ebook img

Eisenstein Series and Automorphic Representations: With Applications in String Theory PDF

588 Pages·2018·4.376 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Eisenstein Series and Automorphic Representations: With Applications in String Theory

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS176 EditorialBoard B. BOLLOBA´S, W. FULTON, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO EISENSTEINSERIESANDAUTOMORPHIC REPRESENTATIONS ThisintroductiontoautomorphicformsonadelicgroupsG(A)emphasisestheroleof representationtheory.Theexpositionisdrivenbyexamplesandcollectsandextends many results scattered throughout the literature, in particular the Langlands constant termformulaforEisensteinseriesonG(A)aswellastheCasselman–Shalikaformula forthep-adicsphericalWhittakerfunction.Thisbookalsocoversmoreadvancedtopics suchassphericalHeckealgebrasandautomorphicL-functions. Many of these mathematical results have natural interpretations in string theory, and so some basic concepts of string theory are introduced with an emphasis on connections with automorphic forms. Throughout the book special attention is paid to small automorphic representations which are of particular importance in string theory, but are also of independent mathematical interest. Numerous open questions and conjectures, partially motivated by physics, are included to prompt the reader’s ownresearch. PhilippFleigisaPostdoctoralResearcherattheMaxPlanckInstituteforDynamics andSelf-Organization,Germany. HenrikP.A.GustafssonisaPostdoctoralResearcherintheDepartmentofMathemat- icsatStanfordUniversity,California. AxelKleinschmidtisaSeniorScientistattheMaxPlanckInstituteforGravitational Physics(AlbertEinsteinInstitute),Germany,andattheInternationalSolvayInstitutes, Brussels. DanielPerssonisanAssociateProfessorintheDepartmentofMathematicalSciences atChalmersUniversityofTechnology,Gothenburg. CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS EditorialBoard: B.Bolloba´s,W.Fulton,F.Kirwan,P.Sarnak,B.Simon,B.Totaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversityPress.Fora completeserieslistingvisit:www.cambridge.org/mathematics. Alreadypublished 138 C.Muscalu&W.SchlagClassicalandmultilinearharmonicanalysis,II 139 B.HelfferSpectraltheoryanditsapplications 140 R.Pemantle&M.C.WilsonAnalyticcombinatoricsinseveralvariables 141 B.Branner&N.FagellaQuasiconformalsurgeryinholomorphicdynamics 142 R.M.DudleyUniformcentrallimittheorems (2ndEdition) 143 T.LeinsterBasiccategorytheory 144 I.Arzhantsev,U.Derenthal,J.Hausen&A.LafaceCoxrings 145 M.VianaLecturesonLyapunovexponents 146 J.-H.Evertse&K.Gyo˝ryUnitequationsinDiophantinenumbertheory 147 A.PrasadRepresentationtheory 148 S.R.Garcia,J.Mashreghi&W.T.RossIntroductiontomodelspacesandtheiroperators 149 C.Godsil&K.MeagherErdo˝s–Ko–Radotheorems:Algebraicapproaches 150 P.MattilaFourieranalysisandHausdorffdimension 151 M.Viana&K.OliveiraFoundationsofergodictheory 152 V.I.Paulsen&M.RaghupathiAnintroductiontothetheoryofreproducingkernelHilbertspaces 153 R.Beals&R.WongSpecialfunctionsandorthogonalpolynomials 154 V.JurdjevicOptimalcontrolandgeometry:Integrablesystems 155 G.PisierMartingalesinBanachspaces 156 C.T.C.WallDifferentialtopology 157 J.C.Robinson,J.L.Rodrigo&W.SadowskiThethree-dimensionalNavier–Stokesequations 158 D.HuybrechtsLecturesonK3surfaces 159 H.Matsumoto&S.TaniguchiStochasticanalysis 160 A.Borodin&G.OlshanskiRepresentationsoftheinfinitesymmetricgroup 161 P.WebbFinitegrouprepresentationsforthepuremathematician 162 C.J.Bishop&Y.PeresFractalsinprobabilityandanalysis 163 A.BovierGaussianprocessesontrees 164 P.SchneiderGaloisrepresentationsand(ϕ,(cid:3))-modules 165 P.Gille&T.SzamuelyCentralsimplealgebrasandGaloiscohomology (2ndEdition) 166 D.Li&H.QueffelecIntroductiontoBanachspaces,I 167 D.Li&H.QueffelecIntroductiontoBanachspaces,II 168 J.Carlson,S.Mu¨ller-Stach&C.PetersPeriodmappingsandperioddomains (2ndEdition) 169 J.M.LandsbergGeometryandcomplexitytheory 170 J.S.MilneAlgebraicgroups 171 J.Gough&J.KupschQuantumfieldsandprocesses 172 T.Ceccherini-Silberstein,F.Scarabotti&F.TolliDiscreteharmonicanalysis 173 P.GarrettModernanalysisofautomorphicformsbyexample,I 174 