScience LaboratoryofMeasurementandInstrumentation LaboratoryofBiomedicalEngineering P.O.Box217 7500AEEnschede TheNetherlands e-mail:[email protected] ISSN0301-5556 ISBN 978-3-540-00637-4 ISBN 978-3-642-55469-8 (eBook) DOI 10.1007/978-3-642-55469-8 LibraryofCongressCataloging-in-PublicationData Heida,T.(Tjitske),1972– Electric field-induced effects on neuronal cell biology accompanying dielec- trophoretictrapping/T.Heida p.cm.–(Advancesinanatomy,embryoloy,andcellbiology, ISSN0301-5556;v.173) Includesbibliographicalreferencesandindex. 1. Neurons. 2. Dielectrophoresis. 3. Nerves–Electric properties. 4. Microelec- trodes.I.Title.II.Series. Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeor partofthematerialisconcerned,specificallytherightsoftranslation,reprinting, reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmorin anyotherway,andstorageindatabanks.Duplicationofthispublicationorparts thereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawof September9,1965,initscurrentversion,andpermissionforusemustalwaysbe obtainedfromSpringer-Verlag.Violationsareliableforprosecutionunderthe GermanCopyrightLaw. http://www.springer.de (cid:2)Springer-VerlagBerlinHeidelberg2003 Originally published by Springer-Verlag Berlin Heidelberg New York in 2003 Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuch namesareexemptfromtherelevantprotectivelawsandregulationsandtherefore freeforgeneraluse. Productliability:Thepublishercannotguaranteetheaccuracyofanyinforma- tionaboutdosageandapplicationcontainedinthisbook.Inevery individual casetheusermustchecksuchinformationbyconsultingtherelevantliterature. Typesetting:St(cid:3)rtz,W(cid:3)rzburg Printedonacid-freepaper 27/3150Ag–5 4 3 2 1 0 Contents 1 Introduction..................................... 1 1.1 Neuro-ElectronicInterfacing...................... 1 1.1.1 NervousSystem .................................. 1 1.1.2 RestoringNeuronalFunctions..................... 2 1.2 CulturingNeuronalCells.......................... 3 1.2.1 Dissociation...................................... 3 1.2.2 CulturingConditions............................. 4 1.3 PositioningandCulturingNeuronalCellsona MicroelectrodeArray............................. 5 1.3.1 MicroelectrodeArray............................. 5 1.3.2 CellPositioning .................................. 6 1.4 Dielectrophoresis................................. 7 1.4.1 PrincipleofDielectrophoresis..................... 7 1.4.2 ViabilityofCellsExposedtoElectricFields........ 9 1.5 ScopeofThisReview ............................. 10 2 DielectrophoreticTrappingofNeuronalCells ..... 11 2.1 Theory........................................... 11 2.1.1 DielectrophoreticForce........................... 11 2.1.2 ElectricalPropertiesofCellsandCellSuspensions . 12 2.1.3 ModelingtheElectricalPropertiesofaSuspended BiologicalCell.................................... 13 2.2 Materials......................................... 14 2.2.1 PlanarQuadrupoleMicroelectrodeStructure ...... 14 2.2.2 ElectricFieldGeneration.......................... 16 2.2.3 CellsandMedium ................................ 17 2.2.3.1 FirstSeries....................................... 17 2.2.3.2 SecondSeries..................................... 17 2.3 TheoreticalDescriptionofDielectrophoretic Trapping......................................... 18 2.3.1 EstimationoftheDielectrophoreticForce.......... 18 2.3.2 Electrode–ElectrolyteInterface.................... 20 2.3.3 Field-InducedFluidFlow ......................... 21 2.3.4 TotalTrappingForce.............................. 23 2.4 ExperimentalDescriptionofDielectrophoretic Trapping......................................... 23 2.4.1 ExperimentalProcedure .......................... 23 V 2.4.2 TemperatureRiseintheMediumDuetothe ElectricField..................................... 24 2.4.3 ExperimentalResults............................. 24 2.4.3.1 TrappingNeuronsUnderVariousFieldConditions 24 2.4.3.2 TheYield ........................................ 25 2.4.3.3 QualitativeAspectsofNeuronTrapping........... 27 2.4.3.4 AdditionalConsiderations........................ 28 3 ExposingNeuronalCellstoElectricFields........ 31 3.1 Theory .......................................... 31 3.1.1 MembraneBreakdown............................ 