0 Notations, constants and general relations 1 0 Notations, constants and general relations The symbols most frequently encountered in the following tables are defined in this section. Additional quanti- ties will be defined where it is necessaryF. or conveniences ome general relations are also summarized. 0.1 Notation and relations All data in this volume refer to reactions with two particles in the initial and final state, respectively: 1+2+3+4. Here particle 1 is moving and particle 2 (target) is stationary in the laboratory system.T he kinematical variables of the various particles are, if necessaryd, istinguished by indices which indicate the number of the particle (1 to 4). In elastic scattering, particle d and particle 3 are the same particle and particle 4 is the recoiling target. (Indices referring to particle 3 are occassionallys uppressedw hen no confusion exists,e .g.0 = &&o r Q= s2,.) Quantities defined in the center of mass system (cm.) are denoted by an asterisk, whereas quantities in the laboratory system( lab.) are asterisk free. The symbols commonly usedi n this compilation are listed in the following table. The c = h = h/27-c= 1 systemo f units is used. 0.1.1 Variables of particle i Center of Laboratory mass system system momentum (3-dimensional) 8 P”i kinetic energy ly Ti total energy E* Ei total c.m. energy E* = fi(see 0.1.4) 4-momentum Pi* = (ET, j;) Pi = (Ei, $J scattering angle 9: ei rest mass of particle mi mi solid angle velocity/velocity of light ;; p? transversem omentum PT PT The following relations hold (in cm. or lab.): p2=E2--2, E2=p2fm2, T=E-m. 0.1.2 Cross sections 40t total cross section for 1+ 2+ anything total (= integrated) cross section for 1 + 2 + 3 + 4 %t %I total (= integrated) cross section for 1 + 2-t 1 + 2 total (= integrated) charge exchangec ross section %h s differential cross section in lab. system do - differential cross section in cm. system dQ* da - invariant differential cross section. dt 0.1.3 Polarization For the definition of the polarization parameters P; A and R see 3.0.2.2. Carlson et al. I Land&-Biirnstein, New Serie l/7 2 0 Bczeichnung.K onstanten und allgemeineB eziehungen 0.1.4 Relativistic invariants The invariants s, t and II are defineda nd expressedin cm. and lab. variables.T he target particle nzZis assumed to be at rest in the lab. systemi n deriving thesee xpressions. total c.m. energy squared s = (PI + PJ2 = (ET + E$)* = rnf + mz + 2E, m2 4-momentumt ransfer l-3 squared t=(P,-P,)2=n7:+r,lS-2ETE:+2prpScos85=m:+m:-2E,E,+2p,p,cos8, = (P2 - P4)* = m: + m; - 2Ez Ea + 2~: pX cos@ = (m2 - m.J2 - 2m,(E, - ma) Cmomentum transfer l-4 squared u=(P,-P,)2=)?1:+1)1:-2ETE4*+2pfp4*co~04*=nt:+m:-2E,E,+2p,p,cos8, = (P2 - PJ2 = m: + m: - 2E: E: + 2p:p: cos@ = (mz - nQ2 - 2m,(E, - mJ . These3 invariants satisfy the relation 4 s + t + II = c n1;. i=l For elastic scatteringn o,= tn3a nd mz = m4, so that py=p;=p;=p4*cp* and ET=E;; E;=Ef. In this caset he expressionsfo rt and II may be simplified: t= -4~*~ sin*tO; = -2n1,(E,-m,)= -2m,(E, -E3) (mf - n$2 u= -2p*2(1+cosO:)+ s . 0.1.5 Lorentz transformations The target m2 is assumedto be at rest. The c.m. velocity /I,,,,, and the Lorentz factory,,,,, = l/l/m, -%+m, P,.,. = ---!