P.GarrettModernanalysisofautomorphicformsbyexample,II 175 G.NavarroCharactertheoryandtheMcKayconjecture 176 P.Fleig,H.P.A.Gustafsson,A.Kleinschmidt&D.PerssonEisensteinseriesandautomorphic representations Eisenstein Series and Automorphic Representations with Applications in String Theory PHILIPP FLEIG Max-Planck-Institutfu¨rDynamikundSelbstorganisation,Germany HENRIK P. A. GUSTAFSSON StanfordUniversity,California AXEL KLEINSCHMIDT Max-Planck-Institutfu¨rGravitationsphysik,Germany DANIEL PERSSON ChalmersUniversityofTechnology,Gothenburg UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107189928 DOI:10.1017/9781316995860 ©PhilippFleig,HenrikP.A.Gustafsson,AxelKleinschmidtandDanielPersson2018 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2018 PrintedintheUnitedKingdombyClays,StIvesplc AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Fleig,Philipp,author. Title:Eisensteinseriesandautomorphicrepresentationswith applicationsinstringtheory/PhilippFleig,Max-Planck-Institutfu¨r DynamikundSelbstorganisation,Germany[andthreeothers]. Description:Cambridge:CambridgeUniversityPress,2018.| Series:Cambridgestudiesinadvancedmathematics;176| Includesbibliographicalreferencesandindex. Identifiers:LCCN2018018863|ISBN9781107189928(hardback:alk.paper) Subjects:LCSH:Eisensteinseries.|Automorphicfunctions.|Stringmodels. Classification:LCCQA353.A9E472018|DDC512.7/3–dc23 LCrecordavailableathttps://lccn.loc.gov/2018018863 ISBN978-1-107-18992-8Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. MeinenerstenSchritteninderWissenschaft –P.F. Tomybelovedfamily –H.P.A.G. FürmeineliebeMutter –A.K. Tillminunderbarafamilj –D.P. Contents ListofDefinitionsandTheorems pagexi ListofExamples xiv Preface xvii 1 MotivationandBackground 1 1.1 AutomorphicFormsandEisensteinSeries 1 1.2 WhyEisensteinSeriesandAutomorphicForms? 5 1.3 AnalysingAutomorphicFormsandAdelisation 6 1.4 Reader’sGuideandMainTheorems 9 PARTONE AUTOMORPHICREPRESENTATIONS 17 2 Preliminariesonp-adicandAdelicTechnology 19 2.1 p-adicNumbers 19 2.2 p-adicIntegration 23 2.3 p-adicCharactersandtheFourierTransform 25 2.4 p-adicGaussianandBesselFunctions 30 2.5 Adeles 32 2.6 Adelisation 34 2.7 AdelicAnalysisoftheRiemannZetaFunction 35 3 BasicNotionsfromLieAlgebrasandLieGroups 39 3.1 RealLieAlgebrasandRealLieGroups 39 3.2 p-adicandAdelicGroups 49 4 AutomorphicForms 58 4.1 PreliminariesonSL(2,R) 58 4.2 ClassicalModularForms 61 4.3 FromClassicalModularFormstoAutomorphicForms 67 4.4 AdelicAutomorphicForms 75 4.5 EisensteinSeries 81 vii Contents 5 AutomorphicRepresentationsandEisensteinSeries 87 5.1 AFirstGlimpseatAutomorphicRepresentations 87 5.2 AutomorphicRepresentations 93 5.3 PrincipalSeriesRepresentations 96 5.4 EisensteinSeriesandInducedRepresentations 97 5.5 ClassifyingAutomorphicRepresentations 98 5.6 EmbeddingoftheDiscreteSeriesinthePrincipalSeries 100 5.7 EisensteinSeriesforNon-minimalParabolics 106 5.8 InducedRepresentationsandSphericalVectors* 115 6 WhittakerFunctionsandFourierCoefficients 123 6.1 PreliminaryExample:SL(2,R)WhittakerFunctions 123 6.2 FourierExpansionsandUnitaryCharacters 128 6.3 InducedRepresentationsandWhittakerModels 136 6.4 WavefrontSetandSmallRepresentations 141 6.5 MethodofPiatetski-ShapiroandShalika* 151 7 FourierCoefficientsofEisensteinSeriesonSL(2,A) 155 7.1 StatementofTheorem 155 7.2 ConstantTerm 158 7.3 TheNon-constantFourierCoefficients 165 8 LanglandsConstantTermFormula 170 8.1 StatementofTheorem 170 8.2 BruhatDecomposition 171 8.3 ParametrisingtheIntegral 172 8.4 Obtainingthea-dependenceoftheIntegral 173 8.5 SolvingtheRemainingIntegralbyInduction 174 8.6 TheGindikin–KarpelevichFormula 175 8.7 AssemblingtheConstantTerm 178 8.8 FunctionalRelationsforEisensteinSeries 179 8.9 ExpansioninMaximalParabolics* 181 9 WhittakerCoefficientsofEisensteinSeries 186 9.1 ReductionoftheIntegralandtheLongestWeylWord 186 9.2 UnramifiedLocalWhittakerFunctions 189 9.3 TheCasselman–ShalikaFormula 191 9.4 WhittakerFunctionsforGenericCharactersψ 197 9.5 DegenerateWhittakerCoefficients 199 9.6 TheCasselman–ShalikaFormulaandLanglandsDuality* 204 9.7 QuantumWhittakerFunctions* 207 9.8 WhittakerCoefficientsonSL(3,A)* 209 viii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.