31 3.1.2 PulseLength,Temperature,andMedium ConductivityDependence ........................ 33 3.1.3 PoreModel ...................................... 35 3.1.4 ElectromechanicalModel......................... 37 3.1.5 RecoveryoftheMembrane ....................... 37 3.1.6 MethodsofObservation.......................... 38 3.2 TheoreticalInvestigationofInducedMembrane PotentialsofNeuronalCells....................... 38 3.2.1 TheModel....................................... 38 3.2.2 ModelingResults................................. 40 3.3 ExperimentalInvestigationofNeuronal MembraneBreakdown............................ 41 3.3.1 ExperimentalProcedure.......................... 41 3.3.2 DataAnalysisProcedure.......................... 43 3.3.3 ExperimentalResults............................. 43 4 InvestigatingViabilityofDielectrophoretically TrappedNeuronalCells .......................... 47 4.1 ViabilityofNeuronalCellsTrappedataHigh Frequency ....................................... 47 4.1.1 ExperimentalProcedure.......................... 47 4.1.1.1 ExperimentalSetup .............................. 47 4.1.1.2 DataAnalysis .................................... 48 4.1.2 ExperimentalResults............................. 49 4.1.2.1 NumberofOutgrowingandNonoutgrowing CorticalCells .................................... 49 4.1.2.2 AreaoftheCorticalCells......................... 51 4.1.2.3 NumberofProcesses............................. 51 4.1.2.4 ProcessLength................................... 51 4.1.2.5 DataComparison ................................ 52 4.2 ViabilityofNeuronalCellsTrappedatLow Frequencies...................................... 54 4.2.1 TheoreticalEstimationoftheMaximum MembranePotential.............................. 54 4.2.2 ExperimentalProcedure.......................... 55 4.2.2.1 ExperimentalSetup .............................. 55 VI 4.2.2.2 DataAnalysis..................................... 56 4.2.2.3 ContourDetectionforAreaDetermination ........ 56 4.2.2.4 DetectionofRedandGreenStainedAreas......... 56 4.2.3 ExperimentalResults ............................. 57 4.2.3.1 TotalAreaCoveredwithCells..................... 57 4.2.3.2 StainingofDEP-TrappedCells .................... 59 4.2.3.3 AdhesioninRelationtoFieldStrengthand Frequency........................................ 61 4.2.3.4 ViabilityinRelationtoFrequency................. 62 4.2.3.5 CellDeath........................................ 63 4.3 RecordingNeuronalActivity...................... 64 4.3.1 ExtracellularRecording........................... 64 4.3.2 MEAforDEPTrappingandRecordingNeuronal Activity.......................................... 65 4.3.3 ExperimentalProcedure .......................... 66 4.3.3.1 ExperimentalSetup............................... 66 4.3.3.2 SpikeAnalysis.................................... 68 4.3.4 RecordingResults ................................ 69 5 Summary ........................................ 71 References............................................... 73 VII List of Symbols a Anglebetweentheelectricfieldlineandanormalon themembrane[rad] b Fractionalpower f Phaseangle[rad] r Vectordifferentialoperatorr(cid:2)~aa @ þ~aaaa @ þ~aa @ x@x y@@y z@z C Capacity[F/m2] d Celldensity[cells/ml] cell d Membranethickness[m] D Characteristiclengthoverwhichthefieldvaries[m] e0 Permittivityoffreespacee =8.85(cid:3)10-12F/m 0 e Relativepermittivity[F/m] e(cid:3) Complexpermittivitye(cid:3)¼e(cid:4)js½F=m(cid:5) w j Imaginaryunitj=(–1)1/2 E Electricfieldstrength[V/m] E Rootmeansquarevalueoftheelectricfield[V/m] rms y Volumefractionofcells F Force[N] fCM Clausius-Mosottifactor f Frequency[Hz] w Radianfrequencyw=2pf[rad/s] K Measureofmagnitude n Numberofexperiments r Cellradius[m] R Resistance[W] r Resistivity[Wm] s Conductivity[S/m] t Time[s] t Timeconstant[s] T Temperature[(cid:4)C]or[K] DT Temperaturedifference[(cid:4)C]or[K] u Relaxationtime[s] V Voltagepotential[V] V Membranepotential[V] m VVV Restingmembranepotential[V] rest x,y,z Cartesiancoordinates Z Impedance[W] IX 1 Introduction 1.1 Neuro-ElectronicInterfacing 1.1.1 NervousSystem Communication in the (human) body and the interaction with the environment is controlled by the nervous system. It can be divided into a central part, which in- cludes the spinal cord, brainstem, cerebellum, and