%- Ycm.= ___ El +m2 fi where. as before s= mf + mz + 2E, m, =(m, + m,)’ + 2T, m2 The Lorentz transformations for momentum and energya re then written as pr = pi sin ei= p; sin 0; Pi COSo i = s,.,.(P? cos 0: + PC.,. EF) or PF cosV = Yc.m.(Pic osei - Pc.m.4 ) { Ei = ~c.m.(Ef + 8c.m.P : cos V) { ET=Y,,,,(Q -Pc.m.picoseJ. The following relation is often useful p~=p&!!!L. fi For i = 3,4, the relation betweent he anglesO ia nd 0: is given by 1 I + c0se: 1 sin&+ tge,= - t&e*. YC.lll. x;+cose,* =- Y~.~. x; + c0se: with x:+. I Carlsone t al. 0 Notations, constants and general relations 3 For i = 2 = 4, in caseo f elastics cattering,p z = /ST= PC,,,,t hus Xx = 1 and so that the anglet ransformation reducest o 1 tge, = -tg+@ (i=2=4). Ycm. de da and& In the high energyl imit this result is alsov alid for particle i = 1 = 3. The differential crosss ections- , - dt dL?* dS2 are related by da da -- - Tiry p;p: ’ dL’* In the caseo f elastics catteringt his reducest o 0.1.6 Diffraction scattering The angular distribution of many 2-body reactionse xhibits a pronouncedf orward diffraction peak.I n this case, the diffractional crosss ectioni s often parametrizedb y assuming a linear t-dependence da = A eB’ dt or da a quadratic t-dependence - = A’. ?t+C”2. dt The constantsA , B and A’, B’ and c’ are determinedf rom a fit to the experimentald ata. 0.1.7 Optical theorem When the spin dependencec an be neglected,t he imaginary part of the elastic forward scattering amplitude f(E, t) is relatedt o the total crosss ectionb y ‘Imf (E, 0) = $ a,0,. Hence, = lRef(E, O)l”+ $$a& = $& lRef(E, 0)12+ g At high energies,I Ref/Imf12 is small and one obtains 5.095.10-2 mb . (GeV/c)’ al”,t to a good approximation. Carbon et al. 4 0 Bezeichnung,K onstanten und allgemeine Beziehungen 0.2 Units and constants 0.2.1 Symbols Symbol Particle Mass [GeV/c’] I JP lT* x-meson, pion 0.139576 f 0.000011 1 0- ITo n-meson, pion 0.134972 f 0.000012 1 0- K-meson, kaon 0.49384 * 0.00011 i 0- f: K-meson. kaon 0.49779 f 0.00015 4 0- P proton 0.9382592& - 0.0000052 3 )’ neutron 0.9395527+ O.OOOOO52 t Y1 + : deuteron 1.8755 0 1 N nucleon 0.2.2 Units Quantity Unit and conversion cross section barn (b). 1 b = 1O-24c m2 mass eV/c2. 1 eV/c2 = 1.781. 1O-36k g momentum eV/c, 1 eV/c= 5.341. 1O-28N sec-’ energy eV, 1 eV = 1.602.10-‘” J fermi (femtometer) 1fm=10-‘3cm velocity of light c = 2.9979250.10” cm set- ’ Planck’sc onstant h = h/2x = 6.582183. 1O-22M eV set hc = 197.329M eV fermi 0.3 Abbreviations for experimental techniques A Activation methods BC Bubble chamber C’) Scintillation counter cc, CLC Cloud chamber CTR Counters DBC Deuterium bubble chamber DCC Diffusion cloud chamber DSC Double scattering E. EM Emulsions EBC Helium bubble chamber FC Fission counter HBC Hydrogen bubble chamber IC Ionisation chamber LC Luminescent chamber MMS Missing masss pectrometer PBC Propane bubble chamber PC Proportional counter POLT Polarized target SC. SPC Spark chamber ssc Solid-state counter TSC Triple scattering XBC Heavy liquid bubble chamber ‘) Cl, C-I: scintillation cotmtcrs by integration of the angular distribution: C-T: scintillation counters-transmission method. Carlson et al. Ref. D. 111 1.1.1.1 Total DDa nd Dd cross sections 5 1 Nucleon-nucleon scattering 1.1 Total cross sections 1.1.1 Total cross sections of protons on protons and deuterons 1.1.1.1 Introduction This contribution presentsa collection of the total cross sections of the proton-proton and proton-deuteron systemsa bove about 1 GeV/c lab. momentum. For notations and general relations seep . 