cerebrum, and a peripheral part, which includesall neuronaltissue outside the centralpart(Martini 2001). The latter providestheinterfacebetweenthecentralnervoussystemandtheinternalandexter- nal environment of the body. Eye, ear, skin, and muscle sensors provide the neces- sary information. Via primary afferent neurons this information is transmitted to thecentralnervoussystem.Conversely,thissystemprovides informationtothemo- tororgansviatheefferentfibers.Furthermore,thecentralnervoussystemisrespon- sibleforcognition,learning,andmemory. Neuronsarecellsspecializedforreceivinginformationandtransmittingsignalsto otherneuronsortoeffectorcells,suchasmusclesandglands(Levitan1991).Likeall other cells, neurons are enclosed by a cell membrane, which is a double layer of phospholipid molecules. This bilayer, about 10 nm thick, serves as a barrier that al- lows the cell to maintain an internal (cytoplasmic) composition far different from the composition of the extracellular fluid. It contains enzymes, receptors, and anti- gensthatplaycentralrolesintheinteractionofthecellwithothercells.Manyofthe internal organelles are also enveloped in membranes, dividing the cell into discrete compartments and allowing the localization of particular biochemical processes in specific organelles. Many vital cellular processes take place in or onthe membranes oftheorganelles. Due to the large difference in composition in intra- and extracellular fluid, elec- trochemicalpotentialgradientsofcertainionsexistacrosstheplasmamembrane.As illustratedinFig.1thesegradientsresultintherestingmembranepotential,whichis generally about (cid:5)70 mV. Voltage-gated ion channels inthe cell membrane ofneuro- nal cells are able to generate rapid changes inthe membrane potential by ioniccur- rents.Whenthemembranepotentialisdepolarizedbeyondacriticalthresholdvalue (i.e.,(cid:5)55mV)anactionpotentialiscreated.Themembranepotentialbecomesposi- tive within about a millisecond and attains avalue of about +30 mV before turning to the negative resting membrane potential again. These action potentials form the basis of the signal-carrying abilityof neuronal cells. Intracellular informationtrans- 1 Fig.1 Actionpotential.ExceedingthethresholdpotentialresultsinanNa+influx.Atabout30mV the Na+ gates close and an K+ efflux starts bringing the membrane potential back to the resting membranepotential((cid:5)70mV).Theserapidchangesoccurwithinatimeperiodofabout5ms fer is realized by the axon, which is a thin process arising from the neuronal cell body.Dendritesarealsoneuronalprocesses,butthickerandshorter thanaxonsand theyareoftenhighlybranched.They formthesitesatwhichinformationisreceived fromotherneurons.Finally,thesynapse,themosthighlyspecializedstructure,isthe pointwhereinformationtransferbetweenneuronstakesplacevianeurotransmitters. Theenvironmentofmostneuronsiscontrolledsothattheyarenormally protect- ed from extreme variations in the composition of the extracellular fluid. Neuroglia helpmaintainanappropriatelocalenvironmentfor neurons.Schwanncells,aspeci- fied type of glia cells, are responsible for the creation of the myelin sheath around axons in the peripheral nervous system, while centrally the oligodendrocytes fulfill this task. This sheathincreasesthe speed ofpropagationofactionpotentials andal- lowsactionpotentialstobegeneratedonlyatthenodesofRanvier(thegapsbetween adjacentSchwanncellsoroligodendrocytes). 1.1.2 RestoringNeuronalFunctions Severe injury to nervous tissue causes cell death. Neurons can hardly be replaced, sincetheyarepostmitoticcells.Thus,withthelossofaneuronalsothesynapticcon- nection with other neurons is lost, and no information can be transmitted through thedisconnectednetworkanymore.Muscleactivationorsensoryfunctionslikehear- ingandvisionmaybeimpaired.However,theanatomicstructureofthedisconnect- ednetworkdriving thesefunctionsmaystillbeintactandcanthereforestillbeacti- 2

Description:
The concept of the cultured neuron probe was induced by the possible selective stimulation of nerves for functional recovery after a neural lesion or disease. The probe consists of a micro-electrode array on top of which groups of neuronal cells are cultured. An efficient method to position groups o
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.