1.. .4. Data at lower momenta can be found in the review articles by Hess [SS H 11 and Barashenkov and Maltsev [61 B 11. More recent reviews have been published by Galbraith [69 G l] and Giacomelli [70 G I]; this latter paper contains an extensives et of tables of total cross sections. Some material in tabular form can also be found in a compilation by Benary et al. [70 B 11. For this compilation only data from the main experiments in the field have been selected.F or a more extensive survey of the literature the reader is referred to the paper by Giacomelli [70 G l] I). All measurementsr ecorded in 1.1.1.2h ave ‘beenp erformed using the transmission method. In this method a number of partial total cross sections are measured, each determined by the loss of particles in a certain solid angle around the beam due to scattering or absorption by the target; these partial total cross sections are then extrapolated to zero solid angle, thus determining the total cross section, (TV., ,T, he only point not measuredb y the transmission method is the one of Holder et al. [71 H l] measureda t the CERN Intersecting Storage Rings (ISR). From the total cross section on deuterons and protons the total cross section on neutrons can be derived by applying the following formulae, due to Glauber, France, and Wilkin [55 G 1, 66 G 1, and 66 W l] a(pd) = a(pp)+a(pn)-Aa (1) Aa= <rm2) 2~(pp)0(pn)(l-r~~,)-~a2(pp)(l-a~)-~crz(pn)(l-a,Z) . (2) 4rc -i 1 Here o(ab) stands for the total cross section (T~,o,~f p article a on particle b and Au is the Glauber correction. (r-‘) is the mean inverse square separation of the nucleons inside the deuteron, and clpa nd CI,a re the ratios of the real to imaginary parts of the forward scattering amplitudes in proton-proton and proton-neutron scattering, re- spectively. Above about 2 GeV/c incoming momentum it is found that U,<l, LX<, 1 and o(pp) % u(pn), so that Eq. (2) can be approximately written as Aa (r-9 = 7 dpp) dpn) . (3) In this approximation the expressionf or a(pn), expressedi n the measured quantities a(pd) and cr(pp),r educest o 4p4 - I o(w) = (4) 1 _ <re2> ’ 7 O(PP) The total cross sectionsf or the Z = 0 and Z = 1 isotopic spin states of the nucleon-nucleon systema re given by 01 = O(PP) (5) go = 24pn) - I . (6) The relation between co and the measured cross sections, using the approximation (3) is u(pd)-u(pp)- u(pp) u 4 0 (7) 1 _ W2> 7 C(PP) ‘) Note addedi n proof (Febr.1 973). Somef urther measurementosn the parameter( r-‘) in the momentumr ange 15 to 60GeV/c have beenr eportedb y Gorin et al. [72 G 11. Diddens 6 1.1.1.1 Totalepp- und pd-Wirkungsqucrschnitte [Lit. S. I I It is clear from the latter expressiont hat the propagation of the errors in a(pd) and a(pp) makesa precised etermi- nation of go difficult. The quantity (re2) can be calculated from the wave-function of the deuteron and has been derived from xd and rrp total cross sections,u sing arguments of charge independence.A s a result [70 C l] the value (r-*) = 0.03 mb-’ (9) will be used throughout this paper; it has an uncertainty of about + 10%‘). The density of the deuterium used in the targets is not known well enough to match the statistical accuracy and systematice rrors of a typical transmission experiment; it has also been the source of controversiesi n published deuterium total cross sections [70 A 1, 70 R 11. Following the prescription of Riley [70 R l] all the deuterium cross sections of Bugg it nl. [66 B l] have been lowered by 0.7 % in this tabulation and the derived cross sections have been adjusted accordingly. Also the deuterium cross sectionso f Galbraith et nl. [65 G l] show evidencef or a mismatch with neiphbouring cross sections, both on the high and the low momentum side (Fig. 1). 1.1.1.2g ives the measured values of I and a(pd) with their statistical errors, and the derived values of a(pn) and co. using formulae (4), (7), and (9); only for the data of Bugg et al. [66 B 1) this procedure has not been followed and the authors’ values of a(pn) and CTa,,r e tabulated becauser apid variation of the cross sectionsa nd the large values of up and a, make the approximate Glauber formulae invalid. The method adopted leads to slight changesi n the values of a(pn) of Galbraith et al. [65 G 11 since these authors used a different value of (r-*); they did not calculate co in their paper. The systematic error in a(pp) is quoted in the heading to each experiment. In a(pd) the uncertainty in the deuterium density gives an additional scale error of the order of one per cent. With moreover the contribution of the error in the approximations in the Glauber formulae and in the value of (r-*), the systematice rror in o(pn) amounts to about 0.5 to 1 mb and twice as much in u,, Fig. 1 shows a graph of cr(pp) and a(pd); the latter cross section has been multiplied by a factor 0.5. The be- haviour of the cross section below 1 GeV/c has been sketched. 50 mb ‘15 LO 35 30 25 20 PI- PP Pd PP pd -- Trend pp . o Golbroith et 01. * Schwollere t 01. + Foley et 01. x Ozhelepove t al. v v Bellettini et al. . 0 Bugg et 01. . 0 Oenisove t al. . b Abroms et 01. Fig. I. Total crosss ectionsa ,,,,(pp) xxi a,,,(pd) (mul~iplicd by a factor of OS)a s a function of the laboratory momentum. The trend ~fa,,,(pp) below I GcV/c is indicated ‘). ‘)Rcccnt mcasurcmcnts at the CERN ISR by Amnldi ct t1/.[73 Al] and a Piss-Stoncy Brook collaboration [73 Pl] give evidcncc for the proton-proton total cross section starting to rise after having rcachcd a minimum of about 38 mb somewhere around 100 GeV,/c lab momentum: at 2700 &V/c lab. momentum the cross section has rcachcd about 43 mb. In the two papers quoted. rcfcrcnccs to other recent contributions can be found. Diddens Ref. D. 111 1.1.1.2 Total DD and Dd cross sections 7 Fig. 2 shows the derived cross sectionsa (pn) and co, and for comparison o(pp) = o1 50 mb I 4450 b5 35 25 I 20 1 10 GeV/c IO’ PI - I=0 pn -.- --- Trend below 1 GeV/c . 0 Bugg et al. . A Abrams et al. . o Golbraith et al. . v Bellettini et al. . 0 Denisov et al. Fig.2 . Thet otal crosss ectioncsT ,,,(pna)n dg ,,,(I = 0),d erivedfr omc r(pd)a nda (pp),a sa functiono f thel aboratorym omentum. The crosss ectionc ,,,,(l = 1)i s givenb y the full line for comparison. An alternative method of measuring o(pn) uses the technique of a neutron beam, incident on a hydrogen target.T he two methodsa re comparedi n Fig. 1 of 1.1.2.1t;h e agreementis good,w ithin the statistical and systematic errors of both techniques. From Fig. 2 it can be concluded that (i) above about 20 GeV/c o0 w ~~ within the systematice rrors and (ii) that the nucleon-nucleont otal crosss ectionsh ave becomea pproximately independento f energya bove 20 GeV/c. The first point is in accordancew ith the Okun’-Pomeranchukr ule [56 0 11, which predicts that the total cross -sectionsb ecomei ndependento f isospin at high energies.T he secondp oint is reinforced by the measuremento f Holder et al. at the CERN ISR, giving a(pp) = 40.3+ 2.0 mb at an equivalent lab. momentum p1 c 500 GeV/c. The absorption cross section on nuclei, measuredi n cosmic-ray experimentsa t energieso f lo4 GeV, suggestt hat at these energiest he elementaryn ucleon-nucleonc ross section slowly increasesa gain, perhaps logarithmically with the energy[ 72 Y 11. According to the Pomeranchukt heorem [SSP l] the total cross sectionso f particle and antiparticle should becomee qual at asymptotic energies.T he data on proton and antiproton total cross sectionsa re in agreement with this prediction [71 D 11, the approach being proportional to about p1-“ .6, but at 45 GeV/c the difference betweeno @p) and o(pp) is still 6 mb. Although not covered by the title of this contribution some cross sections of protons on nuclei are added for completeness1. .1.1.3c ollects the results of Bellettini et al. [66 B 21 at 19.2G eV/c incident proton momentum. In addition to the total cross section also the elastic cross section, gel, and the absorpiion cross section, CaJb s= Qto-t gel are given. 1.1.1.2 Table of total pp and pd cross sections Total cross sectionso (pp) and o(pd) of protons on protons and deuterium, respectively.T he derived cross sectionso (pn) of protons on neutrons and o. of the nucleon-nucleoni nteraction in the I = 0 state were calculated from formulae (4), (7), and (9), exceptf or Bugg et al., where the authors’ values are reproduced.T hesel atter data were correctedf or a -0.7% changei n deuterium density.T he systematice rrors for o(pp) are given in the headings; they are discussedin the text for the other cross sections. Diddens 1.1.1.2 Table of total pp and pd cross sections PI T1 P: E* = v s s dPP) Error dpd) Error dpn) Error 00 Error GeV/c GeV GeV/c GeV GeV” mb mb mb mb mb mb mb mb [71 S 11; Syst. error 0.8% 0.607 0.179 0.290 1.964 3.H57 24.550 G. 120 0.757 0.267 0.354 2.006 4.022 23.853 0.100 0.872 0.343 0.401 2.041 4.164 24.450 0.100 0.937 0.388 0.426 2.061 4.240 25.650 C.lCO 0.963 0.406 0.437 2.070 4.203 26.300 C.100 1.009 0.440 0.454 2.085 4.346 27.750 C.140 1.093 0.502 0.485 2.113 4.463 30.050 0.15G 1. lOtI 0.514 0.491 2.118 4.485 31.650 C.190 1.162 0.555 0.510 2.136 4.5h3 34.503 c.140 [55 D l]; Syst. error 3% 0.968 0.410 0.438 2.071 4.290 26.900 0.700 1.037 0.460 0.465 2.094 4.3R4 27.600 C.400 1.090 0.500 0.484 2,112 4.459 2Y.909 C.400 1.142 0.540 0.503 2.129 4.534 32.103 C. 500 1.194 0.580 0.522 1.147 4.hlO 35.600 O.SO@ 1.219 O.hOO 0.531 2.15b 4.647 36.603 C.5CC 1.244 0.620 0.539 2.164 4.684 38.600 C.SOO 1.269 0.640 0.548 2.173 4.722 39.R00 0.600 1.294 0.660 0.556 2.182 4.760 41.400 0.600 [66 B 11; Syst. error 0.5”4 1.111 0.516 0.492 2.119 4.409 34.029 C.17C 66.739 c.090 34.7CE c.3oc 35.386 C.-l50 1.289 0.656 0.555 2.180 4.752 43.234 0.113 76.367 0.110 38.160 0.200 33.089 0.55c 1.408 0.754 0.595 2.222 4.935 46.487 0.052 79.927 o.c57 30.976 0.150 31.472 0.4CC 1.607 0.923 0.658 2.292 5.252 47.476 C.058 e1.895 C.C63 3e.954 0.15c 3C.448 0.4co 1.660 0.969 0.674 2.310 5.338 47.553 C.058 E2.309 C.063 39.315 c.15c 31.c71 0.35c 1.780 1.074 0.710 2.353 5.536 47.490 0.046 82.793 0.052 39.852 0.100 32.213 0.300 1.858 1.143 0.732 2.380 5.666 47.455 0.041 83.451 0.047 40.537 c.100 33.h23 0.25C 1.940 1.217 0.755 2.409 5.804 47.357 O.C46 E3.670 C.C46 4c.075 C.lOC 34.390 0.250 1.952 1.228 0.759 2.413 5.H24 47.40') c.041 E3.690 c.c47 4C.825 C.100 34.239 O.i52 2.079 1.343 0.7Y4 2.458 6.040 47.224 C.U41 e3.934 0.347 41.183 0.100 35.336 0.25c 2.212 1.465 0.829 2.504 Ii.269 4h.9R5 C. 0461 EJ.932 O.C47 41.EC4 C.lOC Z6.227 @.3CO 2.280 1.527 0.846 2.527 6.387 46.669 C.i.41 E4.C32 C.C47 41.sc:! c.100 37.137 0.250 2.419 1.656 O.fi81 2.575 6.629 46.130 C.1;41 2.450 1.685 0.889 2.585 6.h83 45.827 0.@41 E3.649 O.U47 47.C2H 0.100 38.236 0.25C 2.592 1.t31R 0.924 2.633 6.933 45.533 c.041 E3.623 C.047 47.245 ti.lOC 38.957 c.icc 2.680 1.901 0.944 2.662 7.088 45.331 c.041 R3.496 c.c44 42.34i C.1'20 39.340 0.2'C * 2.704 1.924 O.Y50 2.670 7.131 45.174 0.041 e3.325 0.047 42.312 c.100 39.443 0.2cc 2.819 2.033 o.v77 2.700 7.335 45.008 O.U41 83.259 0.047 42.407 0.100 39.8C5 G.ZCC 2.8S7 2.069 0.985 2.721 7.403 44.928 0.~41 e3.203 c.047 42.433 C.lOC 39.53b Q.iCC 2.958 2.165 1.008 2.754 7.503 44.651 c.041 E3.Cl7 o.c47 47.515 C.lOC 40.3eo o.zcc 2.994 2.199 1.016 2.7h5 7.h48 44.466 0.041 82.H68 o.c47 42.516 0.100 4C.573 o.icc 3.054 2.757 1.029 2.785 7.755 44.401 c.u41 82.706 0.~47 42.3t!tl O.lOC 4~a.366 '.-'.ZCC (cont.) Pt T1 P: E*=fi s dPP) Error 44 Error dpn) Error 00 Error GeV/c GeV GeV/c GeV GeV? mb mb mb mb mb mb mb mb [66 B 11; Syst. error 0.5 % (cont.) 3.11c 2.310 1.041 2.803 7.856, 44.188 0.041 e2.745 C.C47 42.618 O.lOC 41.056 G.ZOC 3.131 2.330 1.046 2.810 7.894 44.156 G.041 3.142 2.341 1.048 2.813 7.913 44.114 C.341 e2.584 0.047 42.519 0.100 40.919 0.2oc 3.277 2.470 1.077 2.856 8.156 43.610 o.c41 El.912 0.047 47.195 0.100 40.771 0.2cc 3.303 2.495 1.082 2.864 8.203 43.669 C.041 -82.151 0.047 42.353 G. 100 41.037 0.200 3.444 2.631 1.111 2.908 8.458 43.138 0.041 e1.386 C.047 41.520 C.100 40.701 0.200 3.546 2.730 1.132 2.940 8.643 42.Y78 0.037 e1.138 C.047 41.883 0.100 40.795 0.200 3.731 2.909 1.168 2.997 8.979 42.680 0.041 3.908 3.081 1.202 3.050 9.302 42.316 C.041 eo.539 0.033 41.920 c.100 41.5c7 c.200 4.037 3.206 1.226 3.088 9.537 42.136 C.041 80.363 0.047 41.880 0.100 41.620 O.iCC 4.265 3.429 1.268 3.155 9.955 41.765 O.G41 79.854 0.047 41.645 0.100 41.529 O.ZCC 4.552 3.709 1,319 3.237 10.481 41.457 0.041 79.564 0.047 41.616 c.100 41.785 O.ZCC 4.783 3.936 1.359 3.302 10.906 41.377 ‘c.c37 4.966 4.116 1.389 3.353 11.243 41.165 C.041 79.075 G.247 41.462 C.100 41.754 0.200 5.221 4.366 1.431 3.423 11.714 41.171 c.032 79.021 0.037 41.412 0.100 41.644 0.200 5.526 4.667 1.480 3.504 12.278 40.878 c.i141 78.761 0.C47 41.425.0.100 41.969 0.200 5.824 4.961 1.526 3.582 12.829 46.848 C.C41 78.537 0.C47 41.217 C.lOC 41.563 G.2CO 7.835 6.953 1.806 4.070 16.567 40.075 c.352 77.313 0.!>52 4C.727 C. 100 41.385 c7.25C u k 4 [7OA I]; Syst. error 0.7% R 3.000 2.205 1.017 2.767 7.h5R 44.330 0.060 R1.780 o.c7c 41.882 O.L92 3Y.435 0.228 [65 G I]; Syst. error 1.5 % 6.000 5.135 1.552 3.627 13.156 40.600 0.600 77.400 1.300 40.750 1.432 40.899 3.162 8.000 7.117 l.a27 4.108 16.875 40.000 0.600 76.200 1.300 40.022 1.432 40.044 3.162 10~000 9.106 2.067 4.539 20.h07 39.90;1 O.hOO 75.ROO 1.300 39.680 1.432 39.459 3.162 12.000 11.098 2.282 4.934 24.346 39.400 c.tlcc 74.400 1.3oc 38.634 1.432 37.E68 3.162 14.000 13.093 2.478 5.300 28.089 39.100 O.hOO 74 .ooi) 1.300 38.453 1.432 37.886 3.162 16.000 15.089 2.661 5.642 31.834 38.700 0. bO0 73.700 1.300 38.563 1.432 38.426 3.162 18.000 17.086 2.831 5.Yh5 35.581 38.700 C.hOC 72.800 1.3CO 37.571 1.432 36.442 3.162 20.000 19.084 2.992 6.271 39.330 38.400 0.600 72.100 1.3CO 37.101 1.432 35.RC? 3.162 22.000 21.082 3.145 6.563 43.079 38.300 0.600 71.600 1.300 36.651 1.432 35.CC2 3.162 [67 F l] ; Syst. error 0.2 % 7.820 6.938 1.804 4.067 16.539 40.34/G c. 120 9.800 8.907 2.044 4.498 20.233 39.843 C.120 11.900 10.999 2.271 4.915 24.159 39.620 0.120 14.010 13.103 2.479 5.302 28.108 39.420 0.120 16.030 15.119 2.h63 5.h47 31.891 39.230 C.120 17.910 16.096 2.824 5.951 35.413 39.180 0.12C 20.220 19.304 3.909 6.304 39.742 39.050 c. 120 20.460 19.543 3.028 6.340 40.192 39.OYO 0.12c 22.000 21.082 3.145 6.563 43.079 3e.880 -C.120 (cont.) PI T, P: E*=fi s U(PP) Error dpd) Error dpn) Error co Error GeV/c GeV GeV/c GeV GeV’ mb mb mb mb mb mb mb mb [67 F 11; Syst. error 0.2% (cont.) 24.000 73.000 3.290 6.843 46.820 38.89C c.120 26.000 25.079 3.430 7.112 50.579 38.900 6.120 [65 I3 I]: Syst. error 0.5’1, 10.000 9. lob 2.067 4.539 2C.6C7 40.2OC c.200 10.110 9.215 2.07Y 4.562 20.812 40.000 c.200 19.330 18.415 2.Y39 6.170 38.074 38.900 c.zou 74.100 0.400 3R.900 0.400 38.707 l.CCC 26.420 2S.498 3.459 7.167 5r.3bh 38.800 c. 200 [71 D I]: Syst. error 0.4% 15.000 14.091 2.571 5.474 29.961 39.290 c.120 15.250 C.220 39.680 C.170 40.074 0.565 20.000 19.084 2.992 6.271 39.330 39.060 0.120 14.480 0.220 39.060 0.170 39.065 0.569 25.000 24.079 3.361 6.979 48.703 38.800 0.120 14.000 0*220 38.790 o.zoc 30.7e7 0.569 30.000 29.076 3.693 7.621 58.080 38.590 0.120 73.850 0.220 38.840 0.150 39.086 0.569 35.000 34.074 3.998 8.213 67.450 38.490 0.120 73.530 c.220 38.58O'C.240 30.681 0.569 40.000 39.073 4.281 8.766 76.837 38.500 0.120 73.600 0.220 38.650 0.150 30.805 0.569 45.000 44.072 4.547 9.285 86.217 38.450 c.120 73.220 0.220 3R.280 0.150 38.118 0.569 50.000 49.071 4.7YA 9.177 95.597 38.460 C.12C 13.430 0.220 3P.500 0.230 38.551 C.569 55.000 54.070 5.036 10.246 104.Y77 38.430 0.120 73.260 C.220 3tJ.350 0.220 38.267 3.569 6O.UOO 59.069 5.264 10.694 114.358 38.440 0.120 73.420 0.220 3H.510 C.lYC 38.589 0.56Y [71 H 11; Syst. error included 500.000 499.063 15.301 30.659 939.Y62 4c.300 2.coo